This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Brought to you by:

Table of contents

Volume 175

2017

Previous issue Next issue

4th International Conference on Competitive Materials and Technology Processes (IC-CMTP4) 3 March to 7 October 2016, Miskolc, Hungary

Accepted papers received: 03 February 2017
Published online: 15 February 2017

Preface

011001
The following article is Open access

The competitiveness is one of the most important component of our life and it plays key role in efficiency both of organizations and societies. The more scientific supported and prepared organizations develop more competitive materials with better physical, mechanical, chemical and biological properties and the leading companies are applying more competitive equipment and technology processes.

The aims the 4th International Conference on Competitive Materials and Technology Processes (ic-cmtp4) and the Symposiums is-ism1, is-icbm2 and is-icm2 are the followings:

• Promote new methods and results of scientific research in the fields of material, biological, environmental and technology sciences;

• Change information between the theoretical and applied sciences as well as technical and technological implantations.

• Promote the communication between the scientist of different nations, countries and continents.

Among the major fields of interest are innovative materials with increased physical, chemical, biological, medical, thermal, mechanical properties and dynamic strength; including their crystalline and nano-structures, phase transformations as well as methods of their technological processes, tests and measurements. Multidisciplinary applications of material science and technological problems encountered in sectors like ceramics, glasses, thin films, aerospace, automotive and marine industry, electronics, energy, construction materials, medicine, biosciences and environmental sciences are of particular interest.

In accordance to the program of the conference ic-cmtp4, and its symposiums is-ism1, is-icbm2 and is-icm2 we have received more than 450 inquires and registrations frome 46 countries of 5 continents. Finally from them more than 240 abstracts were accepted for presentation, including the 10 PLENARY lectures. Scientists and researchers have arrived to Miskolc-Lillafüred (Hungary) from 41 countries of Asia, Europe, Africa, North and South America and Australia.

Together with co-authors in this book are presented abstracts from more than 700 scientists and researchers..

Prof. Dr. László A. GÖMZE

chair, ic-cmtp4

011002
The following article is Open access

All papers published in this volume of IOP Conference Series: Materials Science and Engineering have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing.

Plenary and Keynotes

012001
The following article is Open access

and

Materials with different crystalline and morphological compositions have different chemical, physical, mechanical and rheological properties, including wear protection, melting temperature, module of elasticity and viscosity. Examining the material structures and behaviors of differentceramic bodies and CMCs under high speed collisions in several years the authors have understood the advantages of hetero-modulus and hetero-viscous complex material systems to absorb and dissipate the kinetic energy of objects during high speed collisions. Applying the rheo-mechanical principles the authors successfully developed a new family of hetero-modulus and hetero-viscous alumina matrix composite materials with extreme mechanical properties including dynamic strength. These new corundum-matrix composite materials reinforced with Si2ON2, Si3N4, SiAlON and AlN submicron and nanoparticles have excellent dynamic strength during collisions with high density metallic bodies with speeds about 1000 m/sec or more. At the same time in the alumina matrix composites can be observed a phase transformation of submicron and nanoparticles of alpha and beta silicone-nitride crystals into cubicc-Si3N4diamond-like particles can be observed, when the high speed collision processes are taken place in vacuum or oxygen-free atmosphere.

Using the rheological principles and the energy engorgement by fractures, heating and melting of components the authors successfully developed several new hetero-modulus, hetero-viscous and hetero-plastic complex materials. These materials generally are based on ceramic matrixes and components having different melting temperatures and modules of elasticity from low values like carbon and light metals (Mg, Al, Ti, Si) up to very high values like boride, nitride and carbide ceramics. Analytical methods applied in this research were scanning electron microscopy, X-ray diffractions and energy dispersive spectrometry. Digital image analysis was applied to microscopy results to enhance the results of transformations.

012002
The following article is Open access

, and

Currently there is a need in affordable and accessible materials with specific physical and chemical properties. Al- and Ti-minerals are excellent test objects for correlation between structure and physical properties of mineral. For example, corundum and ilmenite are related to the same structural type (rhombohedral lattice R3) and possess various physical properties. With the help of modern equipment we studied titanium- and aluminum-containing concentrates of natural raw and also products of various kinds of influences on them, which showed signs of nanostructuring. We observed methods of directional change of physical and chemical characteristics of Al- and Ti-minerals and creation of new commercial products.

012003
The following article is Open access

Paperboards are recognized to be important raw materials for packaging industry due to their advantages such as high strength-to-weight ratio, recyclability. Regarding the development of advanced packaging materials and the requirement of smart formed products, a study of sheet's response behaviour is necessary for expanding the advanced converting industry. After introducing a couple of past research works concerned crease technologies, a fundamental mechanisms of crease deformation is reviewed using the scoring depth and the folding angle of a paperboard. Since one of important forming characteristics is a time-dependent stress relaxation or time-delayed strain during a fold/unfold process, the author's experimental approaches for estimating a short term (less than 10 seconds) dynamic deformation behaviour of creased paperboard are discussed.

012004
The following article is Open access

, , and

In this study, we present the results of our ab initio calculation of the elastic constants, density of states, charge density, and Born effective charge tensors for ferroelectric (rhombohedral) and paraelectric phases (cubic) of the narrow band ferroelectrics (GeTe, SnTe) pseudopotentials. The related quantities such as bulk modulus and shear modulus using obtained elastic constants have also been estimated in the present work. The total and partial densities of states corresponding to the band structure of Sn(Ge)Te(S,Se) were calculated. We also calculated the Born effective charge tensor of an atom (for instance, Ge, Sn, Te, etc.), which is defined as the induced polarization of the solid along the main direction by a unit displacement in the perpendicular direction of the sublattice of an atom at the vanishing electric field.

012005
The following article is Open access

, , , and

This is the rheologicalanalysis of mammalian blood of species with a high (horse), medium (man), and low (sheep) erythrocyte (RBC) aggregability by small amplitude oscillation technique. Amplitude and frequency sweep tests in linear mode were performed with blood from healthy adult volunteers, horses, and sheep in CSS-mode. Blood samples were hematocrit (HCT) adjusted (40%, 50%, 60%) and tested at 7°C, 22°C, and 37°C. Storage modulus (G') increased with HCT and decreased with temperature in each species, but the gradient of this increase was species-specific. The lower dependency of G' on the equine HCT value could be a benefit during physical performance when high numbers of RBCs are released from the spleen in the horse. In sheep, a HCT-threshold had to be overcome before elasticity of the blood sample could be measured, suggesting that the cohesive forces between RBCs, and between RBCs and plasma molecules must be very low. The frequencies for tests under quasi-staticcondition were in a narrow range around the physiologic heart rate of the species. In horse, time-dependent influences concurred at frequencies lower than 3 rad.s-1 probably due to sedimentation of RBC aggregates. In conclusion, elasticity of blood depends not only on the amount of blood cells, but also on their mechanical and functional properties.

