Keywords

Keyword=stars: mass loss

Open all abstracts 1–10 of 71 results
Origin of 1I/'Oumuamua. II. An Ejected Exo-Oort Cloud Object?

Amaya Moro-Martín 2019 AJ 157 86

1I/'Oumuamua is the first detected interstellar interloper. We test the hypothesis that it is representative of a background population of exo-Oort cloud objects ejected under the effect of post-main sequence mass loss and stellar encounters. We do this by comparing the cumulative number density of interstellar objects inferred from the detection of 1I/'Oumuamua to that expected from these two clearing processes. We consider the 0.08–8 M mass range, take into account the dependencies with stellar mass, Galactocentric distance, and evolutionary state, and consider a wide range of size distributions for the ejected objects. Our conclusion is that 1I/'Oumuamua is likely not representative of this background population, even though there are large uncertainties in the masses and size distributions of the exo-Oort Clouds. We discuss whether the number density of free-floating, planetary-mass objects derived from gravitational microlensing surveys could be used as a discriminating measurement regarding 1I/'Oumuamua's origin (given their potential common origin). We conclude that this is challenged by the mass limitation of the surveys and the resulting uncertainty of the mass distribution of the free floaters. The detection of interlopers may be one of the few observational constraints of the small end of this population, with the caveat that, as we conclude here and in Moro-Martín (2018), in the case of 1I/'Oumuamua, it might not be appropriate to assume this object is representative of an isotropic background population, which makes the derivation of a number density very challenging.

The Double Dust Envelopes of R Coronae Borealis Stars

Edward J. Montiel et al 2018 AJ 156 148

The study of extended, cold dust envelopes surrounding R Coronae Borealis (RCB) stars began with their discovery by the Infrared Astronomical Satellite. RCB stars are carbon-rich supergiants characterized by their extreme hydrogen deficiency and their irregular and spectacular declines in brightness (up to 9 mag). We have analyzed new and archival Spitzer Space Telescope and Herschel Space Observatory data of the envelopes of seven RCB stars to examine the morphology and investigate the origin of these dusty shells. Herschel, in particular, has revealed the first-ever bow shock associated with an RCB star with its observations of SU Tauri. These data have allowed the assembly of the most comprehensive spectral energy distributions (SEDs) of these stars with multiwavelength data from the ultraviolet to the submillimeter. Radiative transfer modeling of the SEDs implies that the RCB stars in this sample are surrounded by an inner warm (up to 1200 K) and an outer cold (up to 200 K) envelope. The outer shells are suggested to contain up to 10−3 M of dust and have existed for up to 105 years depending on the expansion rate of the dust. This age limit indicates that these structures have most likely been formed during the RCB phase.

Long-term Simulation of MHD Jet Launching in an Orbiting Star–Disk System

Somayeh Sheikhnezami and Christian Fendt 2018 ApJ 861 11

We present fully three-dimensional magnetohydrodynamic jet-launching simulations of a jet source orbiting in a binary system. We consider a time-dependent binary gravitational potential, and thus all tidal forces are experienced in the non-inertial frame of the jet-launching primary. We investigate systems with different binary separations, different mass ratios, and different inclinations between the disk plane and the orbital plane. The simulations run over a substantial fraction of the binary orbital period. All simulations show similar local and global non-axisymmetric effects, such as local instabilities in the disk and jet or in global features, such as disk spiral arms and warps, or a global realignment of the inflow–outflow structure. The disk accretion rate is higher than in axisymmetric simulations, most probably due to the enhanced angular momentum transport by spiral waves. The disk outflow leaves the Roche lobe of the primary and becomes disturbed by tidal effects. While a disk-orbit inclination of 10° still allows for a persistent outflow, an inclination of 30° does not, suggesting a critical angle in between. For moderate inclination, we find an indication for jet precession, such that the jet axis starts to follow a circular pattern with an opening cone of ≃8°. Simulations with different mass ratios indicate a change of timescales over which the tidal forces affect the disk–jet system. A large mass ratio (a massive secondary) leads to stronger spiral arms, higher (average) accretion, and a more pronounced jet–counter-jet asymmetry.

Related Progenitor Models for Long-duration Gamma-Ray Bursts and Type Ic Superluminous Supernovae

