American Astronomical Society
IOP

The Institute of Physics (IOP) is a leading scientific society promoting physics and bringing physicists together for the benefit of all. It has a worldwide membership of around 50 000 comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policy makers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications.

http://www.iop.org

Close

A publishing partnership

Cover image

The AJ publishes original astronomical research, with an emphasis on significant scientific results derived from observations, including descriptions of data capture, surveys, analysis techniques, and astronomical interpretation.

Find article

Additional Information

All American Astronomical Society research journals published with IOP Publishing are now electronic only and no longer print paper editions.

The online author services system makes it easy to submit an article to the AJ. All you need to do is upload and approve your manuscript and the peer-review process will start immediately.

Submit an article

Most read

View all abstracts

SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way, and Extra-Solar Planetary Systems

Daniel J. Eisenstein et al. 2011 The Astronomical Journal 142 72

Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS Data Release 8 (DR8), which was made public in 2011 January and includes SDSS-I and SDSS-II images and spectra reprocessed with the latest pipelines and calibrations produced for the SDSS-III investigations. This paper presents an overview of the four surveys that comprise SDSS-III. The Baryon Oscillation Spectroscopic Survey will measure redshifts of 1.5 million massive galaxies and Lyα forest spectra of 150,000 quasars, using the baryon acoustic oscillation feature of large-scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z < 0.7 and at z ≈ 2.5. SEGUE-2, an already completed SDSS-III survey that is the continuation of the SDSS-II Sloan Extension for Galactic Understanding and Exploration (SEGUE), measured medium-resolution ( R = λ/Δλ ≈ 1800) optical spectra of 118,000 stars in a variety of target categories, probing chemical evolution, stellar kinematics and substructure, and the mass profile of the dark matter halo from the solar neighborhood to distances of 100 kpc. APOGEE, the Apache Point Observatory Galactic Evolution Experiment, will obtain high-resolution ( R ≈ 30,000), high signal-to-noise ratio (S/N ≥ 100 per resolution element), H-band (1.51 μm < λ < 1.70 μm) spectra of 10 5 evolved, late-type stars, measuring separate abundances for ~15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. The Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 m s –1, ~24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. As of 2011 January, SDSS-III has obtained spectra of more than 240,000 galaxies, 29,000 z ≥ 2.2 quasars, and 140,000 stars, including 74,000 velocity measurements of 2580 stars for MARVELS.

Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant

Adam G. Riess et al. 1998 The Astronomical Journal 116 1009

We present spectral and photometric observations of 10 Type Ia supernovae (SNe Ia) in the redshift range 0.16 ≤ z ≤ 0.62. The luminosity distances of these objects are determined by methods that employ relations between SN Ia luminosity and light curve shape. Combined with previous data from our High- z Supernova Search Team and recent results by Riess et al., this expanded set of 16 high-redshift supernovae and a set of 34 nearby supernovae are used to place constraints on the following cosmological parameters: the Hubble constant ( H 0), the mass density (Ω M ), the cosmological constant (i.e., the vacuum energy density, Ω Λ), the deceleration parameter ( q 0), and the dynamical age of the universe ( t 0). The distances of the high-redshift SNe Ia are, on average, 10%–15% farther than expected in a low mass density (Ω M = 0.2) universe without a cosmological constant. Different light curve fitting methods, SN Ia subsamples, and prior constraints unanimously favor eternally expanding models with positive cosmological constant (i.e., Ω Λ > 0) and a current acceleration of the expansion (i.e., q 0 < 0). With no prior constraint on mass density other than Ω M ≥ 0, the spectroscopically confirmed SNe Ia are statistically consistent with q 0 < 0 at the 2.8 σ and 3.9 σ confidence levels, and with Ω Λ > 0 at the 3.0 σ and 4.0 σ confidence levels, for two different fitting methods, respectively. Fixing a "minimal" mass density, Ω M = 0.2, results in the weakest detection, Ω Λ > 0 at the 3.0 σ confidence level from one of the two methods. For a flat universe prior (Ω M + Ω Λ = 1), the spectroscopically confirmed SNe Ia require Ω Λ > 0 at 7 σ and 9 σ formal statistical significance for the two different fitting methods. A universe closed by ordinary matter (i.e., Ω M = 1) is formally ruled out at the 7 σ to 8 σ confidence level for the two different fitting methods. We estimate the dynamical age of the universe to be 14.2 ± 1.7 Gyr including systematic uncertainties in the current Cepheid distance scale. We estimate the likely effect of several sources of systematic error, including progenitor and metallicity evolution, extinction, sample selection bias, local perturbations in the expansion rate, gravitational lensing, and sample contamination. Presently, none of these effects appear to reconcile the data with Ω Λ = 0 and q 0 ≥ 0.

