Keywords

Keyword=Sun: photosphere

Open all abstracts 1–10 of 584 results
Lossless Compression Method for the Magnetic and Helioseismic Imager (MHI) Payload

Li-Yue Tong et al 2024 Res. Astron. Astrophys. 24 045019

The Solar Polar-orbit Observatory (SPO), proposed by Chinese scientists, is designed to observe the solar polar regions in an unprecedented way with a spacecraft traveling in a large solar inclination angle and a small ellipticity. However, one of the most significant challenges lies in ultra-long-distance data transmission, particularly for the Magnetic and Helioseismic Imager (MHI), which is the most important payload and generates the largest volume of data in SPO. In this paper, we propose a tailored lossless data compression method based on the measurement mode and characteristics of MHI data. The background out of the solar disk is removed to decrease the pixel number of an image under compression. Multiple predictive coding methods are combined to eliminate the redundancy utilizing the correlation (space, spectrum, and polarization) in data set, improving the compression ratio. Experimental results demonstrate that our method achieves an average compression ratio of 3.67. The compression time is also less than the general observation period. The method exhibits strong feasibility and can be easily adapted to MHI.

Data-driven Simulations of Magnetic Field Evolution in Active Region 11429: Magneto-frictional Method Using PENCIL CODE

P. Vemareddy et al 2024 Res. Astron. Astrophys. 24 025007

Coronal magnetic fields evolve quasi-statically over long timescales and dynamically over short timescales. As of now there exist no regular measurements of coronal magnetic fields, and therefore generating the coronal magnetic field evolution using observations of the magnetic field at the photosphere is a fundamental requirement to understanding the origin of transient phenomena from solar active regions (ARs). Using the magneto-friction (MF) approach, we aim to simulate the coronal field evolution in the solar AR 11429. The MF method is implemented in the open source Pencil Code along with a driver module to drive the initial field with different boundary conditions prescribed from observed vector magnetic fields at the photosphere. In order to work with vector potential and the observations, we prescribe three types of bottom boundary drivers with varying free-magnetic energy. The MF simulation reproduces the magnetic structure, which better matches the sigmoidal morphology exhibited by Atmospheric Imaging Assembly (AIA) images at the pre-eruptive time. We found that the already sheared field further driven by the sheared magnetic field will maintain and further build the highly sheared coronal magnetic configuration, as seen in AR 11429. Data-driven MF simulation is a viable tool to generate the coronal magnetic field evolution, capturing the formation of the twisted flux rope and its eruption.

A Comparison of Co-temporal Vector Magnetograms Obtained with HMI/SDO and SP/Hinode

Mei Zhang et al 2023 Res. Astron. Astrophys. 23 125014

Accurate measurement of magnetic fields is very important for understanding the formation and evolution of solar magnetic fields. Currently, there are two types of solar magnetic field measurement instruments: filter-based magnetographs and Stokes polarimeters. The former gives high temporal resolution magnetograms and the latter provides more accurate measurements of magnetic fields. Calibrating the magnetograms obtained by filter-based magnetographs with those obtained by Stokes polarimeters is a good way to combine the advantages of the two types. Our previous studies have shown that, compared to the magnetograms obtained by the Spectro-Polarimeter (SP) on board Hinode, those magnetograms obtained by both the filter-based Solar Magnetic Field Telescope (SMFT) of the Huairou Solar Observing Station and by the filter-based Michelson Doppler Imager (MDI) aboard SOHO have underestimated the flux densities in their magnetograms and systematic center-to-limb variations present in the magnetograms of both instruments. Here, using a sample of 75 vector magnetograms of stable alpha sunspots, we compare the vector magnetograms obtained by the Helioseismic and Magnetic Imager (HMI) aboard Solar Dynamics Observatory (SDO) with co-temporal vector magnetograms acquired by SP/Hinode. Our analysis shows that both the longitudinal and transverse flux densities in the HMI/SDO magnetograms are very close to those in the SP/Hinode magnetograms and the systematic center-to-limb variations in the HMI/SDO magnetograms are very minor. Our study suggests that using a filter-based magnetograph to construct a low spectral resolution Stokes profile, as done by HMI/SDO, can largely remove the disadvantages of the filter-type measurements and yet still possess the advantage of high temporal resolution.

