Keywords

Keyword=ISM: individual objects (Cassiopeia A)

Open all abstracts 1–10 of 20 results
A Deep Near-infrared [Fe ii]+[Si i] Emission Line Image of the Supernova Remnant Cassiopeia A

Bon-Chul Koo et al 2018 ApJ 866 139

We present a long-exposure (∼10 hr), narrowband image of the supernova (SN) remnant Cassiopeia A (Cas A) centered at 1.644 μm emission. The passband contains [Fe ii] 1.644 μm and [Si i] 1.645 μm lines, and our "deep [Fe ii]+[Si i] image" provides an unprecedented panoramic view of Cas A, showing both shocked and unshocked SN ejecta, together with shocked circumstellar medium at subarcsecond (∼0farcs7 or 0.012 pc) resolution. The diffuse emission from the unshocked SN ejecta has a form of clumps, filaments, and arcs, and their spatial distribution correlates well with that of the Spitzer [Si ii] infrared emission, suggesting that the emission is likely due to [Si i] not [Fe ii] as in shocked material. The structure of the optically invisible western area of Cas A is clearly seen for the first time. The area is filled with many quasi-stationary flocculi (QSFs) and fragments of the disrupted ejecta shell. We identified 309 knots in the deep [Fe ii]+[Si i] image and classified them into QSFs and fast-moving knots (FMKs). The comparison with previous optical plates indicates that the lifetime of most QSFs is ≳60 yr. The total H+He mass of QSFs is ≈0.23 M, implying that the mass fraction of dense clumps in the progenitor's mass ejection immediately prior to the SN explosion is about 4%–6%. FMKs in the deep [Fe ii]+[Si i] image mostly correspond to S-rich ejecta knots in optical studies, while those outside the southeastern disrupted ejecta shell appear Fe-rich. The mass of the [Fe ii] line emitting, shocked dense Fe ejecta is ∼3 × 10−5 M.

Near-Infrared Knots and Dense Fe Ejecta in the Cassiopeia A Supernova Remnant

Yong-Hyun Lee et al 2017 ApJ 837 118

We report the results of broadband (0.95–2.46 μm) near-infrared spectroscopic observations of the Cassiopeia A supernova remnant. Using a clump-finding algorithm in two-dimensional dispersed images, we identify 63 "knots" from eight slit positions and derive their spectroscopic properties. All of the knots emit [Fe ii] lines together with other ionic forbidden lines of heavy elements, and some of them also emit H and He lines. We identify 46 emission line features in total from the 63 knots and measure their fluxes and radial velocities. The results of our analyses of the emission line features based on principal component analysis show that the knots can be classified into three groups: (1) He-rich, (2) S-rich, and (3) Fe-rich knots. The He-rich knots have relatively small, $\lesssim 200\,\mathrm{km}\,{{\rm{s}}}^{-1}$, line-of-sight speeds and radiate strong He i and [Fe ii] lines resembling closely optical quasi-stationary flocculi of circumstellar medium, while the S-rich knots show strong lines from O-burning material with large radial velocities up to $\sim 2000\,\mathrm{km}\,{{\rm{s}}}^{-1}$ indicating that they are supernova ejecta material known as fast-moving knots. The Fe-rich knots also have large radial velocities but show no lines from O-burning material. We discuss the origin of the Fe-rich knots and conclude that they are most likely "pure" Fe ejecta synthesized in the innermost region during the supernova explosion. The comparison of [Fe ii] images with other waveband images shows that these dense Fe ejecta are mainly distributed along the southwestern shell just outside the unshocked 44Ti in the interior, supporting the presence of unshocked Fe associated with 44Ti.