Evidence for a Distant Giant Planet in the Solar System

Konstantin Batygin and Michael E. Brown 2016 The Astronomical Journal 151 22

Recent analyses have shown that distant orbits within the scattered disk population of the Kuiper Belt exhibit an unexpected clustering in their respective arguments of perihelion. While several hypotheses have been put forward to explain this alignment, to date, a theoretical model that can successfully account for the observations remains elusive. In this work we show that the orbits of distant Kuiper Belt objects (KBOs) cluster not only in argument of perihelion, but also in physical space. We demonstrate that the perihelion positions and orbital planes of the objects are tightly confined and that such a clustering has only a probability of 0.007% to be due to chance, thus requiring a dynamical origin. We find that the observed orbital alignment can be maintained by a distant eccentric planet with mass ≳10 m whose orbit lies in approximately the same plane as those of the distant KBOs, but whose perihelion is 180° away from the perihelia of the minor bodies. In addition to accounting for the observed orbital alignment, the existence of such a planet naturally explains the presence of high-perihelion Sedna-like objects, as well as the known collection of high semimajor axis objects with inclinations between 60° and 150° whose origin was previously unclear. Continued analysis of both distant and highly inclined outer solar system objects provides the opportunity for testing our hypothesis as well as further constraining the orbital elements and mass of the distant planet.

Mapping the Universe: The 2010 Russell Lecture

Margaret J. Geller et al. 2011 The Astronomical Journal 142 133

Redshift surveys are a powerful tool of modern cosmology. We discuss two aspects of their power to map the distribution of mass and light in the universe: (1) measuring the mass distribution extending into the infall regions of rich clusters and (2) applying deep redshift surveys to the selection of clusters of galaxies and to the identification of very large structures (Great Walls). We preview the HectoMAP project, a redshift survey with median redshift z = 0.34 covering 50 deg 2 to r = 21. We emphasize the importance and power of spectroscopy for exploring and understanding the nature and evolution of structure in the universe.

The Observed Properties of Dwarf Galaxies in and around the Local Group

Alan W. McConnachie 2012 The Astronomical Journal 144 4

Positional, structural, and dynamical parameters for all dwarf galaxies in and around the Local Group are presented, and various aspects of our observational understanding of this volume-limited sample are discussed. Over 100 nearby galaxies that have distance estimates reliably placing them within 3 Mpc of the Sun are identified. This distance threshold samples dwarfs in a large range of environments, from the satellite systems of the MW and M31, to the quasi-isolated dwarfs in the outer regions of the Local Group, to the numerous isolated galaxies that are found in its surroundings. It extends to, but does not include, the galaxies associated with the next nearest groups, such as Maffei, Sculptor, and IC 342. Our basic knowledge of this important galactic subset and their resolved stellar populations will continue to improve dramatically over the coming years with existing and future observational capabilities, and they will continue to provide the most detailed information available on numerous aspects of dwarf galaxy formation and evolution. Basic observational parameters, such as distances, velocities, magnitudes, mean metallicities, as well as structural and dynamical characteristics, are collated, homogenized (as far as possible), and presented in tables that will be continually updated to provide a convenient and current online resource. As well as discussing the provenance of the tabulated values and possible uncertainties affecting their usage, the membership and spatial extent of the MW sub-group, M31 sub-group, and the Local Group are explored. The morphological diversity of the entire sample and notable sub-groups is discussed, and timescales are derived for the Local Group members in the context of their orbital/interaction histories. The scaling relations and mean stellar metallicity trends defined by the dwarfs are presented, and the origin of a possible "floor" in central surface brightness (and, more speculatively, stellar mean metallicity) at faint magnitudes is considered.

