This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 15

Number 1, January 2021

Previous issue Next issue

Editorial

Note

011001

, , and

Infectious pathogens are a global issue. Global air travel offers an easy and fast opportunity not only for people but also for infectious diseases to spread around the world within a few days. Also, large public events facilitate increasing infection numbers. Therefore, rapid on-site screening for infected people is urgently needed.

Due to the small size and easy handling, ion mobility spectrometry coupled with a multicapillary column (MCC-IMS) is a very promising, sensitive method for the on-site identification of infectious pathogens based on scents, representing volatile organic compounds (VOCs).

The purpose of this study was to prospectively assess whether identification of Influenza-A-infection based on VOCs by MCC-IMS is possible in breath. Nasal breath was investigated in 24 consecutive persons with and without Influenza-A-infection by MCC-IMS. In 14 Influenza-A-infected patients, infection was proven by PCR of nasopharyngeal swabs. Four healthy staff members and six patients with negative PCR result served as controls. For picking up relevant VOCs in MCC-IMS spectra, software based on cluster analysis followed by multivariate statistical analysis was applied. With only four VOCs canonical discriminant analysis was able to distinguish Influenza-A-infected patients from those not infected with 100% sensitivity and 100% specificity.

This present proof-of-concept-study yields encouraging results showing a rapid diagnosis of viral infections in nasal breath within 5 min by MCC-IMS. The next step is to validate the results with a greater number of patients with Influenza-A-infection as well as other viral diseases, especially COVID-19.

Registration number at ClinicalTrials.gov NCT04282135.

Topical Review

014001
The following article is Open access

, , and

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for COVID-19 pneumonia, a pandemic that precipitates huge pressures on the world's social and economic systems. Disease severity varies among individuals. SARS-CoV-2 infection can be associated with e.g. flu-like symptoms, dyspnoea, severe interstitial pneumonia, acute respiratory distress syndrome, multiorgan dysfunction, and generalized coagulopathy.

Nitric oxide (NO), is a small signal molecule that impacts pleiotropic functions in human physiology, which can be involved in the significant effects of COVID-19 infection. NO is a neurotransmitter involved in the neural olfactory processes in the central nervous system, and some infected patients have reported anosmia as a symptom. Additionally, NO is a well-known vasodilator, important coagulation mediator, anti-microbial effector and inhibitor of SARS-CoV replication.

Exhaled NO is strongly related to the type-2 inflammatory response found in asthma, which has been suggested to be protective against SARS-CoV-2 infection. Several reports indicate that the use of inhaled NO has been an effective therapy during this pandemic since the ventilation-perfusion ratio in COVID-19 patients improved afterwards and they did not require mechanical ventilation.

The aim of this mini-review is to summarize relevant actions of NO that could be beneficial in the treatment of COVID-19.

Papers

016001

, and

Characterization of nonvolatile molecules in exhaled breath particles can be used for respiratory disease monitoring and diagnosis. Conventional methods for the collection of nonvolatile molecules in breath heavily rely on the physical properties of exhaled breath particles. Strategies taking advantage of their chemical properties have not yet been explored. In the present study, we developed a column system in which the surface chemistry between organic nonvolatile molecules and octadecyl carbon chain was exploited for the comprehensive collection of metabolites, lipids, and proteins. We demonstrated that the collection system had the capture efficiency of 99% and the capacity to capture representative nonvolatile molecules. The collection system was further evaluated using human subjects and proteins collected from human exhaled breath were characterized and identified using gel electrophoresis and bottom-up proteomics. The identified 303 proteins from mass spectrometry were further searched against reported bronchoalveolar lavage fluid proteomes and it was shown that 60 proteins have the tissue origin of lower respiratory airways. In summary, we demonstrate that our collection system can collect nonvolatile molecules from human exhaled breath in an efficient and comprehensive manner and has the potential to be used for the study of respiratory diseases.

016002

, , , , , and

In the current pilot study we aimed to determine whether breath analysis could be used to help recognise intra-abdominal infection, using acute appendicitis as an exemplar condition.

Our study included 53 patients (aged 18–88 years) divided into three groups: appendix group, 26 (13 male) patients suffering from acute appendicitis; control group 20 (seven male) patients undergoing elective abdominal surgery; normal group, seven patients who were clinically diagnosed with appendicitis, but whose appendix was normal on histological examination. Samples of breath were analysed using ion molecule reaction mass spectroscopy measuring the concentration of volatile compounds (VCs) with molecular masses 27–123. Intraperitoneal gas samples were collected from a subset of 23 patients (nine diagnosed with acute appendicitis).

