This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 11

Number 2, April 2019

Previous issue Next issue

Notes

021001

, , , , and

Cell migration, critical to numerous biological processes, can be guided by surface topography. Studying the effects of topography on cell migration is valuable for enhancing our understanding of directional cell migration and for functionally engineering cell behavior. However, fabrication limitations constrain topography studies to geometries that may not adequately mimic physiological environments. Direct Laser Writing (DLW) provides the necessary 3D flexibility and control to create well-defined waveforms with curvature and length scales that are similar to those found in physiological settings, such as the luminal walls of blood vessels that endothelial cells migrate along. We find that endothelial cells migrate fastest along square waves, intermediate along triangular waves, and slowest along sine waves and that directional cell migration on sine waves decreases as sinusoid wavelength increases. Interestingly, inhibition of Rac1 decreases directional migration on sine wave topographies but not on flat surfaces with micropatterned lines, suggesting that cells may utilize different molecular pathways to sense curved topographies. Our study demonstrates that DLW can be employed to investigate the effects and mechanisms of topography on cell migration by fabricating a wide array of physiologically-relevant surfaces with curvatures that are challenging to fabricate using conventional manufacturing techniques.

021002

, , , , , , , and

Lab-On-a-Brane (LOB) represents a class of Lab-On-a-Chip (LOC) integrating flexible, highly gas permeable and biocompatible thin membranes (TMs). Here we demonstrate the potentiality of LOBs as cell biochips promoting 3D cell growth. The human cancer cells MCF-7 were cultured into standard multiwells (MWs) and into polydimethylsiloxane (PDMS) MWs, LOCs, and LOBs of different wettability. Surface treatments based on oxygen plasma and coating deposition have been performed to produce hydrophilic, hydrophobic, and oleophobic chips. By a comparison between all these chips, we observed that 3D cell aggregation is favored in LOBs, independent of substrate wettability. This may be attributed to the TM flexibility and the high oxygen/carbon dioxide permeability. Ultimately, LOBs seem to combine the advantages of LOCs as multi-well microfluidic chips to reduce operation time for cell seeding and medium refresh, with the mechanical/morphological properties of PDMS TMs. This is convenient in the perspective of applying mechanical stimuli and monitoring cell stiffness, or studying the metabolism of molecules permeable to PDMS membrane in response to external stimuli with interesting outcomes in cellular biology.

Paper

025001

, , , , , and

To overcome the drawbacks of in vitro liver testing during drug development, numerous liver-on-a-chip models have been developed. However, current liver-on-a-chip technologies are labor-intensive, lack extracellular matrix (ECM) essential for liver cells, and lack a biliary system essential for excreting bile acids, which contribute to intestinal digestion but are known to be toxic to hepatocytes. Therefore, fabrication methods for development of liver-on-a-chip models that overcome the above limitations are required. Cell-printing technology enables construction of complex 3D structures with multiple cell types and biomaterials. We used cell-printing to develop a 3D liver-on-a-chip with multiple cell types for co-culture of liver cells, liver decellularized ECM bioink for a 3D microenvironment, and vascular/biliary fluidic channels for creating vascular and biliary systems. A chip with a biliary fluidic channel induced better biliary system creation and liver-specific gene expression and functions compared to a chip without a biliary system. Further, the 3D liver-on-a-chip showed better functionalities than 2D or 3D cultures. The chip was evaluated using acetaminophen and it showed an effective drug response. In summary, our results demonstrate that the 3D liver-on-a-chip we developed is promising in vitro liver test platform for drug discovery.

025002

, , and

Engineering the meniscus is challenging due to its bizonal structure; the tissue is cartilaginous at the inner portion and fibrous at the outer portion. Here, we constructed an artificial meniscus mimicking the biochemical organization of the native tissue by 3D printing a meniscus shaped PCL scaffold and then impregnating it with agarose (Ag) and gelatin methacrylate (GelMA) hydrogels in the inner and outer regions, respectively. After incubating the constructs loaded with porcine fibrochondrocytes for 8 weeks, we demonstrated that presence of Ag enhanced glycosaminoglycan (GAG) production by about 4 fold (p < 0.001), while GelMA enhanced collagen production by about 50 fold (p < 0.001). In order to mimic the physiological loading environment, meniscus shaped PCL/hydrogel constructs were dynamically stimulated at strain levels gradually increasing from the outer region (2% of initial thickness) towards the inner region (10%). Incorporation of hydrogels protected the cells from the mechanical damage caused by dynamic stress. Dynamic stimulation resulted in increased ratio of collagen type II (COL 2) in the Ag-impregnated inner region (from 50% to 60% of total collagen), and increased ratio of collagen type I (COL 1) in the GelMA-impregnated outer region (from 60% to 70%). We were able to engineer a meniscus, which is cartilage-like at the inner portion and fibrocartilage-like at the outer portion. Our construct has a potential for use as a substitute for total meniscus replacement.