The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance

Edward L. Wright et al. 2010 The Astronomical Journal 140 1868

The all sky surveys done by the Palomar Observatory Schmidt, the European Southern Observatory Schmidt, and the United Kingdom Schmidt, the InfraRed Astronomical Satellite, and the Two Micron All Sky Survey have proven to be extremely useful tools for astronomy with value that lasts for decades. The Wide-field Infrared Survey Explorer (WISE) is mapping the whole sky following its launch on 2009 December 14. WISE began surveying the sky on 2010 January 14 and completed its first full coverage of the sky on July 17. The survey will continue to cover the sky a second time until the cryogen is exhausted (anticipated in 2010 November). WISE is achieving 5σ point source sensitivities better than 0.08, 0.11, 1, and 6 mJy in unconfused regions on the ecliptic in bands centered at wavelengths of 3.4, 4.6, 12, and 22 μm. Sensitivity improves toward the ecliptic poles due to denser coverage and lower zodiacal background. The angular resolution is 6 farcs1, 6 farcs4, 6 farcs5, and 12 farcs0 at 3.4, 4.6, 12, and 22 μm, and the astrometric precision for high signal-to-noise sources is better than 0 farcs15.

Composite Quasar Spectra from the Sloan Digital Sky Survey

Daniel E. Vanden Berk et al. 2001 The Astronomical Journal 122 549

We have created a variety of composite quasar spectra using a homogeneous data set of over 2200 spectra from the Sloan Digital Sky Survey (SDSS). The quasar sample spans a redshift range of 0.044 ≤ z ≤ 4.789 and an absolute r' magnitude range of -18.0 to -26.5. The input spectra cover an observed wavelength range of 3800–9200 Å at a resolution of 1800. The median composite covers a rest-wavelength range from 800 to 8555 Å and reaches a peak signal-to-noise ratio of over 300 per 1 Å resolution element in the rest frame. We have identified over 80 emission-line features in the spectrum. Emission-line shifts relative to nominal laboratory wavelengths are seen for many of the ionic species. Peak shifts of the broad permitted and semiforbidden lines are strongly correlated with ionization energy, as previously suggested, but we find that the narrow forbidden lines are also shifted by amounts that are strongly correlated with ionization energy. The magnitude of the forbidden line shifts is lesssim100 km s -1, compared with shifts of up to 550 km s -1 for some of the permitted and semiforbidden lines. At wavelengths longer than the Lyα emission, the continuum of the geometric mean composite is well fitted by two power laws, with a break at ≈5000 Å. The frequency power-law index, α ν, is -0.44 from ≈1300 to 5000 Å and -2.45 redward of ≈5000 Å. The abrupt change in slope can be accounted for partly by host-galaxy contamination at low redshift. Stellar absorption lines, including higher order Balmer lines, seen in the composites suggest that young or intermediate-age stars make a significant contribution to the light of the host galaxies. Most of the spectrum is populated by blended emission lines, especially in the range 1500–3500 Å, which can make the estimation of quasar continua highly uncertain unless large ranges in wavelength are observed. An electronic table of the median quasar template is available.

Large Size and Slow Rotation of the Trans-Neptunian Object (225088) 2007 OR10 Discovered from Herschel and K2 Observations

András Pál et al. 2016 The Astronomical Journal 151 117

We present the first comprehensive thermal and rotational analysis of the second most distant trans-Neptunian object (TNOs) (225088) 2007 OR 10. We combined optical light curves provided by the Kepler Space TelescopeK2 extended mission and thermal infrared data provided by the Herschel Space Observatory. We found that (225088) 2007 OR 10 is likely to be larger and darker than derived by earlier studies: we obtained a diameter of $d={1535}_{-225}^{+75}\;{\rm{km}}$ which places (225088) 2007 OR 10 in the biggest top three TNOs. The corresponding visual geometric albedo is ${p}_{V}={0.089}_{-0.009}^{+0.031}$. The light-curve analysis revealed a slow rotation rate of P rot = 44.81 ± 0.37 hr, superseded by very few objects. The most likely light-curve solution is double-peaked with a slight asymmetry; however, we cannot safely rule out the possibility of having a rotation period of P rot = 22.40 ± 0.18 hr, which corresponds to a single-peaked solution. Due to the size and slow rotation, the shape of the object should be a MacLaurin ellipsoid, so the light variation should be caused by surface inhomogeneities. Its newly derived larger diameter also implies larger surface gravity and a more likely retention of volatiles—CH 4, CO, and N 2—on the surface.