Statistically significant differences in the concentration of VCs in breath were found between the three groups. Acetone, isopropanol, propanol, butyric acid, and further unassigned VCs with molecular mass/charge ratio (m/z) 56, 61 and 87 were all identified with significant endogenous contributions. Principle component analysis was able to separate the control and appendicitis groups for seven variables: m/z = 56, 58, 59, 60, 61, 87 and 88. Comparing breath and intraperitoneal samples showed significant relationships for acetone and the VC with m/z = 61.

Our data suggest that it may be possible to help diagnose acute appendicitis by breath analysis; however, factors such as length of starvation remain to be properly accounted for and the management or mitigation of background levels needs to be properly addressed, and larger studies relating breath VCs to the causative organisms may help to highlight the relative importance of individual VCs.

016003

, , , , , , , , and

Inflammation may alter volatile organic compounds (VOCs) in exhaled breath. We therefore used ion mobility spectrometry (IMS) to evaluate exhaled breath components in two non-infectious inflammatory models.

Fifty male Sprague Dawley rats were anesthetized and ventilated for 24 h. Five treatments were randomly assigned: (1) lipopolysaccharide low dose [5 mg/kg]; (2) lipopolysaccharide high dose [10 mg/kg]; (3) alpha toxin low dose [40 µg/kg]; (4) alpha toxin high dose [80 µg/kg]; and, (5) NaCl 0.9% as control group. Gas was sampled from the expiratory line of the ventilator every 20 min and analyzed with IMS combined with a multi-capillary column. VOCs were identified by comparison with an established database. Survival analysis was performed by log-rank test, other analyses by one-way or paired ANOVA-tests and post-hoc analysis according to HolmSidak.

Rats given NaCl and low-dose alpha toxin survived 24 h. The median survival time in alpha toxin high-dose group was 23 (95%-confidence interval (CI): 21, 24) h. In contrast, the median survival time in rats given high-dose lipopolysaccharide was 12 (95% CI: 9, 14) and only 13 (95% CI: 10, 16) h in those given high-dose lipopolysaccharide. 73 different VOCs were detected, of which 35 were observed only in the rats, 38 could be found both in the blank measurements of ventilator air and in the exhaled air of the rats. Forty-nine of the VOCs were identifiable from a registry of compounds. Exhaled volatile compounds were comparable in each group before injection of lipopolysaccharide and alpha toxin. In the LPS groups, 1-pentanol increased and 2-propanol decreased. After alpha toxin treatment, 1-butanol and 1-pentanol increased whereas butanal and isopropylamine decreased.

Induction of a non-infectious systemic inflammation (niSI) by lipopolysaccharide and alpha toxin changes VOCs in exhaled breath. Exhalome analysis may help identify niSI.

016004
The following article is Open access

, , , , , , , , , et al

Radiation dose is important in radiotherapy. Too little, and the treatment is not effective, too much causes radiation toxicity. A biochemical measurement of the effect of radiotherapy would be useful in personalisation of this treatment. This study evaluated changes in exhaled breath volatile organic compounds (VOC) associated with radiotherapy with thermal desorption gas chromatography mass-spectrometry followed by data processing and multivariate statistical analysis. Further the feasibility of adopting gas chromatography ion mobility spectrometry for radiotherapy point-of-care breath was assessed. A total of 62 participants provided 240 end-tidal 1 dm3 breath samples before radiotherapy and at 1, 3, and 6 h post-exposure, that were analysed by thermal-desorption/gas-chromatography/quadrupole mass-spectrometry. Data were registered by retention-index and mass-spectra before multivariate statistical analyses identified candidate markers.

A panel of sulfur containing compounds (thio-VOC) were observed to increase in concentration over the 6 h following irradiation. 3-methylthiophene (80 ng.m−3 to 790 ng.m−3) had the lowest abundance while 2-thiophenecarbaldehyde(380 ng.m−3 to 3.85 μg.m−3) the highest; note, exhaled 2-thiophenecarbaldehyde has not been observed previously. The putative tumour metabolite 2,4-dimethyl-1-heptene concentration reduced by an average of 73% over the same time. Statistical scoring based on the signal intensities thio-VOC and 3-methylthiophene appears to reflect individuals' responses to radiation exposure from radiotherapy. The thio-VOC are hypothesised to derive from glutathione and Maillard-based reactions and these are of interest as they are associated with radio-sensitivity. Further studies with continuous monitoring are needed to define the development of the breath biochemistry response to irradiation and to determine the optimum time to monitor breath for radiotherapy markers. Consequently, a single 0.5 cm3 breath-sample gas chromatography-ion mobility approach was evaluated. The calibrated limit of detection for 3-methylthiophene was 10 μg.m−3 with a lower limit of the detector's response estimated to be 210 fg.s−1; the potential for a point-of-care radiation exposure study exists.