Advanced Materials for Bio- and Medical Applications

012006
The following article is Open access

, and

For body-mounted sensor applications, the evolution of soft condensed matter sensor (SCMS) materials offer conformability andit enables mechanical compliance between the body surface and the sensing mechanism. A piezoresistive hybrid sensor and compliant meta-material sub-structure provided a way to engineer sensor physical designs through modification of the mechanical properties of the compliant design. A piezoresistive fiber sensor was produced by combining a thermoplastic elastomer (TPE) matrix with Carbon Black (CB) particles in 1:1 mass ratio. Feedstock was extruded in monofilament fiber form (diameter of 300 microns), resulting in a highly stretchable sensor (strain sensor range up to 100%) with linear resistance signal response.

The soft condensed matter sensor was integrated into a hybrid design including a 3D printed metamaterial structure combined with a soft silicone. An auxetic unit cell was chosen (with negative Poisson's Ratio) in the design in order to combine with the soft silicon, which exhibits a high Poisson's Ratio. The hybrid sensor design was subjected to mechanical tensile testing up to 50% strain (with gauge factor calculation for sensor performance), and then utilized for strain-based sensing applications on the body including gesture recognition and vital function monitoring including blood pulse-wave and breath monitoring. A 10 gesture Natural User Interface (NUI) test protocol was utilized to show the effectiveness of a single wrist-mounted sensor to identify discrete gestures including finger and hand motions. These hand motions were chosen specifically for Human Computer Interaction (HCI) applications. The blood pulse-wave signal was monitored with the hand at rest, in a wrist-mounted. In addition different breathing patterns were investigated, including normal breathing and coughing, using a belt and chest-mounted configuration.

012007
The following article is Open access

, , , , and

Creation of polymer matrix systems for targeted drug delivery into a living organism is a challenging problem of modern treatment of various diseases and injuries. Poly-3-hydroxybutyrate (PHB) is commonly used for development of therapeutic systems. The aim of this article is to examine the changes in structure and morphology of fibers in presence of dipyridamole (DPD) as model drug for controlled release. It was found that addition of dipyridamole led to disappearance of spindle-shaped nodules on fibers of PHB in comparison with pure PHB. The research of thermophysical parameters showed that specific melting enthalpy (and the degree of crystallinity) of PHB fibers increased with the addition of DPD. With the increasing of DPD content in PHB fibers, more perfect and equilibrium crystal structure was formed. According to analysis of intercrystalline regions of PHB fibers, it was found that as the crystallinity of PHB in intergranular regions rose, the corresponding decrease of radical rotation speed was observed. It was concluded that fibers of PHB can be used for creating therapeutic systems for targeted and prolonged drug delivery.

012008
The following article is Open access

, , , , , , and

Ferric iron (III)-based complexes with porphyrins are the homogenous catalysts of auto-oxidation of several biogenic substances. The most perspective carrier for functional low-molecular substances is the polymer fibers with nano-dimensional parameters. Application of natural polymers, poly-(3-hydroxybutyrate) or polylactic acid for instance, makes possible to develop fiber and matrice systems to solve ecological problem in biomedicine The aim of the article is to obtain fibrous material on poly-(3-hydroxybutyrate) and ferric iron (III)-based porphyrins basis and to examine its physical-chemical and antibacterial properties. The work is focused on possibility to apply such material to biomedical purposes. Microphotographs of obtained material showed that addition of 1% wt. ferric iron (III)-based porphyrins to PHB led to increased average diameter and disappeared spindly structures in comparison with initial PHB. Biological tests of nonwoven fabrics showed that fibers, containing ferric iron (III)-based tetraphenylporphyrins, were active in relation to bacterial test-cultures. It was found that materials on polymer and metal complexes with porphyrins basis can be applied to production of decontamination equipment in relation to pathogenic and opportunistic microorganisms.

012009
The following article is Open access

, , , and

In this article results from corrosion behaviour of austenitic stainless steel AISI 316L after different surface treatments are published. "As received" surface and surface after grinding resulted in lower resistance to pitting corrosion in physiological solution than electrochemically polished in H3PO4+H2SO4+H2O. Electropolishing also improved the surface roughness in comparison with the "as received" surface. Deposition of Al2O3 nanometric ALD coating improves the corrosion resistance of stainless steel in chloride-containing environment by shifting the breakdown potential toward more positive values. This oxide coating not only improves the corrosion resistance but it also affects the wettability of the surface, resulting in hydrophobic surface.

012011
The following article is Open access

, , , , and

Metallic nanoparticles (MNP) with diameters ranging from 2 to 100nm have received extensive attention during the past decades due to their many potential applications. This paper presents a structural and cytotoxicity study of silver metal nanoparticles targeted towards biomedical applications. Spherical Ag MNPs of diameter from 20 to 50 nm have been synthesized. The encapsulation of Ag MNPs inside pH-sensitive polymersomes has been also studied for the development of biomedical applications. A cytotoxicity study of the Ag MNPs against primary prostatic cancer cell line (PPC-1) has demonstrated a high mortality rate for concentrations ranging from 100 to 200mg/L. The paper will discuss the potential for therapeutic treatments of these Ag MNPs.

012012
The following article is Open access

, , , , , and

It was found that pharmaceutical companies produce drugs in tablet form, physical or physical-chemical properties that are radically different from those of the properties of natural food lumps, in that adult converts food in our mouth before swallowing. It was shown that the conventional shape, color, size, volume, specific gravity, hardness, osmotic and acid activity of modern tablets impair the physical and physicochemical properties of the liquid contents of the stomach is much stronger than such "building" materials, such as chalk, clay, sand, river pebbles and gravel. The results showed, that the value of the specific hardness, deforming tablets, can distinguish modern tablets from each other by more than 5000 times. Therefore, introduction tablets inside without information of ability injuring their action leads to the fact that soft and "unsalted" tablets almost nothing damage, and too "salty" and solid tablets damage the gums, lips, tongue, teeth and dental structures. To reduce the traumatic action tablets offered standardize osmoticity, corrosion and hardness within the range of safe values for soft and hard tissues of the oral cavity and improve standard introduction of tablets in the mouth.