HARD X-RAY EMISSIONS FROM CASSIOPEIA A OBSERVED BY INTEGRAL

Wei Wang and Zhuo Li 2016 ApJ 825 102

Cassiopeia A (Cas A), as the nearby young remnant of a core-collapse supernova, is the best candidate for astrophysical studies in supernova explosion and its environment. We studied the hard X-ray emission from Cas A using the 10 year data of INTEGRAL observations, and first detected non-thermal continuum emission from the source up to 220 keV. The 44Ti line emission at 68 and 78 keV is confirmed by our observations with a mean flux of ∼(2.2 ± 0.4) × 10−5 ph cm−2 s−1, corresponding to a 44Ti yield in Cas A of (1.3 ± 0.4) × 10−4 M. The continuum emission from 3 to 500 keV can be fit with a thermal bremsstrahlung of kT ∼ 0.79 ± 0.08 keV plus a power-law model of Γ ∼ 3.13 ± 0.03. The non-thermal emission from Cas A is well fit by a power-law model without a cutoff up to 220 keV. This radiation characteristic is inconsistent with diffusive shock acceleration models with a remnant shock velocity of only 5000 km s−1. The central compact object in Cas A cannot significantly contribute to the emission above 80 keV. Some possible physical origins of the non-thermal emission above 80 keV from the remnant shock are discussed. We deduce that the asymmetrical supernova explosion scenario of Cas A is a promising scenario for the production of high-energy synchrotron radiation photons, where a portion of the ejecta with a velocity of ∼0.1c and opening angle of ∼10° can account for the 100 keV emission, as is consistent with the "jet" observed in Cas A.

AN HST SURVEY OF THE HIGHEST-VELOCITY EJECTA IN CASSIOPEIA A

Robert A. Fesen and Dan Milisavljevic 2016 ApJ 818 17

We present Hubble Space Telescope WFC3/IR images of the Cassiopeia A supernova remnant that survey its high-velocity, S-rich debris in the NE jet and SW counterjet regions through [S iii] λλ9069, 9531 and [S ii] λλ10,287–10,370 line emissions. We identify nearly 3400 sulfur emitting knots concentrated in ∼120° wide opposing streams, almost triple the number previously known. The vast majority of these ejecta knots lie at projected distances well out ahead of the remnant's forward blast wave and main shell ejecta, extending to angular distance of $320^{\prime\prime} $ to the NE and $260^{\prime\prime} $ to the SW from the center of expansion. Such angular distances imply undecelerated ejecta knot transverse velocities of 15,600 and 12,700 km s−1, respectively, assuming an explosion date $\approx 1670$ AD and a distance of 3.4 kpc. Optical spectra of knots near the outermost tip of the NE ejecta stream show strong emission lines of S, Ca, and Ar. We estimate a total mass ∼0.1 ${M}_{\odot }$ and a kinetic energy of at least $\sim 1\times {10}^{50}$ erg for S-rich ejecta in the NE jet and SW counterjet. Although their broadness and kinetic energy argue against the Cas A SN being a jet-induced explosion, the jets are kinematically and chemically distinct from the rest of the remnant. This may reflect an origin in a jet-like mechanism that accelerated interior material from a Si-, S-, Ar-, and Ca-rich region near the progenitor's core up through the mantle and H-, He-, N-, and O-rich outer layers with velocities that greatly exceeded that of the rapidly expanding photosphere.

NEAR-INFRARED EXTINCTION DUE TO COOL SUPERNOVA DUST IN CASSIOPEIA A

Yong-Hyun Lee et al 2015 ApJ 808 98

We present the results of extinction measurements toward the main ejecta shell of the Cassiopeia A supernova (SN) remnant using the flux ratios between the two near-infrared (NIR) [Fe ii] lines at 1.26 and 1.64 μm. We find a clear correlation between the NIR extinction ($E(J-H)$) and the radial velocity of ejecta knots, showing that redshifted knots are systematically more obscured than blueshifted ones. This internal "self-extinction" strongly indicates that a large amount of SN dust resides inside and around the main ejecta shell. At one location in the southern part of the shell, we measure $E(J-H)$ by the SN dust of 0.23 ± 0.05 mag. By analyzing the spectral energy distribution of thermal dust emission at that location, we show that there are warm (∼100 K) and cool (∼40 K) SN dust components and that the latter is responsible for the observed $E(J-H)$. We investigate the possible grain species and size of each component and find that the warm SN dust needs to be silicate grains such as MgSiO3, Mg2SiO4, and SiO2, whereas the cool dust could be either small (≲0.01 μm) Fe or large (≳0.1 μm) Si grains. We suggest that the warm and cool dust components in Cassiopeia A represent grain species produced in diffuse SN ejecta and in dense ejecta clumps, respectively.