David R. Aguilera-Dena et al 2018 ApJ 858 115

We model the late evolution and mass loss history of rapidly rotating Wolf–Rayet stars in the mass range 5 M...100 M). We find that quasi-chemically homogeneously evolving single stars computed with enhanced mixing retain very little or no helium and are compatible with Type Ic supernovae. The more efficient removal of core angular momentum and the expected smaller compact object mass in our lower-mass models lead to core spins in the range suggested for magnetar-driven superluminous supernovae. Our higher-mass models retain larger specific core angular momenta, expected for long-duration gamma-ray bursts in the collapsar scenario. Due to the absence of a significant He envelope, the rapidly increasing neutrino emission after core helium exhaustion leads to an accelerated contraction of the whole star, inducing a strong spin-up and centrifugally driven mass loss at rates of up to ${10}^{-2}\,{M}_{\odot }\,{\mathrm{yr}}^{-1}$ in the last years to decades before core collapse. Because the angular momentum transport in our lower-mass models enhances the envelope spin-up, they show the largest relative amounts of centrifugally enforced mass loss, i.e., up to 25% of the expected ejecta mass. Our most massive models evolve into the pulsational pair-instability regime. We would thus expect signatures of interaction with a C/O-rich circumstellar medium for Type Ic superluminous supernovae with ejecta masses below ∼10 M as well as for the most massive engine-driven explosions with ejecta masses above ∼30 M. Signs of such interaction should be observable at early epochs of the supernova explosion; they may be related to bumps observed in the light curves of superluminous supernovae, or to the massive circumstellar CO-shell proposed for Type Ic superluminous supernova Gaia16apd.

A NEW GENERATION OF PARSEC-COLIBRI STELLAR ISOCHRONES INCLUDING THE TP-AGB PHASE

Paola Marigo et al 2017 ApJ 835 77

We introduce a new generation of PARSECCOLIBRI stellar isochrones that includes a detailed treatment of the thermally pulsing asymptotic giant branch (TP-AGB) phase, covering a wide range of initial metallicities (0.0001 < Zi < 0.06). Compared to previous releases, the main novelties and improvements are use of new TP-AGB tracks and related atmosphere models and spectra for M and C-type stars; inclusion of the surface H+He+CNO abundances in the isochrone tables, accounting for the effects of diffusion, dredge-up episodes and hot-bottom burning; inclusion of complete thermal pulse cycles, with a complete description of the in-cycle changes in the stellar parameters; new pulsation models to describe the long-period variability in the fundamental and first-overtone modes; and new dust models that follow the growth of the grains during the AGB evolution, in combination with radiative transfer calculations for the reprocessing of the photospheric emission. Overall, these improvements are expected to lead to a more consistent and detailed description of properties of TP-AGB stars expected in resolved stellar populations, especially in regard to their mean photometric properties from optical to mid-infrared wavelengths. We illustrate the expected numbers of TP-AGB stars of different types in stellar populations covering a wide range of ages and initial metallicities, providing further details on the "C-star island" that appears at intermediate values of age and metallicity, and about the AGB-boosting effect that occurs at ages close to 1.6-Gyr for populations of all metallicities. The isochrones are available through a new dedicated web server.

SN 2011A: A LOW-LUMINOSITY INTERACTING TRANSIENT WITH A DOUBLE PLATEAU AND STRONG SODIUM ABSORPTION

T. de Jaeger et al 2015 ApJ 807 63

We present optical photometry and spectroscopy of the optical transient SN 2011A. Our data span 140 days after discovery including ${BVRI}\;u\prime g\prime r\prime i\prime z\prime $ photometry and 11 epochs of optical spectroscopy. Originally classified as a type IIn supernova (SN IIn) due to the presence of narrow Hα emission, this object shows exceptional characteristics. First, the light curve shows a double plateau, a property only observed before in the impostor SN 1997bs. Second, SN 2011A has a very low luminosity (${M}_{V}=-15.72$), placing it between normal luminous SNe IIn and SN impostors. Third, SN 2011A shows low velocity and high equivalent width absorption close to the sodium doublet, which increases with time and is most likely of circumstellar origin. This evolution is also accompanied by a change in line profile; when the absorption becomes stronger, a P Cygni profile appears. We discuss SN 2011A in the context of interacting SNe IIn and SN impostors, which appears to confirm the uniqueness of this transient. While we favor an impostor origin for SN 2011A, we highlight the difficulty in differentiating between terminal and non-terminal interacting transients.

A GRID OF MHD MODELS FOR STELLAR MASS LOSS AND SPIN-DOWN RATES OF SOLAR ANALOGS

O. Cohen and J. J. Drake 2014 ApJ 783 55

Stellar winds are believed to be the dominant factor in the spin-down of stars over time. However, stellar winds of solar analogs are poorly constrained due to observational challenges. In this paper, we present a grid of magnetohydrodynamic models to study and quantify the values of stellar mass loss and angular momentum loss rates as a function of the stellar rotation period, magnetic dipole component, and coronal base density. We derive simple scaling laws for the loss rates as a function of these parameters, and constrain the possible mass loss rate of stars with thermally driven winds. Despite the success of our scaling law in matching the results of the model, we find a deviation between the "solar dipole" case and a real case based on solar observations that overestimates the actual solar mass loss rate by a factor of three. This implies that the model for stellar fields might require a further investigation with additional complexity. Mass loss rates in general are largely controlled by the magnetic field strength, with the wind density varying in proportion to the confining magnetic pressure B2. We also find that the mass loss rates obtained using our grid models drop much faster with the increase in rotation period than scaling laws derived using observed stellar activity. For main-sequence solar-like stars, our scaling law for angular momentum loss versus poloidal magnetic field strength retrieves the well-known Skumanich decline of angular velocity with time, Ωt−1/2, if the large-scale poloidal magnetic field scales with rotation rate as $B_p\propto \Omega _\star ^2$.