025003

, , and

3D human cancer models provide a better platform for drug efficacy studies than conventional 2D culture, since they recapitulate important aspects of the in vivo microenvironment. While biofabrication has advanced model creation, bioprinting generally involves extruding individual cells in a bioink and then waiting for these cells to self-assemble into a hierarchical 3D tissue. This self-assembly is time consuming and requires complex cellular interactions with other cell types, extracellular matrix components, and growth factors. We therefore investigated if we could directly bioprint pre-formed 3D spheroids in alginate-based bioinks to create a model tissue that could be used almost immediately. Human breast epithelial cell lines were bioprinted as individual cells or as pre-formed spheroids, either in monoculture or co-culture with vascular endothelial cells. While individual breast cells only spontaneously formed spheroids in Matrigel-based bioink, pre-formed breast spheroids maintained their viability, architecture, and function after bioprinting. Bioprinted breast spheroids were more resistant to paclitaxel than individually printed breast cells; however, this effect was abrogated by endothelial cell co-culture. This study shows that 3D cellular structure bioprinting has potential to create tissue models that quickly replicate the tumor microenvironment.

025004

, , , , , , and

Melt electrowriting (MEW) combines the fundamental principles of electrospinning, a fibre forming technology, and 3D printing. The process, however, is highly complex and the quality of the fabricated structures strongly depends on the interplay of key printing parameter settings including processing temperature, applied voltage, collection speed, and applied pressure. These parameters act in unison, comprising the principal forces on the electrified jet: pushing the viscous polymer out of the nozzle and mechanically and electrostatically dragging it for deposition towards the collector. Although previous studies interpreted the underlying mechanism of electrospinning with polymer melts in a direct writing mode, contemporary devices used in laboratory environments lack the capability to collect large data reproducibly. Yet, a validated large data set is a condition sine qua non to design an in-process control system which allows to computer control the complexity of the MEW process. For this reason, we engineered an advanced automated MEW system with monitoring capabilities to specifically generate large, reproducible data volumes which allows the interpretation of complex process parameters. Additionally, the design of an innovative real-time MEW monitoring system identifies the main effects of the system parameters on the geometry of the fibre flight path. This enables, for the first time, the establishment of a comprehensive correlation between the input parameters and the geometry of a MEW jet. The study verifies the most stable process parameters for the highly reproducible fabrication of a medical-grade poly(ε-caprolactone) fibres and demonstrates how Printomics can be performed for the high throughput analysis of processing parameters for MEW.

025005

, and

One of the most important factors in skeletal muscle tissue regeneration is the alignment of muscle cells to mimic the native tissue. In this study, we developed a PCL-based scaffold with uniaxially aligned surface topography by stretching a 3D-printed scaffold. We examined the formation of aligned patterns by stretching the samples at different temperatures and stretching rates. This was possible through the effects of crystalline and amorphous regions on micro-textured deformation during the stretching process. We characterized the physical and biological properties of unstretched and stretched PCL struts. The stretched PCL showed greater surface roughness, protein absorption ability, and wettability. Moreover, myoblasts were cultured on the stretched and unstretched samples to analyze cellular activity. The cells cultured on the stretched samples were aligned along the pattern and showed a more elongated morphology. Furthermore, proliferation and differentiation were increased on the stretched samples resulting in a greater number of myotubes. We also discuss the possible alternative applications of this developed scaffold in other tissues.

025006

, , , , , , , , and

Growth-hormone-secreting pituitary adenoma (GHSPA) is a benign tumour with a high incidence and large economic burden, which greatly affects quality of life. The aetiological factors are yet to be clarified for GHSPA. Conventional two-dimensional (2D) monolayer culture of tumour cells cannot ideally reflect the growth status of tumours in the physiological environment, and insufficiencies of in vitro models have severely restricted the progress of cancer research. Three-dimensional (3D) bioprinting technology is being increasingly used in various fields of biology and medicine, which allows recapitulation of the in vivo growth environment of tumour cells. In this study, a GHSPA microtissue model was established using 3D bioprinting. Tumour cells in the 3D environment exhibited more active cell cycle progression, secretion, proliferation, invasion, and tumourigenesis compared with those in the 2D environment. Furthermore, the molecular mechanisms of the 3D-printed microtissue model were explored. We demonstrated that the 3D-printed microtissue provides an excellent in vitro model at the tissue level for oncological research and may facilitate in-depth studies on the aetiology, treatment, drug resistance, and long-term prognosis of GHSPA .