High-resolution Solar Image Reconstruction Based on Non-rigid Alignment

Hui Liu et al 2022 Res. Astron. Astrophys. 22 095005

Suppressing the interference of atmospheric turbulence and obtaining observation data with a high spatial resolution are an issue to be solved urgently for ground observations. One way to solve this problem is to perform a statistical reconstruction of short-exposure speckle images. Combining the rapidity of Shift-Add and the accuracy of speckle masking, this paper proposes a novel reconstruction algorithm-NASIR (Non-rigid Alignment based Solar Image Reconstruction). NASIR reconstructs the phase of the object image at each frequency by building a computational model between geometric distortion and intensity distribution and reconstructs the modulus of the object image on the aligned speckle images by speckle interferometry. We analyzed the performance of NASIR by using the correlation coefficient, power spectrum, and coefficient of variation of intensity profile in processing data obtained by the NVST (1 m New Vacuum Solar Telescope). The reconstruction experiments and analysis results show that the quality of images reconstructed by NASIR is close to speckle masking when the seeing is good, while NASIR has excellent robustness when the seeing condition becomes worse. Furthermore, NASIR reconstructs the entire field of view in parallel in one go, without phase recursion and block-by-block reconstruction, so its computation time is less than half that of speckle masking. Therefore, we consider NASIR is a robust and high-quality fast reconstruction method that can serve as an effective tool for data filtering and quick look.

A Region Selection Method for Real-time Local Correlation Tracking of Solar Full-disk Magnetographs

Yang Bai et al 2022 Res. Astron. Astrophys. 22 095010

Hundreds of images with the same polarization state are first registered to compensate for the jitters during an observation and then integrated to realize the needed spatial resolution and sensitivity for solar magnetic field measurement. Due to the feature dependent properties of the correlation tracker technique, an effective method to select the feature region is critical for low-resolution full-disk solar filtergrams, especially those with less significant features when the Sun is quiet. In this paper, we propose a region extraction method based on a Hessian matrix and information entropy constraints for local correlation tracking (CT) to get linear displacement between different images. The method is composed of three steps: (1) extract feature points with the Hessian matrix, (2) select good feature points with scale spaces and thresholds, and (3) locate the feature region with the two-dimensional information entropy constraints. Both the simulated and observational experiments demonstrated that our region selection method can efficiently detect the linear displacement and improve the quality of a ground-based full-disk solar magnetogram. The local CT with the selected regions can obtain displacement detection results as good as the global CT and at the same time significantly reduce the average calculation time.

Chinese Sunspot Drawings and Their Digitization—(VII) Sunspot Penumbra to Umbra Area Ratio Using the Hand-Drawing Records from Yunnan Observatories

Jia-Wei Hou et al 2022 Res. Astron. Astrophys. 22 095012

The ratio of penumbral to umbra area of sunspots plays a crucial role in the solar physics fields, especially for understanding the origin and evolution of the solar activity cycle. By analyzing the recently digitized sunspot drawings observed from Yunnan Observatories (1957–2021), we investigate the long-term variation of the penumbral to umbra area ratio of sunspots. An automatic extraction method, based on the maximum between-class variance and the morphological discrimination, is used to accurately extract penumbra and umbra and to calculate the ratio over six solar cycles (cycle 19–24). The expected value of the ratio of penumbra to umbra area is found to be 6.63 ± 0.98, and it does not exhibit any systematic variation with sunspot latitudes and phases. The average ratio fluctuates from 5 to 7.5 per year and the overall trend has decreased after 1999 compared to the previous one. The ratio of sunspot penumbra to umbra area satisfies the log-normal distribution, implying that its variation is related to the evolution of the photospheric magnetic field. Our results are consistent with previous works.

Length Scale of Photospheric Granules in Solar Active Regions

Yan-Xiao Liu et al 2022 Res. Astron. Astrophys. 22 085008

Investigating the length scales of granules could help understand the dynamics of granules in the photosphere. In this work, we detected and identified granules in an active region near disk center observed at wavelength of TiO (7057 Å) by the 1.6 m Goode Solar Telescope (GST). By a detailed analysis of the size distribution and flatness of granules, we found a critical size that divides the granules in motions into two regimes: convection and turbulence. The length scales of granules with sizes larger than 600 km follow Gauss function and demonstrate "flat" in flatness, which reveal that these granules are dominated by convection. Those with sizes smaller than 600 km follow power-law function and behave power-law tendency in flatness, which indicate that the small granules are dominated by turbulence. Hence, for the granules in active regions, they are originally convective in large length scale, and directly become turbulent once their sizes turn to small, likely below the critical size of 600 km. Comparing with the granules in quiet regions, they evolve with the absence of the mixing motions of convection and turbulence. Such a difference is probably caused by the interaction between fluid motions and strong magnetic fields in active regions. The strong magnetic fields make high magnetic pressure which creates pressure walls and slows down the evolution of convective granules. Such walls cause convective granules extending to smaller sizes on one hand, and cause wide intergranular lanes on the other hand. The small granules isolated in such wide intergranular lanes are continually sheared, rotated by strong downflows in surroundings and hereby become turbulent.