Advanced Materials for Extreme Applications

012013
The following article is Open access

, , and

Based on high purity alumina and quartz powders and IG-017 bio-original additives the authors have developed new ceramic composite materials for different industrial purposes. The main goal was to fine a material and morphological structures of high performance ceramic composites as frames for development complex materials for extreme consumptions in the future. For this the mixed powders of Al2O3, SiO2 and IG-017 bio-original additive were uniaxially pressed at different compaction pressures into disc shapes and were sintered in electric kiln under air (1) and nitrogrn (2) atmosphere. The grain size distributions of the raw materials were determined by laser granulometry. There thermo-physical properties were also determined by derivatography.

The prepared and sintered specimens were tested on geometrical sizes, microstructure and morphology by scanning electron microscopy, porosity and water absorption. In this work the authors present the results of their research and investigation.

012014
The following article is Open access

, , , and

In present work, our research is mainly focused on the electronic structures, optical and magnetic properties of Cu2FeSnZ4 (Z = S, Se) compounds by using ab initio calculations within the generalized gradient approximation (GGA). The calculations are performed by using the Vienna ab-initio simulation package (VASP) based on the density functional theory. The band structure of the Cu2FeSnZ4 ( Z = S, Se) compounds for majority spin (spin-up) and minority spin (spin-down) were calculated. It is seen that for these compounds, the majority spin states cross the Fermi level and thus have the metallic character, while the minority spin states open the band gaps around the Fermi level and thus have the narrow-band semiconducting nature. For better understanding of the electronic states, the total and partial density of states were calculated, too. The real and imaginary parts of dielectric functions and hence the optical functions such as energy-loss function, the effective number of valance electrons and the effective optical dielectric constant for Cu2FeSnZ4 (Z = S, Se) compounds were also calculated.

012015
The following article is Open access

, , and

Crystal chemical characteristics and physical properties of ferrous minerals can be criteria for search and evaluation of mineral (natural) raw for the production of functional materials. Special attention will be given to new experimental methods of transformation of minerals at different methods of influence. As a probe to identify the relationship between the actual crystalline structure of the mineral and its technological properties we used the oxidation - reduction reactions of iron ore-forming minerals. We will show that the inexpensive and affordable methods of influence at ore and technological products result in the observed Fe2+— Fe3+ charge transfer, which result in the increase of the conversion degree of the structure and change of magnetic properties of the substance.

012016
The following article is Open access

, and

At present we face the problem of cost-effective and efficient method for the enrichment of fine and small fractions of gold and its industrial application. New extraction technologies are required (sometimes more than a third of valuable raw are wasted). One of the trends to solve this problem is the change of magnetic susceptibility of gold.

012017
The following article is Open access

, and

Discovered that some of blades Damascus steel has an unusual nature of origin of the excess cementite, which different from the redundant phases of secondary cementite, cementite of ledeburite and primary cementite in iron-carbon alloys. It is revealed that the morphological features of separate particles of cementite in Damascus steels lies in the abnormal size of excess carbides having the shape of irregular prisms. Considered three hypotheses for the formation of excess cementite in the form of faceted prismatic of excess carbides. The first hypothesis is based on thermal fission of cementite of a few isolated grains. The second hypothesis is based on the process of fragmentation cementite during deformation to the separate the pieces. The third hypothesis is based on the transformation of metastable cementite in the stable of angular eutectic carbide. It is shown that the angular carbides are formed within the original metastable colony ledeburite, so they are called "eutectic carbide". It is established that high-purity white cast iron is converted into of Damascus steel during isothermal soaking at the annealing. It was revealed that some of blades Damascus steel ledeburite class do not contain in its microstructure of crushed ledeburite. It is shown that the pattern of carbide heterogeneity of Damascus steel consists entirely of angular eutectic carbides. Believe that Damascus steel refers to non-heat-resistant steel of ledeburite class, which have similar structural characteristics with semi-heat-resistant die steel or heat-resistant high speed steel, differing from them only in the nature of excess carbide phase.

012018
The following article is Open access

, , , and

Heterogeneous and homogeneous processes of synthesis for complex functional materials are studied by the methods of thermodynamic modeling and calculation, based on minimization of the Gibbs energy of the researched system. The conditions and products of gasification in the field of 0-2000 °C are determined for the synthesis conditions of a ceramic tile with complex composition (10-component system). All main products of interaction of components of ceramic mass (the system SiO2 – K2O – Na2O – Al2O3 – Fe2O3 – CaO – MgO – TiO2 – P2O5 – SO3) and main components of air (the system N2 – O2 – CO2 – H2O) are found for the synthesis of material in the conditions of the air atmosphere at various temperatures. The character of physico-chemical influence of each components on the occurring processes is revealed, that determines a theoretical and calculation base of management and optimization of the synthesis engineering process for various functional materials.

Advanced Nanomaterials with Predesigned Properties

012019
The following article is Open access

, , , , and

The effect of detonation nanodiamonds, doped with boron (boron-DND) in detonation synthesis on the process of zinc electrochemical deposition from zincate electrolyte is investigated. It is shown that the scattering power (coating uniformity) increases 2-4 times (depending on the concentration of DND-boron electrolyte conductivity does not change, the corrosion resistance of Zn- DND -boron coating increases 2.6 times in 3% NaCl solution (corrosion currents) and 3 times in the climatic chamber.

012020
The following article is Open access

, , , and

Microstructure and mechanical properties of Ta-B-C nanocrystalline layers prepared by magnetron sputtering were studied. DC magnetron sputtering was used to prepare thin layers on rotated substrates. Various deposition parameters were tested. Microstructure of layers was studied by means of scanning and transmission electron microscopy on thin lamellar cross sections prepared using a focussed ion beam. Both undisturbed layers and the volume under relatively large indentation prints (load of 1 N) were observed. The microstructure observations were correlated with mechanical properties characterized by means of nanoindentation experiments in both the static and the dynamic loading regime. Elastic modulus, indentation hardness and fracture resistance of prepared nanostructured coatings were evaluated and discussed.

012021
The following article is Open access

, , , , , , and

Relief, magnetic structure and microwave properties of the composite (metal-dielectric) films: (CoFeZr) / (Al2O3), (A series) and (CoTaNb)/(SiO2) were investigated. Experimental data on the microwave magnetic characteristics were also calculated on the basis Dubowik model.

