Keywords

Keyword=stars: peculiar

Open all abstracts 1–10 of 30 results
A Search for Analogs of KIC 8462852 (Boyajian's Star): A Proof of Concept and the First Candidates

Edward G. Schmidt 2019 ApJL 880 L7

The seemingly normal F dwarf, KIC 8462852 (a.k.a. Boyajian's Star), has been observed to exhibit two types of behavior unique among known variable stars: infrequent episodes of small brightness dips and a long-term decline in brightness between the dips. No satisfactory mechanism has been found for this behavior, at least in part, because there is only one known example. To begin to rectify this, we have searched for other stars exhibiting similar dipping behavior using the Northern Sky Variability Survey and have used data from the All Sky Automated Survey for Supernovae to further investigate the behavior. Twenty-one stars are identified as possible dippers. Fifteen may be similar to Boyajian's star and the other six are likely to be more extreme examples of the same phenomenon. Using data from the Gaia Second Data Release we show that the dipper candidates are located in two restricted regions of the H-R diagram, near the main sequence with masses near 1 solar mass and in the red giant region near the evolutionary track for 2 solar mass stars. Stars in the former group are considered to be likely analogs to Boyajian's star and should be studied in more detail to gain insights into the dipping phenomenon.

Discovery of a Possible Early-T Thick-disk Subdwarf from the AllWISE2 Motion Survey

Kendra Kellogg et al 2018 AJ 155 87

We have discovered a potential T0 ± 1 subdwarf from a search for sources in the AllWISE2 Motion Survey that do not have counterparts in surveys at shorter wavelengths. With a tangential velocity of ∼170 km s−1, this object—WISE J071121.36–573634.2—has kinematics that are consistent with the thick-disk population of the Milky Way. Spectral fits suggest a low-metallicity for this object but also allow for the possibility of unresolved multiplicity. If WISE J0711–5736 is indeed an sdT0 dwarf, it would be only the second early-T subdwarf discovered to date.

The First Post-Kepler Brightness Dips of KIC 8462852

Tabetha. S. Boyajian et al 2018 ApJL 853 L8

We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in 2015 October, and a sequence of dipping began in 2017 May continuing on through the end of 2017, when the star was no longer visible from Earth. We distinguish four main 1%–2.5% dips, named "Elsie," "Celeste," "Skara Brae," and "Angkor," which persist on timescales from several days to weeks. Our main results so far are as follows: (i) there are no apparent changes of the stellar spectrum or polarization during the dips and (ii) the multiband photometry of the dips shows differential reddening favoring non-gray extinction. Therefore, our data are inconsistent with dip models that invoke optically thick material, but rather they are in-line with predictions for an occulter consisting primarily of ordinary dust, where much of the material must be optically thin with a size scale ≪1 μm, and may also be consistent with models invoking variations intrinsic to the stellar photosphere. Notably, our data do not place constraints on the color of the longer-term "secular" dimming, which may be caused by independent processes, or probe different regimes of a single process.

Extinction and the Dimming of KIC 8462852

Huan Y. A. Meng et al 2017 ApJ 847 131

To test alternative hypotheses for the behavior of KIC 8462852, we obtained measurements of the star over a wide wavelength range from the UV to the mid-infrared from 2015 October through 2016 December, using Swift, Spitzer and AstroLAB IRIS. The star faded in a manner similar to the long-term fading seen in Kepler data about 1400 days previously. The dimming rate for the entire period reported is 22.1 ± 9.7 mmag yr−1 in the Swift wavebands, with amounts of 21.0 ± 4.5 mmag in the ground-based B measurements, 14.0 ± 4.5 mmag in V, and 13.0 ± 4.5 in R, and a rate of 5.0 ± 1.2 mmag yr−1 averaged over the two warm Spitzer bands. Although the dimming is small, it is seen at ≳3σ by three different observatories operating from the UV to the IR. The presence of long-term secular dimming means that previous spectral energy distribution models of the star based on photometric measurements taken years apart may not be accurate. We find that stellar models with ${T}_{\mathrm{eff}}=7000\mbox{--}7100$ K and ${A}_{V}\sim 0.73$ best fit the Swift data from UV to optical. These models also show no excess in the near-simultaneous Spitzer photometry at 3.6 and 4.5 μm, although a longer wavelength excess from a substantial debris disk is still possible (e.g., as around Fomalhaut). The wavelength dependence of the fading favors a relatively neutral color (i.e., ${R}_{V}\gtrsim 5$, but not flat across all the bands) compared with the extinction law for the general interstellar medium (${R}_{V}=3.1$), suggesting that the dimming arises from circumstellar material.

