This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Highlights of 2016

I am delighted to present the Journal of Micromechanics and Microengineering (JMM) Highlights of 2016, all of which are free to read until the end of 2017. These are intended as a showcase for the exciting research across all areas of MEMS and microscale research that JMM presents.

The chosen articles were identified by our team of expert referees and the journal's Editorial Board as some of the highest-quality papers we have published in 2016. I hope that you find them interesting.

Best regards,

Leanne Mullen, PhD
Publisher
Journal of Micromechanics and Microengineering

MEMS mass spectrometers: the next wave of miniaturization

Richard R A Syms and Steven Wright 2016 J. Micromech. Microeng. 26 023001

This paper reviews mass spectrometers based on micro-electro-mechanical systems (MEMS) technology. The MEMS approach to integration is first briefly described, and the difficulties of miniaturizing mass spectrometers are outlined. MEMS components for ionization and mass filtering are then reviewed, together with additional components for ion detection, vacuum pressure measurement and pumping. Mass spectrometer systems containing MEMS sub-components are then described, applications for miniaturized and portable systems are discussed, and challenges and opportunities are presented.

Review of polymer MEMS micromachining

Brian J Kim and Ellis Meng 2016 J. Micromech. Microeng. 26 013001

The development of polymer micromachining technologies that complement traditional silicon approaches has enabled the broadening of microelectromechanical systems (MEMS) applications. Polymeric materials feature a diverse set of properties not present in traditional microfabrication materials. The investigation and development of these materials have opened the door to alternative and potentially more cost effective manufacturing options to produce highly flexible structures and substrates with tailorable bulk and surface properties. As a broad review of the progress of polymers within MEMS, major and recent developments in polymer micromachining are presented here, including deposition, removal, and release techniques for three widely used MEMS polymer materials, namely SU-8, polyimide, and Parylene C. The application of these techniques to create devices having flexible substrates and novel polymer structural elements for biomedical MEMS (bioMEMS) is also reviewed.

Liquid metal-based reconfigurable and stretchable photolithography

Daeyoung Kim et al 2016 J. Micromech. Microeng. 26 045004

Conventional ultraviolet (UV) lithography typically uses a photomask made of a fused silica plate covered with a layer of UV opaque material such as chromium. The photomask has passive binary patterns of UV opaque and UV transparent regions and the pattern is unalterable. We report a novel real-time dynamically reconfigurable photomask technology using a liquid metal (as a UV opaque material) filled in polydimethylsiloxane (PDMS, as a UV transparent material) microfluidic channels. We found that the gallium-based liquid metal (e.g. Galinstan®) is opaque in broad spectrum of light in the wavelength from 325 nm to 850 nm while the PDMS is highly transparent in this wide range of spectrum. We made both bright field and dark field microfluidic photomasks and transferred various patterns onto a positive photoresist. A 7-segment display microfluidic channel photomask was also fabricated and decimal numerals (from '0' to '9') were patterned with one photomask by dynamically reconfiguring decimal numeral shapes with on-demand injection and withdrawal of the liquid metal in specific segment microfluidic channels in the photomask. In addition, utilizing mechanical flexibility of the PDMS and the liquid metal, reconfiguration of the patterns in a microfluidic photomask under stretching was successfully tested.

3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques

Bin Zhang et al 2016 J. Micromech. Microeng. 26 025015

Recently, the three-dimensional (3D) printing technique has received much attention for shape forming and manufacturing. The fused deposition modeling (FDM) printer is one of the various 3D printers available and has become widely used due to its simplicity, low-cost, and easy operation. However, the FDM technique has a limitation whereby its patterning resolution is too low at around 200 μm. In this paper, we first present a hybrid mechanism of electrohydrodynamic jet printing with the FDM technique, which we name E-FDM. We then develop a novel high-resolution 3D printer based on the E-FDM process. To determine the optimal condition for structuring, we also investigated the effect of several printing parameters, such as temperature, applied voltage, working height, printing speed, flow-rate, and acceleration on the patterning results. This method was capable of fabricating both high resolution 2D and 3D structures with the use of polylactic acid (PLA). PLA has been used to fabricate scaffold structures for tissue engineering, which has different hierarchical structure sizes. The fabrication speed was up to 40 mm/s and the pattern resolution could be improved to 10 μm.