A PREDICTION FORMULA OF SUPERSOFT X-RAY PHASE OF CLASSICAL NOVAE

Izumi Hachisu and Mariko Kato 2010 ApJ 709 680

On the basis of the recently developed universal decline law of classical novae, we propose prediction formulae for supersoft X-ray on and off times, i.e., tX-on = (10 ± 1.8)t3 days and tX-off = (5.3 ± 1.4)(t3)1.5 days for 8 ≲ t3 ≲ 80 days. Here t3 is the newly proposed "intrinsic" decay time during which the brightness drops by 3 mag from optical maximum along our universal decline law fitted with observation. We have determined the absolute magnitude of our free–free emission model light curves and derived maximum magnitude versus rate of decline (MMRD) relations. Our theoretical MMRD relations are governed by two parameters, one is the white dwarf (WD) mass and the other is the initial envelope mass at a nova outburst; this second parameter explains the scatter of MMRD points of individual novae. Our theoretical MMRD relations are also in good agreement with the well-known empirical formulae. We also show another empirical relation of MV(15) ∼ −5.7 ± 0.3 based on the absolute magnitude of our model light curves, i.e., the absolute magnitude at 15 days after optical maximum is almost common among various novae. We analyzed 10 nova light curves, in which a supersoft X-ray phase was detected, and estimated their WD masses. The models best simultaneously reproducing the optical and supersoft X-ray observations are ONeMg WDs with 1.28 ± 0.04 M (V598 Pup), 1.23 ± 0.05 M (V382 Vel), 1.15 ± 0.06 M (V4743 Sgr), 1.13 ± 0.06 M (V1281 Sco), 1.2 ± 0.05 M (V597 Pup), 1.06 ± 0.07 M (V1494 Aql), 1.04 ± 0.07 M (V2467 Cyg), 1.07 ± 0.07 M (V5116 Sgr), 1.05 ± 0.05 M (V574 Pup), and a CO WD with 0.93 ± 0.08 M (V458 Vul). The newly proposed relationships are consistent with the emergence or decay epoch of the supersoft X-ray phase of these 10 novae. Finally, we discuss the mechanism of shock-origin hard X-ray component in relation to the emergence of companion star from the WD envelope.

EVIDENCE FOR MASS EJECTION ASSOCIATED WITH LONG SECONDARY PERIODS IN RED GIANTS

P. R. Wood and C. P. Nicholls 2009 ApJ 707 573

Approximately 30% of luminous red giants exhibit a long secondary period (LSP) of variation in their light curves in addition to a shorter primary period of oscillation. The cause of the LSP has so far defied explanation: leading possibilities are binarity and a nonradial mode of oscillation. Here, large samples of red giants in the Large Magellanic Cloud both with and without LSPs are examined for evidence of an 8 or 24 μm mid-IR excess caused by circumstellar dust. It is found that stars with LSPs show a significant mid-IR excess compared to stars without LSPs. Furthermore, the near-IR JK color seems unaffected by the presence of the 24 μm excess. These findings indicate that LSPs cause mass ejection from red giants and that the lost mass and circumstellar dust is most likely in either a clumpy or a disk-like configuration. The underlying cause of the LSP and the mass ejection remains unknown.

TESTING MODELS OF ACCRETION-DRIVEN CORONAL HEATING AND STELLAR WIND ACCELERATION FOR T TAURI STARS

Steven R. Cranmer 2009 ApJ 706 824

Classical T Tauri stars are pre-main-sequence objects that undergo simultaneous accretion, wind outflow, and coronal X-ray emission. The impact of plasma on the stellar surface from magnetospheric accretion streams is likely to be a dominant source of energy and momentum in the upper atmospheres of these stars. This paper presents a set of models for the dynamics and heating of three distinct regions on T Tauri stars that are affected by accretion: (1) the shocked plasmas directly beneath the magnetospheric accretion streams, (2) stellar winds that are accelerated along open magnetic flux tubes, and (3) closed magnetic loops that resemble the Sun's coronal active regions. For the loops, a self-consistent model of coronal heating was derived from numerical simulations of solar field-line tangling and turbulent dissipation. Individual models are constructed for the properties of 14 well-observed stars in the Taurus–Auriga star-forming region. Predictions for the wind mass-loss rates are, on average, slightly lower than the observations, which suggests that disk winds or X-winds may also contribute to the measured outflows. For some of the stars, however, the modeled stellar winds do appear to contribute significantly to the measured mass fluxes. Predictions for X-ray luminosities from the shocks and loops are in general agreement with existing observations. The stars with the highest accretion rates tend to have X-ray luminosities dominated by the high-temperature (5–10 MK) loops. The X-ray luminosities for the stars having lower accretion rates are dominated by the cooler accretion shocks.