012022
The following article is Open access

, , , and

Pulsed near-IR laser irradiation of ferrous sulfide (FeS) in a vacuum allows a non-congruent ablation and deposition of nanostructured FeS1-x thin films. Deposition has been performed on Al, Ta and Cu unheated substrate and analyzed by scanning (SEM) and high resolution transmission electron microscopy (HRTEM) and electron diffraction. Morphologically, the similar homogeneous, dark, metallic and adhesive appearanceshave been revealed for all the coats deposited on various substrates (by SEM). However, using HRTEM in agreement with electron diffraction, different phase composition on various substrates has been detected. Cubic pyrite phase (FeS2) has been detected on Ta substrate. Cubic pyrite (FeS2) and metastable rhomboedric smythite Fe9S11 have been found in case of Al substrate. Cubic pyrite (FeS2), metastable rhomboedric smythite Fe9S11 and metastable orthorhombic marcasite (FeS2m) revealed HRTEM analysis of the film on Cu substrate. In case of all deposits the detected crystalline nanograins were surrounded by amorphous matrix.

012023
The following article is Open access

, , , and

Copper is the most widely used material in heat pipe manufacturing. Since the capability of wick structures inside a heat pipe will dominate its thermal performance, in this study, we introduce a hybrid surface modification method on the copper wire braids being inserted as wick structure into an ultra-thin heat pipe. The hybrid method is the combination of a chemical-oxidation-based method and a sol-gel method with nanoparticles being dip-coated onto the braid. The experimental data show that braids under hybrid treatment perform higher water rising speed than the oxidized braids while owning higher water net weight than those braids being only dip-coated with nanoparticle.

012024
The following article is Open access

, , , and

The method of thermodynamic modeling of phase and chemical transformations for synthesis conditions of multicomponent functional materials is presented. Calculation of the phase transformations taking place in the conditions of synthesis and operation of ceramic materials on the basis of the system SiO2 – K2O – Na2O – Al2O3 – Fe2O3 – CaO – MgO – TiO2 – P2O5 – SO3 in the field of temperatures from 0 to 2000° C is carried out. The sequence of phase and chemical transformations between components of synthesizable material and their reaction products, depending on temperature, is founded.

Biomaterials Derived Ceramics and Composites

012025
The following article is Open access

and

Pore and crystalline structure, biocompatibility of ceramic composite ZrO2(MgO)-MgO were studied. The main mechanical characteristics were determined and it has been shown that compression strength directly depends on microstresses obtained from X-ray data. In-vitro studies of mesenchymal stromal stem cells (MMSC), cultivated on material surface are shown that cell proliferation and differentiation of MMSC goes throw osteogenic type.

012026
The following article is Open access

, , , , , , , and

The composite films were investigated by AFM methods before and after annealing. Topographic and phase-contrast AFM images of the composite films at different annealing temperature were obtained. The separate metal granules and larger-scale labyrinth-like formations were described. These formations appear by the process of the film growth, also by film annealing. Strong changes of the structural properties of the films are observed after the percolation transition. The significant changes of the structural properties are connected with nanostructural transformations in the metal granules topology and presence of metal crystal phase.

Hetero-Modulus and Hybrid Materials

012027
The following article is Open access

Mixing is a very important polymer process. Nanocomposites were made by a new type of shear mixer, IDMX. The nanocompostes contained different amount of multiwall carbon nanotubes. Test pieces were prepared by injection moulding method. Thermal, flowing and mechanical properties were measured.

012028
The following article is Open access

, and

Thermally Simulated Depolarization Current measurement is an excellent but not widely used method for identifying relaxation processes in polymers. The DMA method is used here to analyze the mechanical changes depend on temperature in biopolymers. The two techniques take advantage of the energy changes involved in the various phase transitions of certain polymer molecules. This allows for several properties of the material to be ascertained; melting points, enthalpies of melting, crystallization temperatures, glass transition temperatures and degradation temperatures. The examined biopolymer films are made from biological materials such as proteins and polysaccharides. These materials have gained wide usage in pharmaceutical, medical and food areas. The uses of biopolymer films depend on their structure and mechanical properties. This work is based on pectin and gelatin films. The films were prepared by casting. The casting technique used aqueous solutions in each case of sample preparation. The manufacturing process of the pectin and gelatin films was a single stage solving process.

Materials with Extreme Dynamic Strength

012029
The following article is Open access

, and

Mechanical behaviour of stochastic metal-ceramic composite materials under shock wave loading was numerically simulated on mesoscopic scale level. Deformation of mesoscopic volumes of composites whose structure consisted of a metal matrix and randomly distributed ceramic inclusions was simulated. The results of numerical simulation were used for numerical evaluation of effective elastic and strength properties of metal-ceramic materials with different values of volume concentration of ceramic inclusions. The values of the effective mechanical characteristics of investigated materials were obtained, and the character of the dependence of the effective elastic and strength properties on the structure of composites was determined. It is shown that the dependence of the values of the effective elastic moduli on the volume concentration of ceramic inclusions is nonlinear and monotonically increasing. The values of the effective elastic limits increase with increasing concentration of the inclusions, however, for the considered composites, this dependence is not monotonic.

012030
The following article is Open access

and

The shock-wave synthesis and compaction using powder mixtures are the one of perspective directions of new materials creation. The results of numerical experiments on modeling of shock wave loading of mixtures with allowance for phase transition components in their composition are presented. The significant change in volume in the region of phase transition components included in the mixtures allows us to expand the range of variation of thermodynamic parameters of the mixtures under shock wave loading. The calculation model is based on the assumption that all components of mixture under shock-wave loading are in thermodynamic equilibrium (model TEC). The model TEC allows us to describe the region of the polymorphic phase transition, considering the material in the region of phase transition as a mixture of low-pressure phase and high-pressure phase. The good agreement of these model calculations with the data of different authors defined on the basis of experiments is obtained. Thermodynamic parameters of the nitrides mixture, solid and porous mixtures with quartz as component were reliably described. This model is useful for determining the compositions and volume fractions of the components of the mixture to obtain the specified parameters of solid and porous materials under shock-wave loading.

Membranes and Catalysts

012031
The following article is Open access

, , , and

In the present study, we investigated the effect of preparation method, phase composition and calcination temperature of the (Ce-TZP) – Al2O3 mixed oxides on their structural features and catalytic performance in ethanol conversion. Ceria–zirconia–alumina mixed oxides with different (Ce+Zr)/Al atomic ratios were prepared via sol–gel method. Catalytic activity and selectivity were investigated for ethanol conversion to acetaldehyde, ethylene and diethyl ether.