Open access
A review on in situ stiffness adjustment methods in MEMS

M L C de Laat et al 2016 J. Micromech. Microeng. 26 063001

In situ stiffness adjustment in microelectromechanical systems is used in a variety of applications such as radio-frequency mechanical filters, energy harvesters, atomic force microscopy, vibration detection sensors. In this review we provide designers with an overview of existing stiffness adjustment methods, their working principle, and possible adjustment range. The concepts are categorized according to their physical working principle. It is concluded that the electrostatic adjustment principle is the most applied method, and narrow to wide ranges in stiffness can be achieved. But in order to obtain a wide range in stiffness change, large, complex devices were designed. Mechanical stiffness adjustment is found to be a space-effective way of obtaining wide changes in stiffness, but these methods are often discrete and require large tuning voltages. Stiffness adjustment through stressing effects or change in Young's modulus was used only for narrow ranges. The change in second moment of inertia was used for stiffness adjustment in the intermediate range.

A review on the importance of surface coating of micro/nano-mold in micro/nano-molding processes

Biswajit Saha et al 2016 J. Micromech. Microeng. 26 013002

Micro/nano hot-embossing and injection molding are two promising manufacturing processes for the mass production of workpieces bearing micro/nanoscale features. However, both the workpiece and micro/nano-mold are susceptive to structural damage due to high thermal stress, adhesion and friction, which occur at the interface between the workpiece and the mold during these processes. Hence, major constraints of micro/nano-molds are mainly attributed to improper replication and their inability to withstand a prolonged sliding surface contact because of high sidewall friction and/or high adhesion. Consequently, there is a need for proper surface coating as it can improve the surface properties of micro/nano-molds such as having a low friction coefficient, low adhesion and low wear rate. This review deals with the physical, mechanical and tribological properties of various surface coatings and their impact on the replication efficiency and lifetime of micro/nano-molds that are used in micro/nano hot-embossing and injection molding processes.

Open access
Hollow microcoils made possible with external support structures manufactured with a two-solvent process

R Kamberger et al 2016 J. Micromech. Microeng. 26 065002

We present a process to manufacture solenoidal microcoils with external support structures, which leaves the space within the coil windings free. The manufacturing procedure is based on a two solvent approach (water and acetone), for selectively etching polyvinyl alcohol and polymethyl methacrylate. Two sets of microcoils were manufactured with an inner diameter of 1.5 mm, an interwinding pitch of 100 μm and five or eight coil windings respectively. The coils were designed for application in magnetic resonance imaging and spectroscopy, and characterised in a 9.4 T MR scanner. An NMR spectrum of water and MR images in receive only and transceive mode were acquired as proof of concept.

The effect of surface conductivity and adhesivity on the electrostatic manipulation condition for dielectric microparticles using a single probe