The Plasma β Evolution through the Solar Corona during Solar Cycles 23 and 24

Jenny Marcela Rodríguez Gómez et al 2019 ApJ 884 88

The plasma β is important in the investigation of interchanging roles of plasma and magnetic pressure in the solar atmosphere. It can help to describe features over the photosphere and their changes at different heights. The goal of this paper is to obtain the plasma β variations through the solar corona during solar cycles 23 and 24. The plasma β is reconstructed in different layers of the solar atmosphere. For this purpose, we use an updated version of the COronal DEnsity and Temperature model. In this version we selected different features in the solar atmosphere such as quiet-Sun (QS), faculae, and active regions. We calculate the β variations at different layers in the solar corona (R = 1.14, 1.19, 1.23, 1.28, 1.34, 1.40, 1.46, 1.53, 1.61, 1.74, 1.79, 1.84, and 1.90 R). In the photosphere we use temperature values from the FALC model to obtain plasma β in QS and faculae. Additionally, variations of the magnetic and kinetic pressure were modeled during the last solar cycles at coronal heights.

Formation of a Magnetic Flux Rope in the Early Emergence Phase of NOAA Active Region 12673

Lijuan Liu et al 2019 ApJ 884 45

In this work, we investigate the formation of a magnetic flux rope (MFR) above the central polarity inversion line (PIL) of NOAA Active Region 12673 during its early emergence phase. Through analyzing the photospheric vector magnetic field, extreme ultraviolet (EUV) and ultraviolet (UV) images, extrapolated three-dimensional (3D) nonlinear force-free fields (NLFFFs), and the photospheric motions, we find that with the successive emergence of different bipoles in the central region, the conjugate polarities separate, resulting in collision between the nonconjugated opposite polarities. Nearly potential loops appear above the PIL at first, then get sheared and merge at the collision locations as evidenced by the appearance of a continuous EUV sigmoid on 2017 September 4, which also indicates the formation of an MFR. The 3D NLFFFs further reveal the gradual buildup of the MFR, accompanied by the appearance of two elongated bald patches (BPs) at the collision locations and a very-low-lying hyperbolic flux tube configuration between the BPs. Finally, the MFR has relatively steady axial flux and average twist number of around 2.1 × 1020 Mx and −1.5, respective. Shearing motions are found developing near the BPs when the collision occurs, with flux cancellation and UV brightenings being observed simultaneously, indicating the development of a process named collisional shearing (first identified by Chintzoglou et al.). The results clearly show that the MFR is formed by collisional shearing, i.e., through shearing and flux cancellation driven by the collision between nonconjugated opposite polarities during their emergence.

The following article is Open access
Spatially Resolved Signatures of Bidirectional Flows Observed in Inverted-Y Shaped Jets

C. J. Nelson et al 2019 ApJ 883 115

Numerous apparent signatures of magnetic reconnection have been reported in the solar photosphere, including inverted-Y shaped jets. The reconnection at these sites is expected to cause localized bidirectional flows and extended shock waves; however, these signatures are rarely observed as extremely high spatial-resolution data are required. Here, we use Hα imaging data sampled by the Swedish Solar Telescope's CRisp Imaging SpectroPolarimeter to investigate whether bidirectional flows can be detected within inverted-Y shaped jets near the solar limb. These jets are apparent in the Hα line wings, while no signature of either jet is observed in the Hα line core, implying reconnection took place below the chromospheric canopy. Asymmetries in the Hα line profiles along the legs of the jets indicate the presence of bidirectional flows, consistent with cartoon models of reconnection in chromospheric anemone jets. These asymmetries are present for over two minutes, longer than the lifetimes of Rapid Blue Excursions, and beyond ±1 Å into the wings of the line indicating that flows within the inverted-Y shaped jets are responsible for the imbalance in the profiles, rather than motions in the foreground. Additionally, surges form following the occurrence of the inverted-Y shaped jets. This surge formation is consistent with models, which suggests such events could be caused by the propagation of shock waves from reconnection sites in the photosphere to the upper atmosphere. Overall, our results provide evidence that magnetic reconnection in the photosphere can cause bidirectional flows within inverted-Y shaped jets and could be the driver of surges.