012032
The following article is Open access

and

Manganese oxide-zirconia type (MnOx:ZrO2) sorbents were prepared using the sol-gel technique by co precipitation ZrO(NO3)2.xH2O and Mn(NO3)2 xH2O. The heat treatment below 500°C resulted a high surface area solid structure which consists of amorphous Mn2O3 (Bixbyite) and amorphous ZrO2 phases. This material was found a high capacity oxidative sorbent for mercury removal from gas streams.

Minerals for Environmental and Medical Application

012033
The following article is Open access

, , , and

This paper presents the results of a study of the influence of mechanical activation on morphology, specific surface area and phase composition of natural zeolite of Tokaj Mountain. During the mechanical activation of zeolites powders with specific surface area of 19-20 square meters per grams, significant changes in chemical and mineralogical compositions can be observed. The laboratory experiments had shown an intensive increase of specific surface area at the beginning of mechanical activation; a further relatively slow decrease and reduction of BET surfaces were observed. By increasing the mechanical activation time the amount of quartz, cristobalite-low, orthoclase mineral components were not stable, and their content have varied not so strongly as a decrease smectite 15 A, clinoptilolite, illite 2M1 or calcite. In addition, during the mechanical activation occurred amorphization, which was increased from 13% to 52%.

Nanomaterials for Environment and Health

012034
The following article is Open access

, , and

In this work, a simple and low-temperature method to synthesize titanium dioxide (TiO2) particles with supercritical carbon dioxide is presented. The particles were synthesized by measuring 5 ml of tetra-n-butyl orthotitanate precursor to the supercritical chamber. The pressure was maintained at 15.0 MPafor all experiments. Reaction temperatures used were 50 °C or 70 °C. After reaching treatment parameters 10 ml of deionized water was introduced to the chamber with a co-solvent pump. A mixer was used inside the chamber to ensure proper mixing of water and precursor. Reaction times of 10, 60 and 300 min were used. Characterization of the particle crystal phase was determined by X-ray diffraction, differential scanning calorimetry and transmission electron microscopy. The specific surface areas were measured with nitrogen adsorption tests (BET). The results showed that the particles synthesized with reaction times of 10 and 60 min contained brookite as the crystalline phase. With longer reaction time of 300 min the phase shifted to anatase. In most experiments there was also significant amount of amorphous phase present. The specific surface areas varied between 274.3–566.6 m2/g.

Novel Synthesis and Processing Technology

012035
The following article is Open access

, , and

The paper presents the results of the research analyzing the influence of binding composition on the structure and properties of the stainless steel samples obtained by injection moulding technique. It have been determined the tailored composition of binding, which provides sufficient feedstock viscosity, low porosity of work-pieces, etc. Three binding compositions polypropylene and paraffin wax have been studied: 1:6, 1:2, 2:1, respectively. Stearic acid has been used as a SAS (surface active substance). The results have shown that the binding compositions between 1:6 and 1:2 polypropylene and paraffin wax provides sufficient viscosity feedstock, dimensional stability during debinding and sintering, and the high density of the final product.

012036
The following article is Open access

, and

The experimental validation of the heat transfer and cure modeling results for 8-mm fiber-reinforced thermosetting composite reinforcement is reported in this article. The temperature and degree of cure of composite reinforcement are predicted using a two-dimensional heat transfer and curing model. The model uses the infrared radiant heating theory and takes into account the heat transfer between the composite rod and the surrounding air. The implicit finite difference method was used to solve the system of governing equations. The results obtained using mathematical model was compared to experimental data: the temperature field inside the composite reinforcement was measured by means of naked thermocouple; Differential Scanning Calorimetry (DSC) was used to measure the degree of cure of the final product. Calculated and measured temperature and degree of cure fields were in good agreement.

012037
The following article is Open access

, , , , and

The method of production of materials by out-furnace process of self-propagating high temperature synthesis (SHS), flowing in the conditions of action of centrifugal force, is developed presently. The primary purpose of working is achievement high level of generating of energy and use of it for forming of steady meta-stable crystalline phases with an uncommon set of physical and chemical properties.

012038
The following article is Open access

, , , and

It has been studied properties of stainless steel based powders after mechanical activation using planetary ball milling technique. It have been shown that after one minute mechanical activation porosity of sintered steel is less than 5%, which is less than the porosity of the sintered steel powder without mechanical activation. The sample without activation has austenite state, which changes after activation toaustenite and ferrite mixtures. X-ray analysis confirmed that the mechanical activation leads to a change in the phase state of the samples: the samples without activation of the FCC structure (γ-Fe), after activation - FCC (γ-Fe) and BCC (α-Fe). The hardness increases at increasing activation time from 800 MPa for the sample without mechanical activation to 1250 MPa for the sample with the activation time of 10 minutes.

Phase Diagram as a Tool of Materials Science

012039
The following article is Open access

, , and

In polycrystalline solid solution of Pb1-xYxSnF4+x (0 < x ≤ 0,17) with a structure of β-PbSnF4 in temperature 293 – 523 K the fluorine anions occupy three structurally nonequivalent positions which differ in the local environment and mobility. The concentration of mobility fluoride anions at 300 K is almost independent of the content of heterovalent substituent on YF3 and at temperatures above 430 K increases with grow concentration of the YF3. Fluoride ion exchange between nonequivalent subsystems increases with raising temperature, which causes an increase in conductivity. The electronic component of conductivity the synthesized samples by 2 orders of magnitude lower than the ion.

Processing, Properties and Applications of Ceramics

012040
The following article is Open access

, , and

Recent experiments on polycrystalline materials show that microcrystalline materials have a strong dependency ona grain size. In this study, mechanical and electrical properties of polycrystalline materials in micro level were studied by using averaging theorems. To completely understand the size-dependency of polycrystalline materials, an integral non-local approach that can predict the stress-strain relations for these materials was presented. In microcrystalline materials, crystalline and grain-boundary were considered as two separate phases. Mechanical properties of the crystalline phase were modelled using crystalline brittle material and is composed of randomly distributed and orientated single crystal anisotropic elastic grains. For microcrystalline materials, the surface-to-volume ratio of the grain boundaries is low enough to ignore its contribution to the elastic deformation. Therefore, the grain boundary phase was not considered in microcrystalline materials and mechanical properties of the crystalline phase were modelled using appropriate integral non-local approach. Finally, the constitutive equations for polycrystalline materials were implemented into a boundary integral equation and the results and some examples are provided for piezoelectric ceramic.