Ryo Fujiwara et al 2016 J. Micromech. Microeng. 26 055010

By clarifying the effect of surface conductivity and adhesivity on the electrostatic manipulation condition, a dielectric particle made of any material can be manipulated with surface conductivity. The manipulation system consists of three elements: a conductive probe as a manipulator, a conductive plate as a substrate, and a dielectric particle as the target object for manipulation. The particle can be successfully picked up/placed if a rectangular pulse voltage is applied between the probe and the plate. Four kinds of particle materials are used in the experiment: silica, soda-lime glass, polymethyl methacrylate coated by conductive polymer, and polystyrene coated by surfactant. The radius of each particle is 15 μm. A first-order resistor-capacitor (RC) circuit model is adopted to describe the effect of surface conductivity and adhesivity on the manipulation condition. The manipulation system is modeled as a series circuit consisting of a resistor and a capacitor by considering the surface conductivity. A detachment voltage is defined as the capacitance voltage to detach the particle adhered to the plate or probe. Parameters of the RC model, surface resistance, surface capacitance and detachment voltage are identified by a simulation and measurements. To verify the RC model, the particle's behavior is observed by a high-speed camera, and the electrical current is measured by an electrometer. A manipulation experiment is demonstrated to show the effectiveness of the model. The particle reaction is observed for each duration and magnitude of the pulse voltage for the manipulation. The optimum pulse voltage for successful manipulation is determined by the parameters of the RC model as the standard. This knowledge is expected to expand the possibility of micro-fabrication technology.

Separation and sorting of cells in microsystems using physical principles

Gi-Hun Lee et al 2016 J. Micromech. Microeng. 26 013003

In the last decade, microfabrication techniques have been combined with microfluidics and applied to cell biology. Utilizing such new techniques, various cell studies have been performed for the research of stem cells, immune cells, cancer, neurons, etc. Among the various biological applications of microtechnology-based platforms, cell separation technology has been highly regarded in biological and clinical fields for sorting different types of cells, finding circulating tumor cells (CTCs), and blood cell separation, amongst other things. Many cell separation methods have been created using various physical principles. Representatively, these include hydrodynamic, acoustic, dielectrophoretic, magnetic, optical, and filtering methods. In this review, each of these methods will be introduced, and their physical principles and sample applications described. Each physical principle has its own advantages and disadvantages. The engineers who design the systems and the biologists who use them should understand the pros and cons of each method or principle, to broaden the use of microsystems for cell separation. Continuous development of microsystems for cell separation will lead to new opportunities for diagnosing CTCs and cancer metastasis, as well as other elements in the bloodstream.

A dynamically tunable terahertz metamaterial absorber based on an electrostatic MEMS actuator and electrical dipole resonator array

Fangrong Hu et al 2016 J. Micromech. Microeng. 26 025006

We experimentally demonstrate a dynamically tunable terahertz (THz) metamaterial absorber based on an electrostatic microelectromechanical systems (MEMS) actuator and electrical dipole resonator array. The absorption of the THz wave is mainly a result of the electrical dipole resonance, which shows a tunable performance on demand. By preforming the finite integral technique, we discovered that the central absorption frequency and the amplitude can be simultaneously tuned by the applied voltage U. Characterized by a white light interferometer and a THz time domain spectroscopy system, our THz absorber is measured to show a modulation of the central frequency and the amplitude to about 10% and 20%, respectively. The experimental results show good agreement with the simulation. This dynamically tunable absorber has potential applications on THz filters, modulators and controllers.

Open access
Irreversible bonding of polyimide and polydimethylsiloxane (PDMS) based on a thiol-epoxy click reaction

Michelle V Hoang et al 2016 J. Micromech. Microeng. 26 105019

Polyimide is one of the most popular substrate materials for the microfabrication of flexible electronics, while polydimethylsiloxane (PDMS) is the most widely used stretchable substrate/encapsulant material. These two polymers are essential in fabricating devices for microfluidics, bioelectronics, and the internet of things; bonding these materials together is a crucial challenge. In this work, we employ click chemistry at room temperature to irreversibly bond polyimide and PDMS through thiol-epoxy bonds using two different methods. In the first method, we functionalize the surfaces of the PDMS and polyimide substrates with mercaptosilanes and epoxysilanes, respectively, for the formation of a thiol-epoxy bond in the click reaction. In the second method, we functionalize one or both surfaces with mercaptosilane and introduce an epoxy adhesive layer between the two surfaces. When the surfaces are bonded using the epoxy adhesive without any surface functionalization, an extremely small peel strength (<0.01 N mm−1) is measured with a peel test, and adhesive failure occurs at the PDMS surface. With surface functionalization, however, remarkably higher peel strengths of ~0.2 N mm−1 (method 1) and  >0.3 N mm−1 (method 2) are observed, and failure occurs by tearing of the PDMS layer. We envision that the novel processing route employing click chemistry can be utilized in various cases of stretchable and flexible device fabrication.