LOCATING THE MOST ENERGETIC ELECTRONS IN CASSIOPEIA A

Brian W. Grefenstette et al 2015 ApJ 802 15

We present deep (>2.4 Ms) observations of the Cassiopeia A supernova remnant with NuSTAR, which operates in the 3–79 keV bandpass and is the first instrument capable of spatially resolving the remnant above 15 keV. We find that the emission is not entirely dominated by the forward shock nor by a smooth "bright ring" at the reverse shock. Instead we find that the >15 keV emission is dominated by knots near the center of the remnant and dimmer filaments near the remnant's outer rim. These regions are fit with unbroken power laws in the 15–50 keV bandpass, though the central knots have a steeper (Γ ∼ −3.35) spectrum than the outer filaments (Γ ∼ −3.06). We argue this difference implies that the central knots are located in the 3-D interior of the remnant rather than at the outer rim of the remnant and seen in the center due to projection effects. The morphology of >15 keV emission does not follow that of the radio emission nor that of the low energy (<12 keV) X-rays, leaving the origin of the >15 keV emission an open mystery. Even at the forward shock front we find less steepening of the spectrum than expected from an exponentially cut off electron distribution with a single cutoff energy. Finally, we find that the GeV emission is not associated with the bright features in the NuSTAR band while the TeV emission may be, suggesting that both hadronic and leptonic emission mechanisms may be at work.

INTERACTION BETWEEN CASSIOPEIA A AND NEARBY MOLECULAR CLOUDS

C. D. Kilpatrick et al 2014 ApJ 796 144

We present spectroscopy of the supernova remnant Cassiopeia A (Cas A) observed at infrared wavelengths from 10 to 40 μm with the Spitzer Space Telescope and at millimeter wavelengths in 12CO and 13CO J =2–1 (230 and 220 GHz) with the Heinrich Hertz Submillimeter Telescope. The IR spectra demonstrate high-velocity features toward a molecular cloud coincident with a region of bright radio continuum emission along the northern shock front of Cas A. The millimeter observations indicate that CO emission is broadened by a factor of two in some clouds toward Cas A, particularly to the south and west. We believe that these features trace interactions between the Cas A shock front and nearby molecular clouds. In addition, some of the molecular clouds that exhibit broadening in CO lie 1'–2' away from the furthest extent of the supernova remnant shock front. We propose that this material may be accelerated by ejecta with velocity significantly larger than the observed free-expansion velocity of the Cas A shock front. These observations may trace cloud interactions with fast-moving outflows such as the bipolar outflow along the southwest to northeast axis of the Cas A supernova remnant, as well as fast-moving knots seen emerging in other directions.

A COMPARISON OF X-RAY AND OPTICAL EMISSION IN CASSIOPEIA A

Daniel J. Patnaude and Robert A. Fesen 2014 ApJ 789 138

Broadband optical and narrowband Si xiii X-ray images of the young Galactic supernova remnant Cassiopeia A (Cas A) obtained over several decades are used to investigate spatial and temporal emission correlations on both large and small angular scales. The data examined consist of optical and near-infrared ground-based and Hubble Space Telescope images taken between 1951 and 2011, and of X-ray images from Einstein, ROSAT, and Chandra taken between 1979 and 2013. We find weak spatial correlations between the remnant's X-ray and optical emission features on large scales, but several cases of good optical/X-ray correlations on small scales for features which have brightened due to recent interactions with the reverse shock. We also find instances (1) where a time delay is observed between the appearance of a feature's optical and X-ray emissions, (2) of displacements of several arcseconds between a feature's X-ray and optical emission peaks, and (3) of regions showing no corresponding X-ray or optical emissions. To explain this behavior, we propose a highly inhomogeneous density model for Cas A's ejecta consisting of small, dense optically emitting knots (n ∼102–3 cm−3) and a much lower density (n ∼0.1–1 cm−3) diffuse X-ray emitting component often spatially associated with optical emission knots. The X-ray emitting component is sometimes linked to optical clumps through shock-induced mass ablation generating trailing material leading to spatially offset X-ray/optical emissions. A range of ejecta densities can also explain the observed X-ray/optical time delays since the remnant's ≈5000 km s−1 reverse shock heats dense ejecta clumps to temperatures around 3 × 104 K relatively quickly, which then become optically bright while more diffuse ejecta become X-ray bright on longer timescales. Highly inhomogeneous ejecta as proposed here for Cas A may help explain some of the X-ray/optical emission features seen in other young core-collapse supernova remnants.