012041
The following article is Open access

, , , , and

The evolution of the AC electrical conductivity during drying as well as the relationship between sample volume and moisture of green illite samples were investigated. The samples were prepared from illitic clay (80 mass % illite, 4 mass % montmorillonite, 12 mass % quartz and 4 mass % of orthoclase) and distilled water with initial moisture content 36 mass % and were freely dried in air. Conductivity was measured by the volt-ampere method with AC power supply of 5 V in the frequency range from 50 Hz to 10 kHz. The AC conductivity steeply increased with increasing moisture, up to 15 mass %. At higher values of the moisture, the AC conductivity was high and almost constant. The volume of samples increased with increasing moisture when the moisture was higher than 8 mass %. Below this value, the dimensions of samples do not significantly change. The dependence of the relative volume change on moisture is presented in a form of the Bigot's curve.

012042
The following article is Open access

, , , and

ZnO is a widely studied semiconductor material with interesting properties such as photocatalytic activity leading to wide range of applications, for example in the field of opto-electronics and self-cleaning and antimicrobial applications. Doping of photocatalytic semiconductor materials has been shown to introduce variation in the band gap energy of the material.

In this work, ZnO rods were grown on a stainless steel substrates using hydrothermal method introducing copper nitrate into the precursor solution. Zinc nitrate and hexamethylenetetramine were used as precursor materials and the growth was conducted at 90 °C for 2 h in order to achieve a well-aligned evenly distributed rod structure. Copper was introduced as copper nitrate that was added in the precursor solution in the beginning of the growth. The as-prepared films were then heat-treated at 350 °C and band gap measurements were performed for prepared films. It was found that increase in the copper concentration in the precursor solution decreased the band gap of the ZnO film. Methylene blue discolouration tests were then performed in order to study the effect of the copper nitrate addition to precursor solution on photocatalytic activity of the structured ZnO films.

012043
The following article is Open access

, , and

Spherical particles of 0.5mol%Pr3+-doped CaTiO3 were prepared by hydrothermal reaction on dissolved CaCl2, Pr(NO3)3, and ammonium citratoperoxotitanate (IV) complex precursor solution with molar ratio of Ti/CA=1:2 and calcination in ambient atmosphere. The obtained particle exhibited red photoluminescence at 610nm. It is found that several particles have hollow structure. It is required that further investigation is needed to clarify the formation mechanism of these spherical hollow paricles.

012044
The following article is Open access

, , , , and

This paper presents results from experimental study on microstructural and mechanical properties of geopolymer-based foam filters. The process for making porous ceramic-like geopolymer body was experimentally established, consists of (a) geopolymer paste synthesis, (b) ceramic filler incorporation, (c) coating of open-celled polyurethane foam with geopolymer mixture, (d) rapid setting procedure, (e) thermal treatment. Geopolymer paste was based on potassium silicate solution n(SiO2)/n(K2O)=1.6 and powder mixture of calcined kaolin and precipitated silica. Various types of ceramic granular filler (alumina, calcined schistous clay and cordierite) were tested in relation to aggregate gradation design and particle size distribution. The small amplitude oscillatory rheometry in strain controlled regime 0.01% with angular frequency 10 rad/s was applied for determination of rheology behavior of prepared mixtures. Thermal treatment conditions were applied in the temperature range 1100 – 1300 °C.

The developed porous ceramic-like foam effectively served as a substrate for highly active nanoparticles of selected Fe+2 spinels. Such new-type of nanocomposite was tested as a heterogeneous catalyst for technological process of advanced oxidative degradation of resistive antibiotics occurring in waste waters.

012045
The following article is Open access

and

In this paper the study of porous ceramics obtained from aluminum hydroxide with gibbsite modification is presented. It was shown that aluminum hydroxide may be used for pore formation and pore volume in the sintered ceramics can be controlled by varying the aluminum hydroxide concentration and sintering temperature. It was shown that compressive strength of alumina ceramics increases by 40 times with decreasing the pore volume from 65 to 15%. Based on these results one can conclude that the obtained structure is very close to inorganic bone matrix and can be used as promising material for bone implants production.

012046
The following article is Open access

, , , , and

Geopolymers are inorganic polymers which can be produced by the reaction between silico aluminate oxides and alkali silicates in alkaline medium. Materialscontaining silica and alumina compounds are suitable for geopolymer production. These can beprimary materials or industrial wastes, i. e. fly ash, metallurgical slag and red mud.

In this paper, the results of the systematic experimental series are presented which were carried out in order to optimize the geopolymer preparation process. Fly ash was ground for different residence time (0, 5, 10, 30, 60 min) in order to investigate the optimal specific surface area. NaOH activator solution concentration also varied (6, 8, 10, 12, 14 M). Furthermore, sodium silicate was added to NaOH as a network builder solution. In this last serie different heat curing temperatures (30, 60, 90°C) were also applied. After seven days of ageing the physical properties of the geopolymer(compressive strength and specimen density)were measured. Chemical leaching tests on the rawmaterial and the geopolymers were carried out to determine the elements which can be mobilized by different leaching solutions. It was found that the above mentioned parameters (fly ash fineness, molar concentration and composition of activator solution, heat curing) has great effect on the physical and chemical properties of geopolymer specimens. Optimal conditions were as follows: specific surface area of the fly ash above 2000 cm2/g, 10 M NaOH, 30°C heat curing temperature which resulted in 21 MPa compressive strength geopolymer.

Testing and Characterization of Materials - Methods, Equipment and Errors

012047
The following article is Open access

, and

Asphalt mixtures are composite materials, which are made of different grades of mineral aggregates and bitumen. During the mixing process mineral materials were blended with bitumen at relatively high temperature (∼200 °C). As the binding process come off in these higher temperature range, thermal properties of asphaltic materials are important.

The aim of this project is to reveal the thermal properties of raw materials. During our research two types of mineral aggregates were tested (limestone and dolomite) by different methods. Differential thermal analysis, thermal expansion and thermal conductivity were investigated at technologically important temperatures. The results showed that the structure of mineral materials did not change at elevated temperatures, expansion of samples was neglible, while thermal conductivity changed by temperature.

012048
The following article is Open access

and

The corrosion forms are different in case of the austenitic steel than in case of carbon steels. Corrosion is very dangerous process, because that corrosion form is the intergranular corrosion. The austenitic stainless steel shows high corrosion resistance level. It knows that plastic deformation and the heat treating decrease it's resistance. The corrosion form in case of this steel is very special and the corrosion tests are difficult. We tested the selected steel about its corrosion behaviour after high rate deformation. We wanted to find a relationship between the corrosion resistance decreasing and the rate of the plastic deformation. We wanted to show this behaviour from mechanical and electrical changing.

