This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 784

Number 1, 2014 March 20

Previous issue Next issue

L1

Understanding the phases of water ice that were present in the solar nebula has implications for understanding cometary and planetary compositions as well as the internal evolution of these bodies. Here we show that amorphous ice formed more readily than previously recognized, with formation at temperatures <70 K being possible under protoplanetary disk conditions. We further argue that photodesorption and freeze-out of water molecules near the surface layers of the solar nebula would have provided the conditions needed for amorphous ice to form. This processing would be a natural consequence of ice dynamics and would allow for the trapping of noble gases and other volatiles in water ice in the outer solar nebula.

L2

, , , , , , , , , et al

We present an analysis of a short NuSTAR observation of the stellar-mass black hole and low-mass X-ray binary 4U 1630−472. Reflection from the inner accretion disk is clearly detected for the first time in this source, owing to the sensitivity of NuSTAR. With fits to the reflection spectrum, we find evidence for a rapidly spinning black hole, $a_{*}=0.985^{+0.005}_{-0.014}$ (1σ statistical errors). However, archival data show that the source has relatively low radio luminosity. Recently claimed relationships between jet power and black hole spin would predict either a lower spin or a higher peak radio luminosity. We also report the clear detection of an absorption feature at 7.03 ± 0.03 keV, likely signaling a disk wind. If this line arises in dense, moderately ionized gas ($\log \xi =3.6^{+0.2}_{-0.3}$) and is dominated by He-like Fe xxv, the wind has a velocity of $v/c=0.043^{+0.002}_{-0.007}$ (12900$^{+600}_{-2100}$ km s−1). If the line is instead associated with a more highly ionized gas ($\log \xi =6.1^{+0.7}_{-0.6}$), and is dominated by Fe xxvi, evidence of a blueshift is only marginal, after taking systematic errors into account. Our analysis suggests the ionized wind may be launched within 200–1100 Rg, and may be magnetically driven.

L3

, , , , , , , and

Asteroseismology may in principle be used to detect unresolved stellar binary systems comprised of solar-type stars and/or red giants. This novel method relies on the detection of the presence of two solar-like oscillation spectra in the frequency spectrum of a single light curve. Here, we make predictions of the numbers of systems that may be detectable in data already collected by the NASA Kepler Mission. Our predictions, which are based upon TRILEGAL and BiSEPS simulations of the Kepler field of view, indicate that as many as 200 or more "asteroseismic binaries" may be detectable in this manner. Most of these binaries should be comprised of two He-core-burning red giants. Owing largely to the limited numbers of targets with the requisite short-cadence Kepler data, we expect only a small number of detected binaries containing solar-type stars. The predicted yield of detections is sensitive to the assumed initial mass ratio distribution (IMRD) of the binary components and therefore represents a sensitive calibration of the much debated IMRD near mass ratio unity.

L4

The time lag between optical and near-infrared (IR) flux variability can be taken as a means to determine the sublimation radius of the dusty "torus" around supermassive black holes in active galactic nuclei (AGNs). I will show that data from large optical survey telescopes, e.g., the Large Synoptic Survey Telescope (LSST), can be used to measure dust sublimation radii as well. The method makes use of the fact that the Wien tail of the hot dust emission reaches into the optical and can be reliably recovered with high-quality photometry. Simulations show that dust sublimation radii for a large sample of AGNs can be reliably established out to redshift z ∼ 0.1–0.2 with the LSST. Due to the ubiquitous presence of AGNs up to high redshifts, they have been studied as cosmological probes. Here, I discuss how optically determined dust time lags fit into the suggestion of using the dust sublimation radius as a "standard candle" and propose an extension of the dust time lags as "standard rulers" in combination with IR interferometry.

L5

, , , , , , , and

Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630–47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. Here we present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find no evidence for any relativistic X-ray emission lines. Indeed, despite ∼5 × brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe xxvi line that is ≳ 20 × weaker than the line observed by Díaz Trigo et al. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby interstellar medium, in which case the X-ray emission lines might be unrelated to the radio emission.