Cosmicflows-2: The Data

R. Brent Tully et al. 2013 The Astronomical Journal 146 86

Cosmicflows-2 is a compilation of distances and peculiar velocities for over 8000 galaxies. Numerically the largest contributions come from the luminosity-line width correlation for spirals, the Tully-Fisher relation (TFR), and the related fundamental plane relation for E/S0 systems, but over 1000 distances are contributed by methods that provide more accurate individual distances: Cepheid, tip of the red giant branch (TRGB), surface brightness fluctuation, Type Ia supernova, and several miscellaneous but accurate procedures. Our collaboration is making important contributions to two of these inputs: TRGB and TFR. A large body of new distance material is presented. In addition, an effort is made to ensure that all the contributions, both our own and those from the literature, are on the same scale. Overall, the distances are found to be compatible with a Hubble constant H 0 = 74.4 ± 3.0 km s –1 Mpc –1. The great interest going forward with this data set will be with velocity field studies. Cosmicflows-2 is characterized by a great density and high accuracy of distance measures locally, falling to sparse and coarse sampling extending to z = 0.1.

An Extreme Analogue of epsilon Aurigae: An M-giant Eclipsed Every 69 Years by a Large Opaque Disk Surrounding a Small Hot Source

Joseph E. Rodriguez et al. 2016 The Astronomical Journal 151 123

We present TYC 2505-672-1 as a newly discovered and remarkable eclipsing system comprising an M-type red giant that undergoes a ∼3.45 year long, near-total eclipse (depth of ∼4.5 mag) with a very long period of ∼69.1 years. TYC 2505-672-1 is now the longest-period eclipsing binary system yet discovered, more than twice as long as that of the currently longest-period system, ϵ Aurigae. We show from analysis of the light curve including both our own data and historical data spanning more than 120 years and from modeling of the spectral energy distribution, both before and during eclipse, that the red giant primary is orbited by a moderately hot source ( T eff ≈ 8000 K) that is itself surrounded by an extended, opaque circumstellar disk. From the measured ratio of luminosities, the radius of the hot companion must be in the range of 0.1–0.5 R (depending on the assumed radius of the red giant primary), which is an order of magnitude smaller than that for a main sequence A star and 1–2 orders of magnitude larger than that for a white dwarf. The companion is therefore most likely a “stripped red giant” subdwarf-B type star destined to become a He white dwarf. It is, however, somewhat cooler than most sdB stars, implying a very low mass for this “pre-He-WD” star. The opaque disk surrounding this hot source may be a remnant of the stripping of its former hydrogen envelope. However, it is puzzling how this object became stripped, given that it is at present so distant (orbital semimajor axis of ∼24 au) from the current red giant primary star. Extrapolating from our calculated ephemeris, the next eclipse should begin in early UT 2080 April and end in mid UT 2083 September (eclipse center UT 2081 December 24). In the meantime, radial velocity observations would establish the masses of the components, and high-cadence UV observations could potentially reveal oscillations of the hot companion that would further constrain its evolutionary status. In any case, this system is poised to become an exemplar of a very rare class of systems, even more extreme in several respects than the well studied archetype ϵ Aurigae.