025007

, , , , and

Epithelial tissues contain three-dimensional (3D) complex microtopographies that are essential for proper performance. These microstructures provide cells with the physicochemical cues needed to guide their self-organization into functional tissue structures. However, most in vitro models do not implement these 3D architectural features. The main problem is the availability of simple fabrication techniques that can reproduce the complex geometries found in native tissues on the soft polymeric materials required as cell culture substrates. In this study reaction-diffusion mediated photolithography is used to fabricate 3D microstructures with complex geometries on poly(ethylene glycol)-based hydrogels in a single step and moldless approach. By controlling fabrication parameters such as the oxygen diffusion/depletion timescales, the distance to the light source and the exposure dose, the dimensions and geometry of the microstructures can be well-defined. In addition, copolymerization of poly(ethylene glycol) with acrylic acid improves control of the dynamic reaction-diffusion processes that govern the free-radical polymerization of highly-diluted polymeric solutions. Moreover, acrylic acid allows adjusting the density of cell adhesive ligands while preserving the mechanical properties of the hydrogels. The method proposed is a simple, single-step, and cost-effective strategy for producing models of intestinal epithelium that can be easily integrated into standard cell culture platforms.

025008

, , , , , and

Biofabrication technologies have endowed us with the capability to fabricate complex biological constructs. However, cytotoxic biofabrication conditions have been a major challenge for their clinical application, leading to a trade-off between cell viability and scalability of biofabricated constructs. Taking inspiration from nature, we proposed a cell protection strategy which mimicks the protected and dormant state of plant seeds in adverse external conditions and their germination in response to appropriate environmental cues. Applying this bioinspired strategy to biofabrication, we successfully preserved cell viability and enhanced the seeding of cell-laden biofabricated constructs via a cytoprotective pyrogallol (PG)-alginate encapsulation system. Our cytoprotective encapsulation technology utilizes PG-triggered sporulation and germination processes to preserve cells, is mechanically robust, chemically resistant, and highly customizable to adequately match cell protectability with cytotoxicity of biofabrication conditions. More importantly, the facile and tunable decapsulation of our PG-alginate system allows for effective germination of dormant cells, under typical culture conditions. With this approach, we have successfully achieved a biofabrication process which is reproducible, scalable, and provided a practical solution for off-the-shelf availability, shipping and temporary storage of fabricated bio-constructs.

025009

, , , , , and

A bio-inspired hydrogel for 3D bioprinting of soft free-standing neural tissues is presented. The novel filler-free bioinks were designed by combining natural polymers for extracellular matrix biomimicry with synthetic polymers to endow desirable rheological properties for 3D bioprinting. Crosslinking of thiolated Pluronic F-127 with dopamine-conjugated (DC) gelatin and DC hyaluronic acid through a thiol–catechol reaction resulted in thermally gelling bioinks with Herschel–Bulkley fluid rheological behavior. Microextrusion 3D bioprinting was used to fabricate free-standing cell-laden tissue constructs. The bioinks exhibited flattened parabolic velocity profiles with tunable low shear regions. Two pathways were investigated for curing the bioink: chelation and photocuring. The storage modulus of the cured bioinks ranged from 6.7 to 11.7 kPa. The iron (III) chelation chemistry produced crosslinked neural tissues of relatively lower storage modulus than the photocuring approach. In vitro cell viability studies using the 3D bioprinted neural tissues showed that the cured bioink was biocompatible based on minimal cytotoxic response observed over seven days in culture relative to control studies using alginate hydrogels. Rodent Schwann cell-, rodent neuronal cell-, and human glioma cell-laden tissue constructs were printed and cultured over seven days and exhibited comparable viability relative to alginate bioink controls. The ability to fabricate soft, free-standing 3D neural tissues with low modulus has implications in the biofabrication of microphysiological neural systems for disease modeling as well as neural tissues and innervated tissues for regenerative medicine.