L6

, , , , , , , and

In a recent contribution, Bahl & Baumgardt investigated the incidence of planar alignments of satellite galaxies in the Millennium-II simulation and concluded that vast, thin planes of dwarf galaxies, similar to that observed in the Andromeda galaxy (M31), occur frequently by chance in Λ-cold dark matter cosmology. However, their analysis did not capture the essential fact that the observed alignment is simultaneously radially extended, yet thin, and kinematically unusual. With the caveat that the Millennium-II simulation may not have sufficient mass resolution to identify confidently simulacra of low-luminosity dwarf galaxies, we re-examine that simulation for planar structures, using the same method as employed by Ibata et al. on the real M31 satellites. We find that 0.04% of host galaxies display satellite alignments that are at least as extreme as the observations, when we consider their extent, thickness, and number of members rotating in the same sense. We further investigate the angular momentum properties of the co-planar satellites, and find that the median of the specific angular momentum derived from the line-of-sight velocities in the real M31 structure (1.3 × 104 km s−1 kpc) is very high compared to systems drawn from the simulations. This analysis confirms that it is highly unlikely that the observed structure around the Andromeda galaxy is due to a chance occurrence. Interestingly, the few extreme systems that are similar to M31 arise from the accretion of a massive sub-halo with its own spatially concentrated entourage of orphan satellites.

L7

, , , , , , and

New laboratory data of ethyl mercaptan, CH3CH2SH, in the millimeter- and submillimeter-wave domains (up to 880 GHz) provided very precise values of the spectroscopic constants that allowed the detection of gauche-CH3CH2SH toward Orion KL. This identification is supported by 77 unblended or slightly blended lines plus no missing transitions in the range 80–280 GHz. A detection of methyl mercaptan, CH3SH, in the spectral survey of Orion KL is reported as well. Our column density results indicate that methyl mercaptan is ≃ 5 times more abundant than ethyl mercaptan in the hot core of Orion KL.

L8

, , , , , and

Splitting of the nuclei of comets into multiple components has been frequently observed but, to date, no main-belt asteroid has been observed to break up. Using the Hubble Space Telescope, we find that main-belt asteroid P/2013 R3 consists of 10 or more distinct components, the largest up to 200 m in radius (assumed geometric albedo of 0.05) each of which produces a coma and comet-like dust tail. A diffuse debris cloud with total mass ∼2 × 108 kg further envelopes the entire system. The velocity dispersion among the components, ΔV ∼ 0.2–0.5 m s−1, is comparable to the gravitational escape speeds of the largest members, while their extrapolated plane-of-sky motions suggest a break up between 2013 February and September. The broadband optical colors are those of a C-type asteroid. We find no spectral evidence for gaseous emission, placing model-dependent upper limits to the water production rate ⩽1 kg s−1. Breakup may be due to a rotationally induced structural failure of the precursor body.

L9

, , , , , , and

We analyze morphologies of the host galaxies of 35 X-ray-selected active galactic nuclei (AGNs) at z ∼ 2 in the Cosmic Evolution Survey field using Hubble Space Telescope/WFC3 imaging taken from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. We build a control sample of 350 galaxies in total by selecting 10 non-active galaxies drawn from the same field with a similar stellar mass and redshift for each AGN host. By performing two-dimensional fitting with GALFIT on the surface brightness profile, we find that the distribution of the Sérsic index (n) of AGN hosts does not show a statistical difference from that of the control sample. We measure the nonparametric morphological parameters (the asymmetry index A, the Gini coefficient G, the concentration index C, and the M20 index) based on point-source-subtracted images. All the distributions of these morphological parameters of AGN hosts are consistent with those of the control sample. We finally investigate the fraction of distorted morphologies in both samples by visual classification. Only ∼15% of the AGN hosts have highly distorted morphologies, possibly due to a major merger or interaction. We find there is no significant difference in the distortion fractions between the AGN host sample and control sample. We conclude that the morphologies of X-ray-selected AGN hosts are similar to those of non-active galaxies and most AGN activity is not triggered by a major merger.