Most cited

View all abstracts

The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters. I. Overview of the Project and Detection of Multiple Stellar Populations

G. Piotto et al. 2015 The Astronomical Journal 149 91

In this paper we describe a new UV-initiative Hubble Space Telescope project (GO-13297) that will complement the existing F606W and F814W database of the Advanced Camera for Surveys Globular Cluster (GC) Treasury by imaging most of its clusters through UV/blue WFC3/UVIS filters F275W, F336W, and F438W. This “magic trio” of filters has shown an uncanny ability to disentangle and characterize multiple population (MP) patterns in GCs in a way that is exquisitely sensitive to C, N, and O abundance variations. Combination of these passbands with those in the optical also gives the best leverage for measuring helium enrichment. The dozen clusters that had previously been observed in these bands exhibit a bewildering variety of MP patterns, and the new survey will map the full variance of the phenomenon. The ubiquity of multiple stellar generations in GCs has made the formation of these cornerstone objects more intriguing than ever; GC formation and the origin of their MPs have now become one and the same problem. In this paper we will describe the database and our data reduction strategy, as well as the uses we intend to make of the final photometry, astrometry, and PMs. We will also present preliminary color–magnitude diagrams from the data so far collected. These diagrams also draw on data from GO-12605 and GO-12311, which served as a pilot project for the present GO-13297.

Revealing a Universal Planet–Metallicity Correlation for Planets of Different Sizes Around Solar-type Stars

Ji Wang and Debra A. Fischer 2015 The Astronomical Journal 149 14

The metallicity of exoplanet systems serves as a critical diagnostic of planet formation mechanisms. Previous studies have demonstrated the planet–metallicity correlation for large planets ( ${{R}_{P}}\ \geqslant \ 4\ {{R}_{E}}$); however, a correlation has not been found for smaller planets. With a sample of 406 Kepler objects of interest whose stellar properties are determined spectroscopically, we reveal a universal planet–metallicity correlation: not only gas-giant planets ( $3.9\ {{R}_{E}}\ \lt {{R}_{P}}\ \leqslant \ 22.0\ {{R}_{E}}$) but also gas-dwarf ( $1.7\ {{R}_{E}}\ \lt {{R}_{P}}\ \leqslant \ 3.9\ {{R}_{E}}$) and terrestrial planets ( ${{R}_{P}}\ \leqslant \ 1.7\ {{R}_{E}}$) occur more frequently in metal-rich stars. The planet occurrence rates of gas-giant planets, gas-dwarf planets, and terrestrial planets are $9.30_{-3.04}^{+5.62}$, $2.03_{-0.26}^{+0.29}$, and $1.72_{-0.17}^{+0.19}$ times higher for metal-rich stars than for metal-poor stars, respectively.

Detection of Stars Within ~0.8 in of Kepler Objects of Interest

Rea Kolbl et al. 2015 The Astronomical Journal 149 18

We present an algorithm to search for the faint spectrum of a second star mixed with the spectrum of a brighter star in high resolution spectra. We model optical stellar spectra as the sum of two input spectra drawn from a vast library of stars throughout the H-R diagram. From typical spectra having a resolution of R = 60,000, we are able to detect companions as faint as 1% relative to the primary star in approximately the V and R bandpasses of photometry. We are also able to find evidence for triple and quadruple systems, given that any additional companions are sufficiently bright. The precise threshold percentage depends on the signal-to-noise of the spectrum and the properties of the two stars. For cases of non-detection, we place a limit on the brightness of any potential companions. This algorithm is useful for detecting faint orbiting companions and background stars that are angularly close to a foreground target star. The size of the entrance slit to the spectrometer, 0.87 × 3 arcsec (typically), sets the angular domain within which the second star can be detected. We analyzed Keck-HIRES spectra of 1160 California Kepler Survey objects of interest (KOI) searching for the secondary spectra, with the two goals of alerting the community to two possible host stars of the transiting planet and to dilution of the light curve. We report 63 California KOI showing spectroscopic evidence of a secondary star.

A Search for Stars of Very Low Metal Abundance. VI. Detailed Abundances of 313 Metal-poor Stars