025010

, , and

Fibrinogen has become highly attractive for tissue engineering scaffolds since it is a naturally occurring blood protein, which contains important binding sites to facilitate cell adhesion. Here, we introduce a novel biofabrication technique to prepare three-dimensional, nanofibrous fibrinogen scaffolds by salt-induced self assembly. For the first time, we were able to fabricate either free-standing or immobilized fibrinogen scaffolds on demand by tailoring the underlying substrate material and adding a fixation and washing procedure after the fiber assembly. Using scanning electron microscopy we observed that different buffers including phosphate buffered saline and sodium phosphate reproducibly yielded dense fiber networks on bare and silanized glass surfaces, gold as well as polystyrene upon drying. Fibrillogenesis could be induced with a fibrinogen concentration of at least 2 mg ml−1 in a pH regime of 7–9. Fiber diameters ranged from 100 to 300 nm, thus resembling native fibrin and ECM protein fibers. By adjusting the salt concentration we could prepare fibrinogen scaffolds with overall dimensions in the centimeter range and a thickness of 3 to 5 μm. Using FTIR analysis we observed peak shifts of the amide bands for fibrinogen nanofibers in comparison to planar fibrinogen, which indicates changes in the secondary structure. Since fibrillogenesis was only induced upon drying when salt ions were present we assume that protein molecules were locally oriented in the respective buffers, which—in combination with the observed conformational changes—led to the assembly of individual molecules into fibers. In summary, our novel self assembly process offers a simple and well controllable method to prepare large scale 3D-scaffolds of fibrinogen nanofibers under physiological conditions. The unique possibility to chose between free-standing and immobilized scaffolds makes our novel biofabrication process highly attractive for the preparation of versatile tissue engineering scaffolds.

025011
The following article is Open access

, , and

Gelatin methacryloyl (GelMA) is a versatile biomaterial that has been shown to possess many advantages such as good biocompatibility, support for cell growth, tunable mechanical properties, photocurable capability, and low material cost. Due to these superior properties, much research has been carried out to develop GelMA as a bioink for bioprinting. However, there are still many challenges, and one major challenge is the control of its rheological properties to yield good printability. Herein, this study presents a strategy to control the rheology of GelMA through partial enzymatic crosslinking. Unlike other enzymatic crosslinking strategies where the rheological properties could not be controlled once reaction takes place, we could, to a large extent, keep the rheological properties stable by introducing a deactivation step after obtaining the optimized rheological properties. Ca2+-independent microbial transglutaminase (MTGase) was introduced to partially catalyze covalent bond formation between chains of GelMA. The enzyme was then deactivated to prevent further uncontrolled crosslinking that would render the hydrogel not printable. After printing, a secondary post-printing crosslinking step (photo crosslinking) was then introduced to ensure long-term stability of the printed structure for subsequent cell studies. Biocompatibility studies carried out using cells encapsulated in the printed structure showed excellent cell viability for at least 7 d. This strategy for better control of rheological properties of GelMA could more significantly enhance the usability of this material as bioink for bioprinting of cell-laden structures for soft tissue engineering.

025012

, , , , , , and

Hierarchically porous structures and bioactive compositions of artificial biomaterials play a positive role in bone defect healing and new bone regeneration. Herein, cerium oxide nanoparticles-modified bioglass (Ce-BG) scaffolds were firstly constructed by the incorporation of hollow mesoporous Ce-BG microspheres in CTS via a freeze-drying technology. The interconnected macropores in Ce-BG scaffolds facilitated the in-growth of bone cells/tissues from material surfaces into the interiors, while the hollow cores and mesopore shells in Ce-BG microspheres provides more active sites for bone mineralization. The cerium oxide nanoparticles in the scaffolds rapidly promoted the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs), as confirmed by the up-regulation of osteogenesis-related markers such as OCN, ALP and COL-1. The enhanced osteoinductivity of Ce-BG scaffolds was mainly related to the activated ERK pathway, and it was blocked by adding a selective ERK1/2 inhibitor (SCH772984). In vivo rat cranial defect models revealed that Ce-BG scaffolds accelerated collagen deposition, osteoblast formation and bone regeneration as compared to BG scaffolds. The exciting results demonstrated that the synergistic effects between hierarchically porous structures and cerium oxide nanoparticles contributed to osteogenic ability, and hollow mesoporous Ce-BG scaffolds would be a novel platform for bone regeneration.