L10

and

We investigated the impact of magnetorotational instability (MRI) on the dynamics of weakly magnetized, rapidly rotating core-collapse supernovae by conducting high-resolution axisymmetric MHD simulations with simplified neutrino transfer. We found that an initially sub-magnetar-class magnetic field is drastically amplified by MRI and substantially affects the dynamics thereafter. Although the magnetic pressure is not strong enough to eject matter, the amplified magnetic field efficiently transfers angular momentum from small to large radii and from higher to lower latitudes, which causes the expansion of the heating region due to the extra centrifugal force. This then enhances the efficiency of neutrino heating and eventually leads to neutrino-driven explosion. This is a new scenario of core-collapse supernovae that has never been demonstrated by past numerical simulations.

L11

, , , , and

We have pioneered a new method for the measurement of extragalactic distances. This method uses the time lag between variations in the short wavelength and long wavelength light from an active galactic nucleus (AGN), based on a quantitative physical model of dust reverberation that relates the time lag to the absolute luminosity of the AGN. We use the large homogeneous data set from intensive monitoring observations in optical and near-infrared wavelength bands with the dedicated 2 m MAGNUM telescope to obtain the distances to 17 AGNs in the redshift range z = 0.0024 to z = 0.0353. These distance measurements are compared with distances measured using Cepheid variable stars, and are used to infer that H0 = 73 ± 3 (random) km s−1 Mpc−1. The systematic error in H0 is examined, and the uncertainty in the size distribution of dust grains is the largest source of the systematic error, which is much reduced for a sample of AGNs for which their parameter values in the model of dust reverberation are individually measured. This AGN time lag method can be used beyond 30 Mpc, the farthest distance reached by extragalactic Cepheids, and can be extended to high-redshift quasi-stellar objects.

L12

, , , , , , , , , et al

We report on the discovery of SN 2014J in the nearby galaxy M82. Given its proximity, it offers the best opportunity to date to study a thermonuclear supernova (SN) over a wide range of the electromagnetic spectrum. Optical, near-IR, and mid-IR observations on the rising light curve, orchestrated by the intermediate Palomar Transient Factory, show that SN 2014J is a spectroscopically normal Type Ia supernova (SN Ia), albeit exhibiting high-velocity features in its spectrum and heavily reddened by dust in the host galaxy. Our earliest detections start just hours after the fitted time of explosion. We use high-resolution optical spectroscopy to analyze the dense intervening material and do not detect any evolution in the resolved absorption features during the light curve rise. Similar to other highly reddened SNe Ia, a low value of total-to-selective extinction, RV ≲ 2, provides the best match to our observations. We also study pre-explosion optical and near-IR images from Hubble Space Telescope with special emphasis on the sources nearest to the SN location.

L13

, , , , , , and

Dynamic phenomena indicative of slipping reconnection and magnetic implosion were found in a time series of nonlinear force-free field (NLFFF) extrapolations for the active region 11515, which underwent significant changes in the photospheric fields and produced five C-class flares and one M-class flare over five hours on 2012 July 2. NLFFF extrapolation was performed for the uninterrupted 5 hour period from the 12 minute cadence vector magnetograms of the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory. According to the time-dependent NLFFF model, there was an elongated, highly sheared magnetic flux rope structure that aligns well with an Hα filament. This long filament splits sideways into two shorter segments, which further separate from each other over time at a speed of 1–4 km s−1, much faster than that of the footpoint motion of the magnetic field. During the separation, the magnetic arcade arching over the initial flux rope significantly decreases in height from ∼4.5 Mm to less than 0.5 Mm. We discuss the reality of this modeled magnetic restructuring by relating it to the observations of the magnetic cancellation, flares, a filament eruption, a penumbra formation, and magnetic flows around the magnetic polarity inversion line.