Computer numerical control (CNC) lithography: light-motion synchronized UV-LED lithography for 3D microfabrication

Jungkwun Kim et al 2016 J. Micromech. Microeng. 26 035003

This paper presents a computer-numerical-controlled ultraviolet light-emitting diode (CNC UV-LED) lithography scheme for three-dimensional (3D) microfabrication. The CNC lithography scheme utilizes sequential multi-angled UV light exposures along with a synchronized switchable UV light source to create arbitrary 3D light traces, which are transferred into the photosensitive resist. The system comprises a switchable, movable UV-LED array as a light source, a motorized tilt-rotational sample holder, and a computer-control unit. System operation is such that the tilt-rotational sample holder moves in a pre-programmed routine, and the UV-LED is illuminated only at desired positions of the sample holder during the desired time period, enabling the formation of complex 3D microstructures. This facilitates easy fabrication of complex 3D structures, which otherwise would have required multiple manual exposure steps as in the previous multidirectional 3D UV lithography approach. Since it is batch processed, processing time is far less than that of the 3D printing approach at the expense of some reduction in the degree of achievable 3D structure complexity. In order to produce uniform light intensity from the arrayed LED light source, the UV-LED array stage has been kept rotating during exposure. UV-LED 3D fabrication capability was demonstrated through a plurality of complex structures such as V-shaped micropillars, micropanels, a micro-'hi' structure, a micro-'cat's claw,' a micro-'horn,' a micro-'calla lily,' a micro-'cowboy's hat,' and a micro-'table napkin' array.

Semi-contact-writing of polymer molds for prototyping PDMS chips with low surface roughness, sharp edges and locally varying channel heights

Ludwig Gutzweiler et al 2016 J. Micromech. Microeng. 26 045018

Microfluidic systems fabricated in polydimethylsiloxane (PDMS) enable a broad variety of applications and are widespread in the field of Lab-on-a-Chip. Here we demonstrate semi-contact-writing, a novel method for fabrication of polymer based molds for casting microfluidic PDMS chips in a highly flexible, time and cost-efficient manner. The method is related to direct-writing of an aqueous polymer solution on a planar glass substrate and substitutes conventional, time- and cost-consuming UV-lithography. This technique facilitates on-demand prototyping in a low-cost manner and is therefore ideally suited for rapid chip layout iterations. No cleanroom facilities and less expertise are required. Fabrication time from scratch to ready-to-use PDMS-chip is less than 5 h. This polymer writing method enables structure widths down to 140 μm and controllable structure heights ranging from 5.5 μm for writing single layers up to 98 μm by stacking. As a unique property, freely selectable height variations across a substrate can be achieved by application of local stacking. Furthermore, the molds exhibit low surface roughness (Ra  =  24 nm, RRMS  =  28 nm) and high fidelity edge sharpness. We validated the method by fabrication of molds to cast PDMS chips for droplet based flow-through PCR with single-cell sensitivity.

Open access
Diamond micro-milling of lithium niobate for sensing applications

Dehong Huo et al 2016 J. Micromech. Microeng. 26 095005

Lithium niobate (LiNbO3) is a crystalline material which is widely applied in surface acoustic wave, microelectromechanical systems (MEMS), and optical devices, owing to its superior physical, optical, and electronic properties. Due to its low toughness and chemical inactivity, LiNbO3 is considered to be a hard-to-machine material and has been traditionally left as as an inert substrate upon which other micro structures are deposited. However, in order to make use of its superior material properties and increase efficiency, the fabrication of microstructures directly on LiNbO3 is in high demand. This paper presents an experimental investigation on the micro machinability of LiNbO3 via micro milling with the aim of obtaining optimal process parameters. Machining of micro slots was performed on Z-cut LiNbO3 wafers using single crystal diamond tools. Surface and edge quality, cutting forces, and the crystallographic effect were examined and characterized. Ductile mode machining of LiNbO3 was found to be feasible at a low feed rate and small depth of cut. A strong crystallographic effect on the machined surface quality was also observed. Finally, some LiNbO3 micro components applicable to sensing applications were fabricated.