025013

, , and

Bone tissue engineers are facing a daunting challenge when attempting to fabricate bigger constructs intended for use in the treatment of large bone defects, which is the vascularization of the graft. Cell-based approaches and, in particular, the use of in vitro coculture of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) has been one of the most explored options. We present in this paper an alternative method to mimic the spatial pattern of HUVECs and hMSCs found in native osteons based on the use of extrusion-based 3D bioprinting (3DP). We developed a 3DP biphasic osteon-like scaffold, containing two separate osteogenic and vasculogenic cell populations encapsulated in a fibrin bioink in order to improve neovascularization. To this end, we optimized the fibrin bioink to improve the resolution of printed strands and ensure a reproducible printing process; the influence of printing parameters on extruded strand diameter and cell survival was also investigated. The mechanical strength of the construct was improved by co-printing the fibrin bioink along a supporting PCL carrier scaffold. Compressive mechanical testing showed improved mechanical properties with an average compressive modulus of 131 ± 23 MPa, which falls in the range of cortical bone. HUVEC and hMSC laden fibrin hydrogels were printed in osteon-like patterns and cultured in vitro. A significant increase in gene expression of angiogenic markers was observed for the biomimetic scaffolds. Finally, biphasic scaffolds were implanted subcutaneously in rats. Histological analysis of explanted scaffolds showed a significant increase in the number of blood vessels per area in the 3D printed osteon-like scaffolds. The utilization of these scaffolds in constructing biomimetic osteons for bone regeneration demonstrated a promising capacity to improve neovascularization of the construct. These results indicates that proper cell orientation and scaffold design could play a critical role in neovascularization.

025014

, , , , , , , , , et al

Physicochemical and biological gradients are desirable features for hydrogels to enhance their relevance to biological environments for three-dimensional (3D) cell culture. Therefore, simple and efficient techniques to generate chemical, physical and biological gradients within hydrogels are highly desirable. This work demonstrates a technique to generate biomolecular and mechanical gradients in photocrosslinkable hydrogels by stacking and crosslinking prehydrogel solution in a layer by layer manner. Partial crosslinking of the hydrogel allows mixing of prehydrogel solution with the previous hydrogel layer, which makes a smooth gradient profile, rather than discrete layers. This technique enables the generation of concentration gradients of bovine serum albumin in both gelatin methacryloyl (GelMA) and poly(ethylene glycol) diacrylate hydrogels, as well as mechanical gradients across a hydrogel containing varying gel concentrations. Fluorescence microscopy, mechanical testing, and scanning electron microscopy show that the gradient profiles can be controlled by changing both the volume and concentration of each layer as well as intensity of UV exposure. GelMA hydrogel gradients with different Young's moduli were successfully used to culture human fibroblasts. The fibroblasts migrated along the gradient axis and showed different morphologies. In general, the proposed technique provides a rapid and simple approach to design and fabricate 3D hydrogel gradients for in vitro biological studies and potentially for in vivo tissue engineering applications.

025015

, , , , , and

Despite the usefulness of hydrogels for cell-based bioprinting, the fragility of their resulting constructs has hindered their practical applications in tissue engineering research. Here, we suggest a hybrid integration method based on cell-hydrogel bioprinting that includes alternate layering of flexible nanofiber (NF) sheets. Because the bioprinting was implemented on a nanofibrous surface, the hydrogel-based materials could be printed with enhanced shape resolution compared to printing on a bare hydrogel. Furthermore, the insertion of NF sheets was effective for alleviating the shrinkage distortion of the hydrogel construct, which is inherently generated during the crosslinking process, thereby enhancing shape fidelity throughout the three-dimensional (3D) architecture. In addition to the structural precision, the NF-embedded constructs improved the mechanical properties in terms of compressive strength, modulus, and resilience limit (up to four-fold enhancement). With structural and mechanical supports, we could 3D fabricate complex constructs, including fully opened internal channels, which provided a favorable perfusion condition for cell growth. We confirmed the enhanced bioactivity of the NF-embedded bioprinted construct via cell culture experiments with 80% enhanced proliferation compared to the monolithic one. The synergistic combination of the two flexible materials, NFs and hydrogels, is expected to have extensive applicability in soft tissue engineering.

025016

, , , , , and

We report a novel approach for generating nanosized DNA hollow spheres (HSs) using enzymatically produced DNA microsponges in a self-templating manner. In previous studies, preparation of DNA nanostructures with specified functions required multiple complicated steps. In this study, however, a simple treatment with the nucleophilic agent 4-dimethylaminopyridine (DMAP) enabled a gradual disentanglement of DNA in microsponges by electrostatic interactions between DMAP and DNA, and the DNA underwent a reassembly process to generate hollow shell structures without denaturation/annealing by thermal cycling. In addition, this synthetic process was conducted in a water-based system without organic solvents, enabling the synthesis of biologically and environmentally friendly products. Based on the benefits of hollow shell structures, which include their high surface-to-volume ratio and ability to encapsulate small molecules, we envision that this simple approach for synthesizing DNA HSs will provide a new platform for maximizing their potential use in drug delivery and bio-imaging.