Ian U. Roederer et al. 2014 The Astronomical Journal 147 136

We present radial velocities, equivalent widths, model atmosphere parameters, and abundances or upper limits for 53 species of 48 elements derived from high resolution optical spectroscopy of 313 metal-poor stars. A majority of these stars were selected from the metal-poor candidates of the HK Survey of Beers, Preston, and Shectman. We derive detailed abundances for 61% of these stars for the first time. Spectra were obtained during a 10 yr observing campaign using the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Telescopes at Las Campanas Observatory, the Robert G. Tull Coudé Spectrograph on the Harlan J. Smith Telescope at McDonald Observatory, and the High Resolution Spectrograph on the Hobby-Eberly Telescope at McDonald Observatory. We perform a standard LTE abundance analysis using MARCS model atmospheres, and we apply line-by-line statistical corrections to minimize systematic abundance differences arising when different sets of lines are available for analysis. We identify several abundance correlations with effective temperature. A comparison with previous abundance analyses reveals significant differences in stellar parameters, which we investigate in detail. Our metallicities are, on average, lower by ≈0.25 dex for red giants and ≈0.04 dex for subgiants. Our sample contains 19 stars with [Fe/H] ≤–3.5, 84 stars with [Fe/H] ≤–3.0, and 210 stars with [Fe/H] ≤–2.5. Detailed abundances are presented here or elsewhere for 91% of the 209 stars with [Fe/H] ≤–2.5 as estimated from medium resolution spectroscopy by Beers, Preston, and Shectman. We will discuss the interpretation of these abundances in subsequent papers.

Discovery of Eight z ~ 6 Quasars from Pan-STARRS1

E. Bañados et al. 2014 The Astronomical Journal 148 14

High-redshift quasars are currently the only probes of the growth of supermassive black holes and potential tracers of structure evolution at early cosmic time. Here we present our candidate selection criteria from the Panoramic Survey Telescope & Rapid Response System 1 and follow-up strategy to discover quasars in the redshift range 5.7 lsim z lsim 6.2. With this strategy we discovered eight new 5.7 ≤ z ≤ 6.0 quasars, increasing the number of known quasars at z > 5.7 by more than 10%. We additionally recovered 18 previously known quasars. The eight quasars presented here span a large range of luminosities (–27.3 ≤ M 1450 ≤ –25.4; 19.6 ≤ z P1 ≤ 21.2) and are remarkably heterogeneous in their spectral features: half of them show bright emission lines whereas the other half show a weak or no Lyα emission line (25% with rest-frame equivalent width of the Lyα +N V line lower than 15 Å). We find a larger fraction of weak-line emission quasars than in lower redshift studies. This may imply that the weak-line quasar population at the highest redshifts could be more abundant than previously thought. However, larger samples of quasars are needed to increase the statistical significance of this finding.

Latest articles

View all abstracts

Upper Limits from Five Years of Blazar Observations with the VERITAS Cherenkov Telescopes

S. Archambault et al. 2016 The Astronomical Journal 151 142

Between the beginning of its full-scale scientific operations in 2007 and 2012, the VERITAS Cherenkov telescope array observed more than 130 blazars; of these, 26 were detected as very-high-energy (VHE; E > 100 GeV) γ-ray sources. In this work, we present the analysis results of a sample of 114 undetected objects. The observations constitute a total live-time of ∼570 hr. The sample includes several unidentified Fermi-Large Area Telescope (LAT) sources (located at high Galactic latitude) as well as all the sources from the second Fermi-LAT catalog that are contained within the field of view of the VERITAS observations. We have also performed optical spectroscopy measurements in order to estimate the redshift of some of these blazars that do not have spectroscopic distance estimates. We present new optical spectra from the Kast instrument on the Shane telescope at the Lick observatory for 18 blazars included in this work, which allowed for the successful measurement or constraint on the redshift of four of them. For each of the blazars included in our sample, we provide the flux upper limit in the VERITAS energy band. We also study the properties of the significance distributions and we present the result of a stacked analysis of the data set, which shows a 4 σ excess.

MCG+08-22-082: A Double Core and Boxy Appearance Dwarf Lenticular Galaxy Suspected to be a Merger Remnant