Strange Quark Stars in Binaries: Formation Rates, Mergers, and Explosive Phenomena

G. Wiktorowicz et al 2017 ApJ 846 163

Recently, the possible coexistence of a first family composed of "normal" neutron stars (NSs) with a second family of strange quark stars (QSs) has been proposed as a solution of problems related to the maximum mass and to the minimal radius of these compact stellar objects. In this paper, we study the mass distribution of compact objects formed in binary systems and the relative fractions of quark and NSs in different subpopulations. We incorporate the strange QS formation model provided by the two-families scenario, and we perform a large-scale population synthesis study in order to obtain the population characteristics. According to our results, the main channel for strange QS formation in binary systems is accretion from a secondary companion on an NS. Therefore, a rather large number of strange QSs form by accretion in low-mass X-ray binaries and this opens the possibility of having explosive GRB-like phenomena not related to supernovae and not due to the merger of two NSs. The number of double strange QS systems is rather small, with only a tiny fraction that merge within a Hubble time. This drastically limits the flux of strangelets produced by the merger, which turns out to be compatible with all limits stemming from Earth and lunar experiments. Moreover, this value of the flux rules out at least one relevant channel for the transformation of all NSs into strange QSs by strangelets' absorption.

A Statistical Survey of Peculiar L and T Dwarfs in SDSS, 2MASS, and WISE

Kendra Kellogg et al 2017 AJ 154 112

We present the final results from a targeted search for brown dwarfs with unusual near-infrared colors. From a positional cross-match of the Sloan Digital Sky Survey (SDSS), 2-Micron All-Sky Survey (2MASS), and Wide-Field Infrared Survey Explorer (WISE) catalogs, we have identified 144 candidate peculiar L and T dwarfs. Spectroscopy confirms that 20 of the objects are peculiar or are candidate binaries. Of the 420 objects in our full sample 9 are young ($\lesssim 200\,\,\mathrm{Myr};$ 2.1%) and another 8 (1.9%) are unusually red, with no signatures of youth. With a spectroscopic $J-{K}_{s}$ color of 2.58 ± 0.11 mag, one of the new objects, the L6 dwarf 2MASS J03530419+0418193, is among the reddest field dwarfs currently known and is one of the reddest objects with no signatures of youth known to date. We have also discovered another potentially very-low-gravity object, the L1 dwarf 2MASS J00133470+1109403, and independently identified the young L7 dwarf 2MASS J00440332+0228112, which was first reported by Schneider and collaborators. Our results confirm that signatures of low gravity are no longer discernible in low to moderate resolution spectra of objects older than ∼200 Myr. The 1.9% of unusually red L dwarfs that do not show other signatures of youth could be slightly older, up to ∼400 Myr. In this case a red $J-{K}_{s}$ color may be more diagnostic of moderate youth than individual spectral features. However, its is also possible that these objects are relatively metal-rich, and thus have enhanced atmospheric dust content.

Active Luminous Blue Variables in the Large Magellanic Cloud

Nolan R. Walborn et al 2017 AJ 154 15

We present extensive spectroscopic and photometric monitoring of two famous and currently highly active luminous blue variables (LBVs) in the Large Magellanic Cloud (LMC), together with more limited coverage of three further, lesser known members of the class. R127 was discovered as an Ofpe/WN9 star in the 1970s but entered a classical LBV outburst in or about 1980 that is still in progress, thus enlightening us about the minimum state of such objects. R71 is currently the most luminous star in the LMC and continues to provide surprises, such as the appearance of [Ca ii] emission lines, as its spectral type becomes unprecedentedly late. Most recently, R71 has developed inverse P Cyg profiles in many metal lines. The other objects are as follows: HDE 269582, now a "second R127" that has been followed from Ofpe/WN9 to A type in its current outburst; HDE 269216, which changed from late B in 2014 to AF in 2016, its first observed outburst; and R143 in the 30 Doradus outskirts. The light curves and spectroscopic transformations are correlated in remarkable detail and their extreme reproducibility is emphasized, both for a given object and among all of them. It is now believed that some LBVs proceed directly to core collapse. One of these unstable LMC objects may thus oblige in the near future, teaching us even more about the final stages of massive stellar evolution.