This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Brought to you by:

Plasmonic metamaterials

Guest Editors

Debabrata Sikdar Imperial College London, UK
Weiren Zhu Shanghai Jiao Tong University, China

Scope

For the last two decades, scientific and industrial research has witnessed tremendous progress in the fields of plasmonics and metamaterials. Plasmonic metamaterials provide a unique pathway to generate, guide, modulate and direct light by having structural features that are significantly smaller than the operational wavelength, and behaving as essentially homogeneous media that can be accurately described by effective constitutive parameters. The development of plasmonic metamaterials enables intriguing applications, powered by engineered properties of these 'meta' or artificial materials often not found in nature, - ranging from negative refractive-index, imaging with sub-wavelength resolution, invisibility cloaks to nanoscale optics, data processing, highly flexible sensing and modulation, as well as generation of tuneable nano-optical devices and systems. This issue aims to cover these topics: plasmonic nanostructures for optical metamaterials, nonlinear and tuneable plasmonic metamaterials, loss compensation in active nanostructures and spasers, graphene metamaterials and devices, passive and active nano-antennas, and tuneable nano-optical devices based on plasmonic nanoparticles.

Editorial

Papers

Frequency-domain modelling of gain in pump-probe experiment by an inhomogeneous medium

Minkyung Kim et al 2018 J. Phys.: Condens. Matter 30 064003

Introduction of a gain medium in lossy plasmonic metamaterials reduces and compensates losses or even amplifies an incident light often with nonlinear optical effect. Here, optical gain in a pump-probe experimental setup is effectively calculated in the frequency-domain by approximating a gain material as an inhomogeneous medium. Spatially varying local field amplitudes of the pump and probe beams are included in the model to reproduce the inhomogeneous gain effect, in which population inversion occurs most strongly near the surface and decays along the propagation direction. We demonstrate that transmission spectra calculated by this method agree well with finite-difference time-domain simulation results. This simplified approach of gain modelling offers an easy and reliable way to analyze wave propagation in a gain medium without nonlinear time-domain calculation.

Enhanced second harmonic generation from a plasmonic Fano structure subjected to an azimuthally polarized light beam

Wuyun Shang et al 2018 J. Phys.: Condens. Matter 30 064004

We show that an azimuthally polarized beam (APB) excitation of a plasmonic Fano structure made by coupling a split-ring resonator (SRR) to a nanoarc can enhance second harmonic generation (SHG). Strikingly, an almost 30 times enhancement in SHG peak intensity can be achieved when the excitation is switched from a linearly polarized beam (LPB) to an APB. We attribute this significant enhancement of SHG to the corresponding increase in the local field intensity at the fundamental frequency of SHG, resulting from the improved conversion efficiency between the APB excitation and the plasmonic modes of the Fano structure. We also show that unlike LPB, APB excitation creates a symmetric SHG radiation pattern. This effect can be understood by considering an interference model in which the APB can change the total SHG far-field radiation by modifying the amplitudes and phases of two waves originating from the individual SRR and nanoarc of the Fano structure.

Casimir repulsion in superparamagnetic metamaterial constructed by non-monodisperse nanoparticles

Qian Hu et al 2018 J. Phys.: Condens. Matter 30 084003

The electromagnetic properties of interfaces in microelectromechanical systems directly determine the Casimir force between them, therefore the construction of the electromagnetic surface is particularly significant. We theoretically utilize non-monodisperse magnetic nanoparticles to construct a meta-metamaterial (MMM) surface to obtain a repulsive force, which can be adjusted by an external magnetic field. According to Lifshitz's theory, we have discovered that influence of the distribution of particle size on the Casimir force is related to the expectation of particle size, and Casimir repulsion will decrease when taking into account the anisotropy of electromagnetic parameters for MMM plate. This study provides feasible solutions to achieve Casimir repulsion using electromagnetic surfaces.

An eigenvalue approach to quantum plasmonics based on a self-consistent hydrodynamics method

Kun Ding and C T Chan 2018 J. Phys.: Condens. Matter 30 084007

Plasmonics has attracted much attention not only because it has useful properties such as strong field enhancement, but also because it reveals the quantum nature of matter. To handle quantum plasmonics effects, ab initio packages or empirical Feibelman d-parameters have been used to explore the quantum correction of plasmonic resonances. However, most of these methods are formulated within the quasi-static framework. The self-consistent hydrodynamics model offers a reliable approach to study quantum plasmonics because it can incorporate the quantum effect of the electron gas into classical electrodynamics in a consistent manner. Instead of the standard scattering method, we formulate the self-consistent hydrodynamics method as an eigenvalue problem to study quantum plasmonics with electrons and photons treated on the same footing. We find that the eigenvalue approach must involve a global operator, which originates from the energy functional of the electron gas. This manifests the intrinsic nonlocality of the response of quantum plasmonic resonances. Our model gives the analytical forms of quantum corrections to plasmonic modes, incorporating quantum electron spill-out effects and electrodynamical retardation. We apply our method to study the quantum surface plasmon polariton for a single flat interface.