Mina Pak et al. 2016 The Astronomical Journal 151 141

We present a study on the dwarf lenticular galaxy MCG+08-22-082 (U141), located in the Ursa Major cluster, blue-centered, double-cored, and having a boxy appearance. Using publicly available data from the Sloan Digital Sky Survey (SDSS), we perform an analysis of the structural and stellar population properties of the galaxy and the cores. We find that the light profile of U141 follows an exponential law. U141 has a brightness of ${M}_{r}=-16.01$ mag, and an effective radius of ${R}_{e}=1.7\;{\rm{kpc}}$. The boxiness parameter ${a}_{4}/a$ is mostly between 0 and −0.05 in the inner parts, reaching an extreme of about −0.1. Double cores are seen at the center of U141; each of these cores has a stellar mass of ∼10 6 M and the separation between them is ∼300 pc. Optical spectroscopy of these cores shows prominent emission in H α, suggesting ongoing star-forming activities. We interpret these morphological properties and speculate that U141 is a merger remnant of two disk galaxies. Thus, we might have discovered an intermediate stage of merging, providing possible evidence of double cores in the center of the galaxy.

Silicon Depletion in the Interstellar Medium

U. Haris et al. 2016 The Astronomical Journal 151 143

We report interstellar silicon (Si) depletion and dust-phase column densities of Si along 131 Galactic sight lines using archival observations. The data were corrected for differences in the assumed oscillator strength. This is a much larger sample than previous studies but confirms the majority of results, which state that the depletion of Si is correlated with the average density of hydrogen along the line of sight ( $\langle n({\rm{H}})\rangle $) as well as the fraction of hydrogen in molecular form ( f(H 2)). We also find that the linear part of the extinction curve is independent of Si depletion. Si depletion is correlated with the bump strength ( c 3/ R V ) and the FUV curvature ( c 4/ R V ) suggesting that silicon plays a significant role in both the 2175 Å bump and the FUV rise.

Orbital Characteristics of Planetesimals Captured by Circumplanetary Gas Disks

Ryo Suetsugu et al. 2016 The Astronomical Journal 151 140

Sufficiently massive growing giant planets have circumplanetary disks, and the capture of solid bodies by the disks would likely influence the growth of the planets and formation of satellite systems around them. In addition to dust particles that are supplied to the disk with inflowing gas, recent studies suggest the importance of capture of planetesimals whose motion is decoupled from the gas, but the orbital evolution of captured bodies in circumplanetary gas disks has not been studied in detail. In the present work, using three-body orbital integration and analytic calculations, we examine orbital characteristics and subsequent dynamical evolution of planetesimals captured by gas drag from circumplanetary gas disks. We find that the semimajor axes of the planet-centered orbits of planetesimals at the time of permanent capture are smaller than about one-third of the planet's Hill radius in most cases. Typically, captured bodies rapidly spiral into the planet, and the rate of the orbital decay is faster for the retrograde orbits due to the strong headwind from the circumplanetary gas. When a planetesimal captured in a retrograde orbit suffers from sufficiently strong gas drag before spiraling into the planet, its orbit turns to the prograde direction at a radial location that can be explained using the Stokes number. We also find that those captured in certain types of orbits can survive for a long period of time even under gas drag both in the prograde and retrograde cases, which may be important for the origin of irregular satellites of giant planets.

Fundamental Parameters of Kepler Eclipsing Binaries. I. KIC 5738698

Rachel A. Matson et al. 2016 The Astronomical Journal 151 139

Eclipsing binaries serve as a valuable source of stellar masses and radii that inform stellar evolutionary models and provide insight into additional astrophysical processes. The exquisite light curves generated by space-based missions such as Kepler offer the most stringent tests to date. We use the Kepler light curve of the 4.8 day eclipsing binary KIC 5739896 with ground based optical spectra to derive fundamental parameters for the system. We reconstruct the component spectra to determine the individual atmospheric parameters, and model the Kepler photometry with the binary synthesis code Eclipsing Light Curve to obtain accurate masses and radii. The two components of KIC 5738698 are F-type stars with ${M}_{1}\;=\;1.39\pm 0.04\;{M}_{\odot }$, ${M}_{2}\;=\;1.34\pm 0.06\;{M}_{\odot }$, and ${R}_{1}\;=\;1.84\pm 0.03\;{R}_{\odot }$, ${R}_{2}\;=\;1.72\pm 0.03\;{R}_{\odot }$. We also report a small eccentricity ( $e\lesssim 0.0017$) and unusual albedo values that are required to match the detailed shape of the Kepler light curve. Comparison with evolutionary models indicate an approximate age of 2.3 Gyr for the system.