016005

, , and

The correlation between blood glucose and breath acetone suggested by several studies has spurred the research community to develop an electronic (e-nose) for diabetes diagnosis. Herein, we have validated the in-house graphene based sensors with known acetone concentration. The sensor performances such as sensitivity, selectivity and stability (SSS) suggested their potential use in acquiring breath print. The 10% higher mean saturation voltage for 30 diabetic subjects ensured a discrimination accuracy of 65% with a positive correlation (r = 0.88) between biochemically measured and non-invasively estimated (glycated haemoglobin) HbA1c. For the improvement of classification rate, thirteen features associated with the adsorption kinetics were extracted from the breathprint from each of the three sensors. The features given as an input to the Naïve Bayes classification model fetched an accuracy of 68.33%. Elimination of redundant features by distinction index and one-R feature ranking algorithm results in Naïve Bayes algorithm with improved performances. The success rate has improved to 70% using the subset of features ranked by one-R algorithm. These results indicated the use of feature ranking algorithms and prediction models for the improvement in accuracy of our in-house fabricated graphene based sensors.

016006

, , , , , , , and

Exhaled breath acetone (BrAce) was investigated during and after submaximal aerobic exercise as a volatile biomarker for metabolic responsiveness in high and lower-fit individuals in a prospective cohort pilot-study. Twenty healthy adults (19–39 years) with different levels of cardiorespiratory fitness (VO2peak), determined by spiroergometry, were recruited. BrAce was repeatedly measured by proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS) during 40–55 min submaximal cycling exercise and a post-exercise period of 180 min. Activity of ketone and fat metabolism during and after exercise were assessed by indirect calorimetric calculation of fat oxidation rate and by measurement of venous β-hydroxybutyrate (βHB). Maximum BrAce ratios were significantly higher during exercise in the high-fit individuals compared to the lower-fit group (t-test; p= 0.03). Multivariate regression showed 0.4% (95%-CI = −0.2%–0.9%, p= 0.155) higher BrAce change during exercise for every ml kg−1 min−1 higher VO2peak. Differences of BrAce ratios during exercise were similar to fat oxidation rate changes, but without association to respiratory minute volume. Furthermore, the high-fit group showed higher maximum BrAce increase rates (46% h−1) in the late post-exercise phase compared to the lower-fit group (29% h−1). As a result, high-fit young, healthy individuals have a higher increase in BrAce concentrations related to submaximal exercise than lower-fit subjects, indicating a stronger exercise-related activation of fat metabolism.

016007

, , , , , , , , , et al

Chronic rhinosinusitis with nasal polyps (CRSwNP) is a complex inflammatory disease highly impacting patient's quality of life, and associated with lower airway inflammation often evolving into asthma. Exhaled nitric oxide (FENO) is a non-invasive tool to assess Type 2 airway inflammation and its extended analysis allows to differentiate between alveolar concentration (CalvNO) and bronchial output (JawNO). It is also possible to assess the sino-nasal production of nitric oxide (nNO). We studied extended nitric oxide production in patients with CRSwNP with or without associated asthma. Consecutive adult patients with CRSwNP, with or without asthma, and 15 healthy controls were enrolled. Exclusion criteria were: smoking, uncontrolled asthma, recent upper or lower airway infections and oral corticosteroid therapy in the 4 weeks preceding clinical evaluation. Patients' demographic and clinical data were collected; patients underwent pulmonary function tests and extended nitric oxide analysis including nasal nNO assessment. A total of 125 subjects were enrolled (15 healthy controls; 69 with CRSwNP and asthma, and 41 with CRSwNP only). FENO, JawNO and CalvNO values were higher, while nNO was lower, in all patients with CRSwNP compared to healthy controls; no difference was found in CalvNO between patients with concomitant asthma and non-asthmatic subjects; in asthmatic patients, FENO and JawNO were significantly higher, while nNO values was lower, compared to patients with CRSwNP only. These results suggest that CRSwNP could be the first manifestation of a more complex systemic inflammatory pathology driven by Type 2 inflammation. An 'inflammatory gradient' hypothesis could describe a pattern of inflammation in CRSwNP patients that starts distally in the alveoli. Finally, our study indirectly reinforces the concept that novel biological drugs could become valid therapeutic options for nasal polyposis.