L14

, , , , , , and

We contend that a single power-law halo mass distribution is appropriate for direct matching to the stellar masses of observed Local Group dwarf galaxies, allowing the determination of the slope of the stellar mass–halo mass relation for low-mass galaxies. Errors in halo masses are well defined as the Poisson noise of simulated Local Group realizations, which we determine using local volume simulations. For the stellar mass range 107 M<M* < 108 M, for which we likely have a complete census of observed galaxies, we find that the stellar mass–halo mass relation follows a power law with slope of 3.1, significantly steeper than most values in the literature. This steep relation between stellar and halo masses would indicate that Local Group dwarf galaxies are hosted by dark matter halos with a small range of mass. Our methodology is robust down to the stellar mass to which the census of observed Local Group galaxies is complete, but the significant uncertainty in the currently measured slope of the stellar-to-halo mass relation will decrease dramatically if the Local Group completeness limit was 106.5 M or below, highlighting the importance of pushing such limit to lower masses and larger volumes.

L15

and

The proton temperature anisotropy in the solar wind exhibits apparent bounds which are compatible with the theoretical constraints imposed by temperature-anisotropy-driven kinetic instabilities. Recent statistical analyses based on conditional averaging indicate that near these theoretical constraints the solar wind protons typically have enhanced temperatures and a weaker collisionality. Here we carefully analyze the solar wind data and show that these results are a consequence of superposition of multiple correlations in the solar wind, namely, they mostly result from the correlation between the proton temperature and the solar wind velocity and from the superimposed anti-correlation between the proton temperature anisotropy and the proton parallel beta in the fast solar wind. Colder and more collisional data are distributed around temperature isotropy whereas hotter and less collisional data have a wider range of the temperature anisotropy anti-correlated with the proton parallel beta with signatures of constraints owing to the temperature-anisotropy-driven instabilities. However, most of the hot and weakly collisional data, including the hottest and least collisional ones, lies far from the marginal stability regions. Consequently, we conclude that there is no clear relation between the enhanced temperatures and instability constraints and that the conditional averaging used for these analyses must be used carefully and need to be well tested.

L16

, , , , , , , , , et al

About 1% of giant stars have been shown to have large surface Li abundances, which is unexpected according to standard stellar evolution models. Several scenarios for lithium production have been proposed, but it is still unclear why these Li-rich giants exist. A missing piece in this puzzle is the knowledge of the exact stage of evolution of these stars. Using low- and-high-resolution spectroscopic observations, we have undertaken a survey of lithium-rich giants in the Kepler field. In this Letter, we report the finding of the first confirmed Li-rich core-helium-burning giant, as revealed by asteroseismic analysis. The evolutionary timescales constrained by its mass suggest that Li production most likely took place through non-canonical mixing at the RGB tip, possibly during the helium flash.

L17

, , , and

The Ca ii 854.2 nm spectral line is a common diagnostic of the solar chromosphere. The average line profile shows an asymmetric core, and its bisector shows a characteristic inverse-C shape. The line actually consists of six components with slightly different wavelengths depending on the isotope of calcium. This isotopic splitting of the line has been taken into account in studies of non-solar stars, but never for the Sun. We performed non-LTE radiative transfer computations from three models of the solar atmosphere and show that the line–core asymmetry and inverse C-shape of the bisector of the 854.2 nm line can be explained by isotopic splitting. We confirm this finding by analyzing observations and showing that the line asymmetry is present irrespective of conditions in the solar atmosphere. Finally, we show that inversions based on the Ca ii 854.2 nm line should take the isotopic splitting into account, otherwise the inferred atmospheres will contain erroneous velocity gradients and temperatures.