Topologically-protected one-way leaky waves in nonreciprocal plasmonic structures

S Ali Hassani Gangaraj and Francesco Monticone 2018 J. Phys.: Condens. Matter 30 104002

We investigate topologically-protected unidirectional leaky waves on magnetized plasmonic structures acting as homogeneous photonic topological insulators. Our theoretical analyses and numerical experiments aim at unveiling the general properties of these exotic surface waves, and their nonreciprocal and topological nature. In particular, we study the behavior of topological leaky modes in stratified structures composed of a magnetized plasma at the interface with isotropic conventional media, and we show how to engineer their propagation and radiation properties, leading to topologically-protected backscattering-immune wave propagation, and highly directive and tunable radiation. Taking advantage of the non-trivial topological properties of these leaky modes, we also theoretically demonstrate advanced functionalities, including arbitrary re-routing of leaky waves on the surface of bodies with complex shapes, as well as the realization of topological leaky-wave (nano)antennas with isolated channels of radiation that are completely independent and separately tunable. Our findings help shedding light on the behavior of topologically-protected modes in open wave-guiding structures, and may open intriguing directions for future antenna generations based on topological structures, at microwaves and optical frequencies.

Asymmetric transmission of a planar metamaterial induced by symmetry breaking

Yu Bai et al 2018 J. Phys.: Condens. Matter 30 114001

Asymmetric transmission (AT) is widely used in polarization transformers and polarization-controlled devices. In this paper, a planar metamaterial nanostructure with connected gammadion-shaped nanostructure (CGN) is proposed to achieve AT effect for forward and backward propagations of circular polarized light. The CGN arrays can produce magnetic moment oscillation that is normal to the metamaterial plane, which is weakly coupled to free space and generates transmission valleys. The introduction of symmetry breaking exerts a strong influence on the AT effects, and these effects can be tuned by the structural parameters. Our planar metamaterials may have potential for application in the future design of polarization-controlling devices.

Transmission/reflection behaviors of surface plasmons at an interface between two plasmonic systems

Fuxin Guan et al 2018 J. Phys.: Condens. Matter 30 114002

Although surface plasmon polaritons (SPPs) have been intensively studied in past years, the transmission/reflection properties of SPPs at an interface between two plasmonic media are still not fully understood. In this article, we employ a mode expansion method (MEM) to systematically study such a problem based on a model system jointing two superlattices, each consisting of a periodic stacking of dielectric and plasmonic slabs with different material properties. Such a generic model can represent two widely used plasmonic structures (i.e. interfaces between two single dielectric/metal systems or between two metal–insulator–metal waveguides) under certain conditions. Our MEM calculations, in excellent agreement with full-wave simulations, uncover the rich physics behind the SPP reflections at generic plasmonic interfaces. In particular, we successfully derive from the MEM several analytical formulas that can quantitatively describe the SPP reflections at different plasmonic interfaces, and show that our formulas exhibit wider applicable regions than previously proposed empirical ones.

Unidirectional emission in an all-dielectric nanoantenna

Tianhua Feng et al 2018 J. Phys.: Condens. Matter 30 124002

All-dielectric nanoantennas are a promising alternative to plasmonic optical antennas for engineering light emission because of their low-loss nature in the optical spectrum. Nevertheless, it is still challenging to manipulate directional light emission with subwavelength all-dielectric nanoantennas. Here, we propose and numerically demonstrate that a hollow silicon nanodisk can serve as a versatile antenna for directing and enhancing the emission from either an electric or magnetic dipole emitter. When primarily coupled to both electric and magnetic dipole modes of a nanoantenna, broadband nearly-unidirectional emission can be realized by the interference of two modes, which can be spectrally tuned via the geometric parameters in an easy way. More importantly, the emission directions for the magnetic and electric dipole emitters are shown as opposite to each other through control of the phase difference between the induced magnetic and electric dipole modes of the antenna. Meanwhile, the Purcell factors can be enhanced by more than one order of magnitude and high quantum efficiencies can be maintained at the visible spectrum for both kinds of dipole emitters. We further show that these unidirectional emission phenomena can withstand small disorder effects of in-plane dipole orientation and location. Our study provides a simple yet versatile platform that can shape the emission of both magnetic and electric dipole emitters.