THE DENSITY AND MASS OF UNSHOCKED EJECTA IN CASSIOPEIA A THROUGH LOW FREQUENCY RADIO ABSORPTION

Tracey DeLaney et al 2014 ApJ 785 7

Characterizing the ejecta in young supernova remnants is a requisite step toward a better understanding of stellar evolution. In Cassiopeia A the density and total mass remaining in the unshocked ejecta are important parameters for modeling its explosion and subsequent evolution. Low frequency (<100 MHz) radio observations of sufficient angular resolution offer a unique probe of unshocked ejecta revealed via free–free absorption against the synchrotron emitting shell. We have used the Very Large Array plus Pie Town Link extension to probe this cool, ionized absorber at 9'' and 18farcs5 resolution at 74 MHz. Together with higher frequency data we estimate an electron density of 4.2 cm−3 and a total mass of 0.39 M with uncertainties of a factor of ∼2. This is a significant improvement over the 100 cm−3 upper limit offered by infrared [S iii] line ratios from the Spitzer Space Telescope. Our estimates are sensitive to a number of factors including temperature and geometry. However using reasonable values for each, our unshocked mass estimate agrees with predictions from dynamical models. We also consider the presence, or absence, of cold iron- and carbon-rich ejecta and how these affect our calculations. Finally we reconcile the intrinsic absorption from unshocked ejecta with the turnover in Cas A's integrated spectrum documented decades ago at much lower frequencies. These and other recent observations below 100 MHz confirm that spatially resolved thermal absorption, when extended to lower frequencies and higher resolution, will offer a powerful new tool for low frequency astrophysics.

A DETAILED KINEMATIC MAP OF CASSIOPEIA A'S OPTICAL MAIN SHELL AND OUTER HIGH-VELOCITY EJECTA

Dan Milisavljevic and Robert A. Fesen 2013 ApJ 772 134

We present three-dimensional (3D) kinematic reconstructions of optically emitting material in the young Galactic supernova remnant Cassiopeia A (Cas A). These Doppler maps have the highest spectral and spatial resolutions of any previous survey of Cas A and represent the most complete catalog of its optically emitting material to date. We confirm that the bulk of Cas A's optically bright ejecta populate a torus-like geometry tilted approximately 30° with respect to the plane of the sky with a −4000 to +6000 km s−1 radial velocity asymmetry. Near-tangent viewing angle effects and an inhomogeneous surrounding circumstellar material/interstellar medium environment suggest that this geometry and velocity asymmetry may not be faithfully representative of the remnant's true 3D structure or the kinematic properties of the original explosion. The majority of the optical ejecta are arranged in several well-defined and nearly circular ring-like structures with diameters between approximately 30'' (0.5 pc) and 2' (2 pc). These ejecta rings appear to be a common phenomenon of young core-collapse remnants and may be associated with post-explosion input of energy from plumes of radioactive 56Ni-rich ejecta that rise, expand, and compress non-radioactive material. Our optical survey encompasses Cas A's faint outlying ejecta knots and exceptionally high-velocity NE and SW streams of S-rich debris often referred to as "jets." These outer knots, which exhibit a chemical make-up suggestive of an origin deep within the progenitor star, appear to be arranged in opposing and wide-angle outflows with opening half-angles of ≈40°.