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Abstract: In regression analysis it is obvious to have a correlation between the response and 
predictor(s), but having correlation among predictors is something undesired. The number of 
predictors included in the regression model depends on many factors among which, historical data, 
experience, etc. At the end selection of most important predictors is something objective due to the 
researcher. Multicollinearity is a phenomena when two or more predictors are correlated, if this 
happens, the standard error of the coefficients will increase [8]. Increased standard errors means that 
the coefficients for some or all independent variables may be found to be significantly different from 
0. In other words, by overinflating the standard errors, multicollinearity makes some variables 
statistically insignificant when they should be significant. In this paper we focus on the 
multicollinearity, reasons and consequences on the reliability of the regression model. 

 

1. Introduction 

In regression analysis there are many assumptions about the model, namely, multicollinearity, nonconsistant 
variance (non-homogeneity), linearity, and autocorrelation [6]. If one or more assumption is violated, then 
the model in hand is no more reliable and also is not acceptable in estimating the population parameters. 

In this study we focus on multicollinearity as a violation of one of basic assumption for successful regression 
model assumptions of successful regression model. Multicollinearity appears when two or more 
independent variables in the regression model are correlated. a little bit of multicollinearity sometimes will 
cause big problem but when it is moderate of high then it will be a problem to be solved. 

Multicollinearity, or near-linear dependence, is a statistical phenomenon in which two or more predictors 
variables in a multiple regression model are highly correlated. If there is no linear relationship between 
predictor variables, they are said to be orthogonal [2]. 

http://creativecommons.org/licenses/by/3.0
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In most applications of regression, the predictor’s variables are usually not orthogonal. Multicollinearity 
can be observed in the following cases 

i) Large changes in the estimated coefficients when a variable is added or deleted. 
ii) Large changes in the coefficients when a data point is altered or dropped. 

Multicollinearity may be present if: 

i) The algebraic signs of the estimated coefficients do not conform to the prior expectation; or 
ii) Coefficients of variables that are expected to be important have large standard errors (small t-

values). 
 

In fact, the researcher has no tools to know the multicollinearity unless the data has been collected. There 
are two types of multicollinearity: 
 
i) Data-based multicollinearity which occurs because of the researcher, when the experiment is poorly 
designed, or the collected data are purely observational 
ii) Structural multicollinearity: it occurs when the researcher generates new independent variable from one 

or more existing variables, for example creating 3x from x , it is in fact mathematical artifact which leads to 
multicollinearity. 
 
Therefore, in this research we will focus on the impact of multicollinearity existence among predictor 
variables on hypotheses testing decision taken.  

 

2. Correlation of predictors and the impact on regression model 

What impact does the correlation between predictors have on the regression model and subsequent 
conclusions? Correlation can be high or otherwise, to illustrate the impact of correlation among predictors 
on the reliability of the model obtained we use two sets of data one set with low correlation among predictors 
and other set with high correlation between predictors. The analysis of regression for the first set of data 
yielded the following regression information. 

We start by fitting simple models with one predictor variable each time, then by fitting multiple model 
containing both predictor variables. The multiple regression model found include both variables the 
correlation coefficients between two predictors was very low (-0.038). Results are shown in Table (1) 

Table-1: Coefficients of models for first data set 
Term      Coef       SECoef        t-value       P-value        VIF 
X1           2.20         3.30           0.67            0.524         1.00 
X2           0.354       0.638        0.55            0.594          1.00 
X1           2.27         3.46           0.66           0.523          1.00 
X2           0.371       0.662        0.56           0.593          1.00 
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From the Table (1), we can see that t-value for 1x  when included alone in the model is not far from the t-

value when both predictors were included, same for 2x  the t-value if not different from its value when both 

predictors are included. The decision of the parameter test will be same. On the other hand the standard 

error of coefficients have not been changed dramatically, for 1x  from 3.3 to 3.46 for simple and multiple 

model, and for 2x  from 0.638 to 0.662. All this can be viewed as a result of low correlation between 

predictors  

Now for the second set of data which is showing a very high correlation between predictors (0.996) the 
summary of the analysis are shown in Table (2). 