012049
The following article is Open access

, and

The research results of the mechanics are presented and the effective mechanical characteristics under uniaxial compression of the simulative micro volume of the compact bone are defined subject to the direction of the collagen-mineral fibers, porosity and mineral content. The experimental and computer studies of the mechanics are performed and the effective mechanical characteristics of the porous zirconium oxide ceramics are defined. The recommendations are developed on the selection of the ceramic samples designed to replace the fragment of the compact bone of a definite structure and mineral content.

012050
The following article is Open access

In traditional power engineering hydrogen may be one of the first primary source of equipment damage. This problem has high actuality for both nuclear and thermonuclear power engineering. Study of radiation-hydrogen embrittlement of the steel raises the question concerning the unknown source of hydrogen in reactors. Later unexpectedly high hydrogen concentrations were detected in irradiated graphite.

It is necessary to look for this source of hydrogen especially because hydrogen flakes were detected in reactor vessels of Belgian NPPs.

As a possible initial hypothesis about the enigmatical source of hydrogen one can propose protons generation during beta-decay of free neutrons поскольку inasmuch as protons detected by researches at nuclear reactors as witness of beta-decay of free neutrons.

Mechanical Properties and Processing Technology of Advanced Materials

012051
The following article is Open access

, and

The paper discusses the calculation of the effective thermal and diffusion properties of metal matrix composites containing diamond particles. The effective properties are calculated using Maxwell homogenization scheme. We also establish cross-property connection between overall thermal conductivity and diffusion coefficient and illustrate it on example of Al\diamond composites.

012052
The following article is Open access

, , , , and

In this study the effect of metakaolin replacement by milled blast furnace slag in alkali-activated geopolymeric binder was investigated in accordance to their rheological and mechanical properties. It was demonstrated that slag addition into the metakaolin binder can improve mechanical properties of final products. Our investigation was focused on broad interval of metakaolin substitution in the range from 100 to 40 volume per cents of metakaolin so that the volume content of solids in final binder was maintained constant. Prepared binders were activated by alkaline solution of potassium silicate with silicate module of 1.61. The particle size analyses were performed for determination of particle size distribution. The rheological properties were determined in accordance to flow properties by measurements on Ford viscosity cup and by oscillatory measurements of hardening process. For the investigation of hardening process, the strain controlled small amplitude oscillatory rheometry was used in plane-plate geometry. For determination of applied mechanical properties were binders filled by ceramic grog in the granularity range 0-1 mm. The filling was maintained constant at 275 volume per cents in accordance to ratio of solids in dry binder. The mechanical properties were investigated after 1, 7 and 28 days and microstructure was documented by scanning electron microscopy. The results indicate that slag addition have beneficial effect not only on mechanical properties of hardened binder but also on flow properties of fresh geopolymer paste and subsequent hardening kinetics of alkali-activated binders.

012053
The following article is Open access

, and

This article deals with the effect of treatment on the mechanical properties ofbiocompatible alloys. In the case of implants, it is desirable to ensure good biocompatibility. Generally, the environment in the body is very aggressive and implants can quickly degrade due the corrosion. The process of corrosion leads to the release of harmful particles into the body. Other reasons for rejection of the implants, is their coverage bacterial plaque. Another reason for the rejection of the implant may be a smooth surface. In some cases, the tissue does not adhere to the smooth surface of the implant, in this regionsoccurs an accumulation of body fluids. This problem can be solved with a rough surface. From the viewpoint of fatigue resistance, the rough surface containing grooves and holes has a negative influence on the fatigue resistance against mechanical loading. The rough surface can be produced by machining or asymmetric deposition of particles of oxides, nitrides or other particles on surface. In this work the formation and propagation of fatigue cracks in the material with granular surface is analysed. The formation and growth of fatigue crack originated from granular surface is simulated. Also, experimental studies were carried out.

012054
The following article is Open access

, , , and

This experimental research focuses on mechanical properties of non-woven glass fabric composites bound by geopolymeric matrix. This study investigates the effect of different matrix composition and amount of granular filler on the mechanical properties of final composites. Matrix was selected as a metakaolin based geopolymer hardened by different amount of potassium silicate activator. The ceramic granular filler was added into the matrix for investigation of its impact on mechanical properties and workability. Prepared pastes were incorporated into the non-woven fabrics by hand roller and final composites were stacked layer by layer to final thickness. The early age hardening of prepared pastes were monitored by small amplitude dynamic rheology approach and after 28 days of hardening the mechanical properties were examined. The electron microscopy was used for detail description of microstructural properties. The imaging methods revealed good wettability of glass fibers by geopolymeric matrix and results of mechanical properties indicate usability of these materials for constructional applications.

012055
The following article is Open access

and

Al – ZrW2O8 pseudo alloys were synthesized by free sintering of Al – ZrW2O8 powder mixture. Influence of sintering time on the structure formation of the pseudo alloys obtained was investigated. It has been shown that during sintering process zirconium tungstate decomposes into constituent oxides and re-synthesis of zirconium tungstate proceeds through intermediate stage – formation of WAl12 and ZrAl3 intermetallic compounds.

012056
The following article is Open access

, and

In our work we present an investigation of polycarbonate melt shear viscosity in wide range shear rate. In the course of our research we aggregated more testing method results and mathematically determined viscosity equation of the tested material.

The 1st International Symposium on Intelligent and Smart Materials

012057
The following article is Open access

and

Investigating the anisotropies of magnetic nanoparticles is crucial for further development of magnetic data storage media, MRAM, magnetic logical circuits, or magnetic quantum cellular automata. Former theoretical and experimental examinations have revealed the possibility to gain highly symmetric nanoparticles with increased numbers of magnetic states per storage element. In a recent project, we have investigated low-symmetry T-shaped 2D and 3D particles from iron using the micromagnetic simulation software MAGPAR which is based on solving the Landau-Lifshitz-Gilbert (LLG) equation of motion for a mesh built from tetrahedral finite elements. To examine the influence of the reduced symmetry, simulations were performed on the 3D double-T particle with the field applied in different directions in the x-y base plane, ranging from 0 to 180° in 5° steps. Additionally, the external magnetic field was rotated laterally under different angles with respect to the x-y plane, i.e. 5°, 22.5°, and 45°. Similar simulations were executed for the 2D single-T particle. Our results show the strong impact of the shape anisotropy and the respective possibility to tailor magnetic anisotropies according to the desired behaviour by modifying the nanoparticles' form.