Rapid fabrication of microfluidic PDMS devices from reusable PDMS molds using laser ablation

Ziya Isiksacan et al 2016 J. Micromech. Microeng. 26 035008

The conventional fabrication methods for microfluidic devices require cleanroom processes that are costly and time-consuming. We present a novel, facile, and low-cost method for rapid fabrication of polydimethylsiloxane (PDMS) molds and devices. The method consists of three main fabrication steps: female mold (FM), male mold (MM), and chip fabrication. We use a CO2 laser cutter to pattern a thin, spin-coated PDMS layer for FM fabrication. We then obtain reusable PDMS MM from the FM using PDMS/PDMS casting. Finally, a second casting step is used to replicate PDMS devices from the MM. Demolding of one PDMS layer from another is carried out without any potentially hazardous chemical surface treatment. We have successfully demonstrated that this novel method allows fabrication of microfluidic molds and devices with precise dimensions (thickness, width, length) using a single material, PDMS, which is very common across microfluidic laboratories. The whole process, from idea to device testing, can be completed in 1.5 h in a standard laboratory.

Fabrication of an oil–water separation copper filter using laser beam machining

Kyoung Ho Ha and Chong Nam Chu 2016 J. Micromech. Microeng. 26 045008

In this study, oil and water are successfully separated using a copper filter that is fabricated using only laser beam machining. Even though copper is hydrophilic and recast copper material, which inevitably results during laser beam machining, is super-hydrophilic, the filter can prevent the water from penetrating and allow oil to flow based on surface tension of the liquids at the hole exit. For practical uses of the filter, both the pressure differences at which the filter is able to retain its ability to separate and the oil penetration rate of the filter are revealed. The fabrication process is simple and time-saving, and the filter has high durability because of lack of surface coating or surface chemical modification.

SU-8 hollow cantilevers for AFM cell adhesion studies

Vincent Martinez et al 2016 J. Micromech. Microeng. 26 055006

A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m−1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range.

SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification.

Hybrid additive manufacturing of 3D electronic systems

J Li et al 2016 J. Micromech. Microeng. 26 105005

A novel hybrid additive manufacturing (AM) technology combining digital light projection (DLP) stereolithography (SL) with 3D micro-dispensing alongside conventional surface mount packaging is presented in this work. This technology overcomes the inherent limitations of individual AM processes and integrates seamlessly with conventional packaging processes to enable the deposition of multiple materials. This facilitates the creation of bespoke end-use products with complex 3D geometry and multi-layer embedded electronic systems. Through a combination of four-point probe measurement and non-contact focus variation microscopy, it was identified that there was no obvious adverse effect of DLP SL embedding process on the electrical conductivity of printed conductors. The resistivity maintained to be less than 4  ×  10−4 Ω · cm before and after DLP SL embedding when cured at 100 °C for 1 h. The mechanical strength of SL specimens with thick polymerized layers was also identified through tensile testing. It was found that the polymerization thickness should be minimised (less than 2 mm) to maximise the bonding strength. As a demonstrator a polymer pyramid with embedded triple-layer 555 LED blinking circuitry was successfully fabricated to prove the technical viability.