Table-2: Coefficients of models for first data set 
Term       Coef         SECoef        t-value     P-value       VIF 
X11         -0.309         0.279         -1.11        0.299          1.00 
X21        -0.704          0.579         -1.22        0.258          1.00 
X11          2.71           2.96             0.92        0.390          113.67 
X21        -6.39           6.24            -1.02        0.340          113.67 

 
Also, from Table 2 we can see that, there is a huge change in the coefficients values for 11x  from  (-0.309) 

to (2.71) in simple and multiple models. In addition to that, we can notice that the standard errors for 

coefficients have been increased hugely as well, for 1x  from (0.279) to (2.96) and for 
12x  from (0.579) to 

(6.24) when compare simple and multiple models. 
The relation between predictor variables for first and second sets of data are shown below. 

         

 Graph-1: Predictors with low correlation              Graph-2 Predictors with high correlation 
 

   

This comparison evident on the impact of correlation on the standard error of coefficients was huge in 
changing the standard errors of the coefficients for the second set of data, which will lead to wrong 
conclusions on the model. Some or all predictors will become insignificant when they should be significant 
because of inflation in standard error for predictors coefficients. As a summary having the high correlation 
among predictors will prevent the researcher capturing the most influential predictors for inclusion in the 
model. 
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3. Diagnostic of Multicollinearity 

There are many signs in the analysis for the multicollinearity among which 

�  The correlation among predictors is large 
� In case if the correlation is not calculated the following are signs of having the multicollinearity: 
      i) When the predictor’s coefficients vary from one to another model. 
      ii) When applying t-test, the coefficient are not significant but put all together ( testF � ) for the   whole  
           model it is significant. 
 
Relying only on correlation between pairs of predictors has limitation, the small or large value of correlation 
is something subjective depends on individual and also on the field of research that is why most of the time 
to detect the multicollinearity we use some indicator called variance inflation factors (VIF ). 

 

4. Variance Inflation Factors (VIF ) 

When correlation exists among predictor’s the standard error of predictors coefficients will increase and 

consequently the variance of predictor’s coefficients are inflated. The VIF  is a tool to measure and quantify 
how much the variance is inflated. VIFs are usually calculated by the software as part of regression analysis 
and will appear in VIF  column as part of the output. To interpret the value of VIF  the following rule is 
used in the table below: 

Table-3: VIF interpretation 
VIF -value conclusion 

1�VIF  Not correlated 
51 ��VIF  Moderately correlated 

5�VIF  Highly correlated 
 

In addition to the meaning of VIF  itself in showing whether the predictors are correlated, the square roof 
of VIF  indicates how much larger the standard error is, for example if 9�VIF  this means that the standard 
error for the coefficient of that predictor is 3 times as large as it would be if that predictor is uncorrelated 
with other predictors. VIF  can be calculated using the formula: 

21

1

iR
VIF

�
�  

This VIF  can be calculated for each predictor in the model, and the way is to regress the variable assume 

it is ith variable against all other predictors. We obtain 2
iR  which can be used to findVIF , same thing can 

be applied to all other predictors. 

Back to results of our data analysis, from Table-1, we can see that the value of variance inflation factor for 

1x  was 1 for both simple and multiple models, same for 2x  unchanged and it was 1, this is due to a very 
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low correlation for first set of data, while for second set of data, VIF for both variables were changed from 
1 for simple model to 113.67 for multiple model. In the latter case we cannot commence with regression 
unless this problem is solved [3]. 

 

5. Problem solving 

When two or more predictors are highly correlated, the relationship between the independent variables and 
the dependent variables is distorted by the very strong relationship between the independent variables, 
leading to the likelihood that our interpretation of relationships will be incorrect. In the worst case, if the 
variables are perfectly correlated, the regression cannot be computed [4]. 

Multicollinearity is detected by examining the tolerance for each independent variable. Tolerance is the 
amount of variability in one independent variable that is no explained by the other independent variables, 

and it is in fact 21 R�  .Tolerance values less than 0.10 indicate collinearity. 

If we discover collinearity in the regression output, we should reject the interpretation of the relationships 
as false until the issue is resolved [3]. 

Multicollinearity can be resolved by combining the highly correlated variables through principal component 
analysis, or omitting a variable from the analysis that associated with other variable(s) highly. 

 
6. Conclusions 

1. Multicollinearity is one of serious problems that should be resolved before starting the process of 
modeling the data. 

2. It is highly recommended that all regression analysis assumption should be met as they are 
contributing to accurate conclusion and helps to make inference on the population. 

3. Ignore and dismiss the model if the multicollinearity discovered after finding the model specially 
with high correlation as the model cannot be interpreted. 
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