Pass-band reconfigurable spoof surface plasmon polaritons

Hao Chi Zhang et al 2018 J. Phys.: Condens. Matter 30 134004

In this paper, we introduce a new scheme to construct the band-pass tunable filter based on the band-pass reconfigurable spoof surface plasmon polaritons (SPPs), whose cut-off frequencies at both sides of the passband can be tuned through changing the direct current (DC) bias of varactors. Compared to traditional technology (e.g. microstrip filters), the spoof SPP structure can provide more tight field confinement and more significant field enhancement, which is extremely valuable for many system applications. In order to achieve this scheme, we proposed a specially designed SPP filter integrated with varactors and DC bias feeding structure to support the spoof SPP passband reconfiguration. Furthermore, the full-wave simulated result verifies the outstanding performance on both efficiency and reconfiguration, which has the potential to be widely used in advanced intelligent systems.

Functional metasurfaces based on metallic and dielectric subwavelength slits and stripes array

Yinghui Guo et al 2018 J. Phys.: Condens. Matter 30 144003

Starting with the early works of extraordinary optical transmission and extraordinary Young's interference, researchers have been fascinated by the unusual optical properties displayed by metallic holes/slits and subsequently found similar abnormities in dielectric counterparts. Benefiting from the shrinking wavelength of surface plasmon polaritons excited in metallic slits and high refractive index of dielectric stripes, one can realize local phase modulation and approach desired dispersion by engineering the geometries of a slits and stripes array. In this review, we review recent developments in functional metasurfaces composed of various metallic and dielectric subwavelength slits and stripes arrays, with special emphasis on achromatic, ultra-broadband, quasi-continuous, multifunctional and reconfigurable metasurfaces. Particular attention is paid to provide insight into the design strategies for these devices. Finally, we give an outlook of the development in this fascinating area.

Electrically tunable polarizer based on graphene-loaded plasmonic cross antenna

Yuwei Qin et al 2018 J. Phys.: Condens. Matter 30 144007

The unique gate-voltage dependent optical properties of graphene make it a promising electrically-tunable plasmonic material. In this work, we proposed in situ control of the polarization of nanoantennas by combining plasmonic structures with an electrostatically tunable graphene monolayer. The tunable polarizer is designed based on an asymmetric cross nanoantenna comprising two orthogonal metallic dipoles sharing the same feed gap. Graphene monolayer is deposited on a Si/SiO2 substrate, and inserted beneath the nanoantenna. Our modelling demonstrates that as the chemical potential is incremented up to 1 eV by electrostatic doping, resonant wavelength for the longer graphene-loaded dipole is blue shifted for 500 nm (~10% of the resonance) in the mid-infrared range, whereas the shorter dipole experiences much smaller influences due to the unique wavelength-dependent optical properties of graphene. In this way, the relative field amplitude and phase between the two dipole nanoantennas are electrically adjusted, and the polarization state of the reflected wave can be electrically tuned from the circular into near-linear states with the axial ratio changing over 8 dB. Our study thus confirms the strong light-graphene interaction with metallic nanostructures, and illuminates promises for high-speed electrically controllable optoelectronic devices.

Sensitive singular-phase optical detection without phase measurements with Tamm plasmons

Svetlana V Boriskina and Yoichiro Tsurimaki 2018 J. Phys.: Condens. Matter 30 224003

Spectrally-tailored interactions of light with material interfaces offer many exciting applications in sensing, photo-detection, and optical energy conversion. In particular, complete suppression of light reflectance at select frequencies accompanied by sharp phase variations in the reflected signal forms the basis for the development of ultra-sensitive singular-phase optical detection schemes such as Brewster and surface plasmon interferometry. However, both the Brewster effect and surface-plasmon-mediated absorption on planar interfaces are limited to one polarization of the incident light and oblique excitation angles, and may have limited bandwidth dictated by the material dielectric index and plasma frequency. To alleviate these limitations, we design narrow-band super-absorbers composed of plasmonic materials embedded into dielectric photonic nanostructures with topologically-protected interfacial Tamm plasmon states. These structures have planar geometry and do not require nanopatterning to achieve perfect absorption of both polarizations of the incident light in a wide range of incident angles, including the normal incidence. Their absorption lines are tunable across a very broad spectral range via engineering of the photon bandstructure of the dielectric photonic nanostructures to achieve reversal of the geometrical phase across the interface with the plasmonic absorber. We outline the design strategy to achieve perfect absorptance in Tamm structures with dissipative losses via conjugate impedance matching. We further demonstrate via modeling how these structures can be engineered to support sharp asymmetric amplitude resonances, which can be used to improve the sensitivity of optical sensors in the amplitude-only detection scheme that does not require use of bulky and expensive ellipsometry equipment.