An electro-thermally activated rotary micro-positioner for slider-level dual-stage positioning in hard disk drives

Gih Keong Lau et al 2016 J. Micromech. Microeng. 26 035016

Slider-level micro-positioners are useful to assist a voice coil motor to perform fine head positioning over a Tb/in2 magnetic disk. Recently, a new kind of slider-level micro-positioner was developed using the thermal unimorph of the Si/SU8 composite. It has the advantages of a very small footprint and high mechanical resonant frequency, but its stroke generation is inadequate, with a 50 nm dynamic stroke at 1 kHz. There is a need for a larger thermally induced stroke. This paper presents a rotary design of an electrothermal micro-positioner to address the stroke requirements without consuming more power or decreasing the mechanical resonant frequency. Experimental studies show the present rotary design can produce a six-fold larger displacement, as compared to the previous lateral design, while possessing a 35 kHz resonant frequency. In addition, simple analytical models were developed to estimate: (i) the rotational stiffness and system's natural frequency, (ii) thermal unimorph bending and stage rotation, and (iii) the system's thermal time constant for this rotary electro-thermal micro-positioner. This study found that this rotary electro-thermal micro-positioner can meet the basic stroke requirement and high mechanical resonant frequency for a moving slider, but its thermal cut-off frequency needs to be increased further.

Soft lithography of ceramic microparts using wettability-tunable poly(dimethylsiloxane) (PDMS) molds

Bo Su et al 2016 J. Micromech. Microeng. 26 075001

Green alumina microparts were fabricated from a high solid content aqueous suspension by microtransfer molding using air plasma-treated poly(dimethylsiloxane) (PDMS) molds. The wettability of the air plasma-treated PDMS molds spontaneously changed between the hydrophilic and hydrophobic states during the process. Initial hydrophilicity of the air plasma-treated PDMS molds significantly improved the flowability of the concentrated suspension. Subsequent hydrophobic recovery of the air plasma-treated PDMS molds enabled a perfect demolding of the green microparts. Consequently, defect-free microchannel parts of 60 μm and a micromixer with an area of several square centimeters were successfully fabricated. In soft lithography, tuning the wetting behavior of PDMS molds has a great effect on the quality of ceramic microparts. Using wettability-tunable PDMS molds has great potential in producing complex-shaped and large-area ceramic microparts and micropatterns.

A low cost, disposable cable-shaped Al–air battery for portable biosensors

Gareth Fotouhi et al 2016 J. Micromech. Microeng. 26 055011

A disposable cable-shaped flexible battery is presented using a simple, low cost manufacturing process. The working principle of an aluminum–air galvanic cell is used for the cable-shaped battery to power portable and point-of-care medical devices. The battery is catalyzed with a carbon nanotube (CNT)-paper matrix. A scalable manufacturing process using a lathe is developed to wrap a paper layer and a CNT-paper matrix on an aluminum wire. The matrix is then wrapped with a silver-plated copper wire to form the battery cell. The battery is activated through absorption of electrolytes including phosphate-buffered saline, NaOH, urine, saliva, and blood into the CNT-paper matrix. The maximum electric power using a 10 mm-long battery cell is over 1.5 mW. As a demonstration, an LED is powered using two groups of four batteries in parallel connected in series. Considering the material composition and the cable-shaped configuration, the battery is fully disposable, flexible, and potentially compatible with portable biosensors through activation by either reagents or biological fluids.

Open access
An electrostatic ion pump with nanostructured Si field emission electron source and Ti particle collectors for supporting an ultra-high vacuum in miniaturized atom interferometry systems

Anirban Basu and Luis F Velásquez-García 2016 J. Micromech. Microeng. 26 124003

We report a field emission-based, magnetic-less ion pump architecture for helping maintain a high vacuum within a small chamber that is compatible with miniaturized cold-atom interferometry systems. A nanostructured silicon field emitter array, with each nano-sharp tip surrounded by a self-aligned proximal gate electrode, is used to generate a surplus of electrons that cause impact ionization of gas molecules. A two-stage cylindrical electron collector, made of titanium, is used to increase the travel distance of the electrons, augmenting the ionization probability; gas ionization is subsequently followed by gettering of the ions by a negatively charged, annular-shaped titanium electrode. A proof-of-concept pump prototype was characterized using a 25 cm3 stainless steel vacuum chamber backed up by an external turbomolecular pump, a diaphragm pump, and a standard ion pump. Pumping action was observed with the electrostatic pump operating alone after an initial rapid rise of the chamber pressure due to electron/ion scrubbing. In addition, running the electrostatic pump in combination with the standard ion pump results in a lower vacuum level compared to the vacuum level produced by the standard ion pump acting alone. A proposed reduced-order model accurately predicts the functional dependence of the pressure versus time data and provides a good estimate of the characteristic pumping time constant inferred from the experiments.