016008

, , , , and

Fractional exhaled nitric oxide (FENO) is a marker of airway inflammation. Measuring FENO at multiple flow rates enables calculation of NO parameters: bronchial NO output (JawNO), bronchial wall (CawNO) and alveolar (CANO) NO concentrations, and bronchial diffusion factor of NO (DawNO). FENO is known to rapidly reduce after the commencement of inhaled corticosteroid (ICS) treatment. However, little is known on the effect of ICS on the other NO parameters. We assessed (1) the onset of action of ICS treatment on the NO parameters and (2) whether the changes in bronchial NO output are due to changes in bronchial wall NO concentration or diffusion factor. FENO and other NO parameters were measured at baseline and after 1, 3 and 7 d of treatment with inhaled fluticasone propionate 250 μg b.i.d. in 23 allergic children with a history of asthma-like symptoms. There was a decrease in JawNO (from 680 (244/1791) (median (1st/3rd quartile)) to 357 (165/753) pl s−1, p < 0.001) and FENO50( from 13.8 (7.5/35) to 8.3 (5.36/17.0) ppb, p < 0.001) in 3 d from the first dose of ICS. Also, CawNO seemed to reduce after 3 d (from 171 (89/328) to 79 (54/157) ppb, p = 0.041), while DawNO remained unchanged. Furthermore, CANO reduced during the 7 d treatment (from 3.0 (2.0/5.0) to 2.3 (1.9/2.6) ppb, p = 0.004). ICS treatment reduced FENO50 and JawNO rapidly and the decline was caused by decreased bronchial wall NO concentration while bronchial NO diffusion factor remained unchanged. These findings suggest that CawNO could be a more specific marker of airway inflammation and treatment response than JawNO or FENO50, which are both determined also by DawNO that seems to be resistant to the treatment with ICS.

016009

, , and

The physiological roles of isoprene, which is one of the many endogenous volatile organic compounds contained in exhaled breath, are not well understood. In recent years, exhaled isoprene has been associated with the skeletal muscle. Some studies have suggested that the skeletal muscle produces and/or stores some of the isoprene. However, the evidence supporting this association remains sparse and inconclusive. Furthermore, aging may affect breath isoprene response because of changes in the skeletal muscle quantity and quality. Therefore, we investigated the association between the breath isoprene excretion ($\dot{V}_{\mathrm{isoprene}}$) and skeletal muscle mass in young (n = 7) and old (n = 7) adults. The participants performed an 18 min cycling exercise after a 3 min rest. The workload corresponded to an intensity of 30% of the heart rate reserve, as calculated by the Karvonen formula. The exhaled breath of each participant was collected during the exercise test. We calculated $\dot{V}_{\mathrm{isoprene}}$ from the product minute ventilation and isoprene concentration and, then, investigated the relationships between $\dot{V}_{\mathrm{isoprene}}$ and muscle mass, which was measured by multi-frequency bioelectrical impedance analysis. Importantly, muscle mass persisted as a significant determinant that explained the variance in $\dot{V}_{\mathrm{isoprene}}$ at rest even after adjusting for age. Furthermore, the muscle mass was a significant determinative factor for $\dot{V}_{\mathrm{isoprene}}$ response during exercise, regardless of age. These data indicated that skeletal muscle mass could be one of the determinative factors for $\dot{V}_{\mathrm{isoprene}}$ during rest and response to exercise. Thus, we suggest that the skeletal muscle may play an important role in generating and/or storing some of the endogenous isoprene. This new knowledge will help to better understand the physiological functions of isoprene in humans (Approval No. 20190079).

016010

, , , , , , , and

Smokers are exposed to more than 6000 (toxic) smoke components including volatile organic compounds (VOCs). In this study VOCs levels in headspace of blood and exhaled breath, in the mainstream smoke of three types of cigarettes of one brand varying in declared tar, nicotine and carbon monoxide (TNCO) yields are investigated. The objective was to identify whether VOC levels correlate with TNCO yields of cigarettes smoked according to ISO 3308. Our data show that smoking regular and low-TNCO cigarettes result in comparable levels of VOCs in blood and exhaled breath. Hence, declared TNCO-yields as determined with the ISO 3308 machine smoking protocol are irrelevant for predicting VOC exposure upon human smoking.