012058
The following article is Open access

, , and

During the past years, smart textiles have gained more and more attention. Products cover a broad range of possible applications, from fashion items such as LED garments to sensory shirts detecting vital signs to clothes with included electrical stimulation of muscles. For all electrical or electronic features included in garments, a power supply is needed - which is usually the bottleneck in the development of smart textiles, since common power supplies are not flexible and often not lightweight, prohibiting their unobtrusive integration in electronic textiles. In a recent project, textile-based batteries are developed. For this, metallized woven fabrics (e.g. copper, zinc, or silver) are used in combinations with carbon fabrics. The article gives an overview of our recent advances in optimizing power storage capacity and durability of the textile batteries by tailoring the gel-electrolyte. The gel-electrolyte is modified with respect to thickness and electrolyte concentration; additionally, the influence of additives on the long-time stability of the batteries is examined.

012059
The following article is Open access

, and

In this study metamaterial based (MA) absorber sensor, integrated with an X-band waveguide, is numerically and experimentally suggested for important application including pressure, density sensing and marble type detecting applications based on rectangular split ring resonator, sensor layer and absorber layer that measures of changing in the dielectric constant and/or the thickness of a sensor layer. Changing of physical, chemical or biological parameters in the sensor layer can be detected by measuring the resonant frequency shifting of metamaterial absorber based sensor. Suggested MA based absorber sensor can be used for medical, biological, agricultural and chemical detecting applications in microwave frequency band. We compare the simulation and experimentally obtained results from the fabricated sample which are good agreement. Simulation results show that the proposed structure can detect the changing of the refractive indexes of different materials via special resonance frequencies, thus it could be said that the MA-based sensors have high sensitivity. Additionally due to the simple and tiny structures it could be adapted to other electronic devices in different sizes.

The 2nd International Symposium on Innovative Construction Materials

012060
The following article is Open access

, and

The difference between self compacting concrete (SCC) and conventional concrete (CC) is in fresh state, is the high fluidity at first and the need for vibration at second, but in hardened state, both concretes must comply with the resistance specified, in addition to securing the safety and functionality for which it was designed. This article describes the tests and results for shrinkage and creep at some medium strength Self Compacting Concrete with added sand (SCC-MSs) and two types of cement. The research was conducted at the Laboratorio de Tecnología de Estructuras (LTE) of the Universitat Politécnica de Catalunya (UPC), in dosages of 200 liters; with the idea of evaluating the effectiveness of implementation of these new concretes at elements designed with conventional concrete (CCs).

012061
The following article is Open access

, and

Mortar used to repair is sometimes exposed to drying state in early ages after construction and a few days later water is sprayed frequently on the surface of the mortar in order to prevent cracks. This research studied on shrinkage characteristic of mortar subjected to drying conditions like this. The result showed that the water spraying on the mortar after initial drying did not have any effect to prevent shrinkage, but increased. And it also showed when various chemical agents are mixed and used in watersprayingit had the prevention effect on shrinkage. This report was to understand this kind of phenomenon and clarify the mechanism. In addition, based on the results, the new spraying agent was developed to reduce drying shrinkage.

012062
The following article is Open access

Cracks and delaminations are the common structural degradation mechanisms studied recently using numerous methods and techniques. Among them, numerical methods based on FEM analyses are in widespread commercial use. The scope of these methods has focused i.e. on energetic approach to linear elastic fracture mechanics (LEFM) theory, encompassing such quantities as the J-integral and the energy release rate G. This approach enables to introduce damage criteria of analyzed structures without dealing with the details of the physical singularities occurring at the crack tip. In this paper, two numerical methods based on LEFM are used to analyze both isotropic and orthotropic specimens and the results are compared with well-known analytical solutions as well as (in some cases) VCCT results. These methods are optimized for industrial use with simple, rectangular meshes. The verification is made based on two dimensional mode partitioning.

012063
The following article is Open access

, and

The traffic requirements on the existing infrastructure are rising still. This coupled with its age puts a strain on it. This is especially problematic for old steel bridges. Higher and more frequent loads will lead to development of fatigue damage to those structures. This causes an issue for the infrastructure owners as the existing methods of repair are difficult, time consuming and expensive. So there is a need to find some easier alternatives. One of such can be the use of carbon fibre reinforced polymers (CFRP). They are being successfully used for repairs and strengthening of concrete structures however their use with steel is still relatively new.

The purpose of this work is to establish how does a deteriorated steel reinforced with CFRP behave under fatigue loading. To test this a series of experiments was designed. With the help of a preliminary numerical study the dimensions of the specimens and the applied loading was established. There are two sets of specimens. With both we are using mild steel and each set has different level of surface deterioration (corrosion pits or corrosion holes). The specimens are reinforced using hand laid wet layup composites. They are subjected to fatigue loading and the difference between the fatigue life reinforced and unreinforced specimens is observed. Based on the preliminary study, it is expected, that the reinforcement will prolong the life expectancy by half.

The 2nd International Symposium on Innovative Carbon and Carbon Based Materials

012064
The following article is Open access

, , , , and

In this work, we present two types of hybrid materials. The first hybrid material is a combination of carbon nanotubes (CNT) with HfO2 nanoparticles. The latter constituent on its own exhibits unusual visible photoluminescence, which is in stark contrast to non-luminescent HfO2 in the bulk form. The small size of HfO2 nanoparticles, 2.6 nm in average, suggests surface-defect related origin of the observed photoluminescence. The other hybrid material is CNT-ZnO with the embedded ZnO nanoparticles ranging from 50nm to 100nm in size. ZnO represents a direct bandgap semiconductor renowned as highly-luminescent in a broad spectral range. The visible region is attributed to luminescence involving deep-level defects, and hence depends on the synthesis conditions. In this study we compare the morphology of the two hybrid materials with transmission electron microscopy. We further compare the photoluminescence properties and the influence of the CNT coupling on enhancing or suppressing defect related emissions. Finally, we present a novel hybrid material CNT-HfO2 capable of producing a photocurrent under zero bias.

012065
The following article is Open access

, , , , , and

Fabrication a composite materials based on silicon carbide (SiC) reinforced with multi-walled carbon nanotubes (MWCNTs) with addition of magnesium alumina spinel MgAl2O4, and yttrium aluminum garnet Y3Al5O12 by spark plasma sintering are presented.

Two series of composites differing by the particle size of starting SiC were prepared. Mechanical characteristics of composites including microhardness, fracture toughness and flexural strength are determined.