Higher order modes excitation of electrostatically actuated clamped–clamped microbeams: experimental and analytical investigation

Nizar Jaber et al 2016 J. Micromech. Microeng. 26 025008

In this study, we demonstrate analytically and experimentally the excitations of the higher order modes of vibrations in electrostatically actuated clamped–clamped microbeam resonators. The concept is based on using partial electrodes with shapes that induce strong excitation of the mode of interest. The devices are fabricated using polyimide as a structural layer coated with nickel from the top and chrome and gold layers from the bottom. Experimentally, frequency sweeps with different electro-dynamical loading conditions are shown to demonstrate the excitation of the higher order modes of vibration. Using a half electrode, the second mode is excited with high amplitude of vibration compared with almost zero response using the full electrode. Also, using a two-third electrode configuration is shown to amplify the third mode resonance amplitude compared with the full electrode under the same electrical loading conditions. An analytical model is developed based on the Euler–Bernollui beam model and the Galerkin method to simulate the device response. Good agreement between the simulation results and the experimental data is reported.

Estimation of line dimensions in 3D direct laser writing lithography

M G Guney and G K Fedder 2016 J. Micromech. Microeng. 26 105011

Two photon polymerization (TPP) based 3D direct laser writing (3D-DLW) finds application in a wide range of research areas ranging from photonic and mechanical metamaterials to micro-devices. Most common structures are either single lines or formed by a set of interconnected lines as in the case of crystals. In order to increase the fidelity of these structures and reach the ultimate resolution, the laser power and scan speed used in the writing process should be chosen carefully. However, the optimization of these writing parameters is an iterative and time consuming process in the absence of a model for the estimation of line dimensions. To this end, we report a semi-empirical analytic model through simulations and fitting, and demonstrate that it can be used for estimating the line dimensions mostly within one standard deviation of the average values over a wide range of laser power and scan speed combinations. The model delimits the trend in onset of micro-explosions in the photoresist due to over-exposure and of low degree of conversion due to under-exposure. The model guides setting of high-fidelity and robust writing parameters of a photonic crystal structure without iteration and in close agreement with the estimated line dimensions. The proposed methodology is generalizable by adapting the model coefficients to any 3D-DLW setup and corresponding photoresist as a means to estimate the line dimensions for tuning the writing parameters.

Hierarchical cellulose-derived CNF/CNT composites for electrostatic energy storage

V Kuzmenko et al 2016 J. Micromech. Microeng. 26 124001

Today many applications require new effective approaches for energy delivery on demand. Supercapacitors are viewed as essential energy storage devices that can continuously provide quick energy. The performance of supercapacitors is mostly determined by electrode materials that can store energy via electrostatic charge accumulation. This study presents new sustainable cellulose-derived composite electrodes which consist of carbon nanofibrous (CNF) mats covered with vapor-grown carbon nanotubes (CNTs). The CNF/CNT electrodes have high electrical conductivity and surface area: the two most important features that are responsible for good electrochemical performance of supercapacitor electrodes. The results show that the composite electrodes have fairly high values of specific capacitance (101 F g−1 at 5 mV s−1), energy and power density (10.28 W h kg−1 and 1.99 kW kg−1, respectively, at 1 A g−1) and can retain excellent performance over at least 2000 cycles (96.6% retention). These results indicate that sustainable cellulose-derived composites can be extensively used in the future as supercapacitor electrodes.