Venous blood and exhaled breath were sampled from 12 male volunteers directly before and 10 min after smoking cigarettes on 3 d (day 1 Marlboro Red (regular), day 2 Marlboro Prime (highly ventilated, low-TNCO), day 3 Marlboro Prime with blocked filter ventilation (taped)). Upon smoking, the levels of toluene, ethylbenzene, m/p-xylene, o-xylene, and 2,5-dimethylfuran in both headspace of venous blood and exhaled breath increase within the same range for all three cigarette types smoked. However, no strong correlation was found between VOC levels in exhaled breath and VOC levels in headspace of blood because of variations between the individual smoking volunteers. More research is required in order to use exhaled breath sampling as a non-invasive quantitative marker for volatile toxicants from cigarette smoke exposure of different brands.

016011

, , , , , , and

Pneumonia is a significant risk for critically ill, mechanically ventilated (CIMV) patients. Diagnosis of pneumonia generally requires a combination of clinician-guided diagnoses and clinical scoring systems. Exhaled breath condensate (EBC) can be safely collected non-invasively from CIMV patients. Hundreds of biomarkers in EBC are associated with acute disease states, including pneumonia. We evaluated cytokines in EBC from CIMV patients and hypothesized that these biomarkers would correlate with disease severity in pneumonia, sepsis, and death. EBC IL-2 levels were associated with chest radiograph severity scores (odds ratio = 1.68; 95% confidence interval = 1.09–2.60; P = 0.02). EBC TNF-α levels were also associated with pneumonia (odds ratio = 3.20; 95% confidence interval = 1.19–8.65; P = 0.02). The techniques and results from this study may be useful for all mechanically ventilated patients.

016012

, , , , , , , , , et al

In children with asthma, the responsiveness of inhaled corticosteroids (ICS) is depended on asthma endotype and phenotype. This study aimed to describe the clinical and biological characteristics, and its correlation with polymorphism of rs28364072 in FCER2 of asthmatic children. This work aimed to study the correlation between fractional concentration of exhaled nitric oxide (FENO) level and rs28364072 polymorphism of FCER2 gene with ICS responsiveness and disease control in children with asthma. This study was a prospective and descriptive study. All clinical characteristics, FENO, blood eosinophil counts (BEC), skin prick test (SPT), total IgE, asthma control test, and FCER2 gene polymorphism were performed for each patient. One hundred and seven asthmatic children who were over 5 years old (9.2 ± 2.6), were included. Patients with FENO > 20 ppb had higher percentage of positive SPT, total IgE level, and BEC (89.2 vs 80.0%, 851.1 vs 656.9 UI ml−1, and 785 ± 576 G L−1 vs 425 ± 364 G L−1; respectively). Among them, there were 54.2% of homozygous TT, 36.4% of heterozygous TC, and 9.4% of homozygous CC of rs28364072 polymorphism in FCER2. The percentage of patients with controlled asthma was increasing after 1 month and 3 months (47.1% and 58.8%; respectively). During the study, the ICS was decreasing as indicated by asthma control (348 ± 118 mcg at 1st month vs 329 ± 119 mcg at 3rd month; p < 0.05). CC genotype had the lowest level of increasing FEV1 compared to that in genotype TC and TT (8.4% vs 8.7% and 27.1%; p > 0.05 and p < 0.05; respectively). The percentage of polymorphism in rs28364072 of FCER2 was significant higher in patients with controlled asthma compared to uncontrolled asthma. Asthmatic children with high FENO and rs28364072 polymorphism in FCER2 gene are good responders to ICS; however, asthmatic children with homozygous variant CC of rs28364072 are poorly responsive to ICS.

016013

, , , and

Breath analysis has emerged as an experimental method of non-invasive screening of gastric cancer and identification of individuals suitable for confirmatory, diagnostic upper gastrointestinal endoscopy. We aimed to evaluate the accuracy and applicability of breath analysis for gastric cancer detection in adults.

We searched MEDLINE, EMBASE, BIOSIS, CENTRAL, and Compendex up to 27 September 2020 for original studies analysing exhaled breath to detect gastric cancer in patients. Summary sensitivity and specificity analyses were obtained using a hierarchical bivariate method. Non-quantitative results were descriptively summarized. Risk of bias was assessed using the QUADAS-2 tool. This study protocol was pre-registered in PROSPERO (CRD42020139422).

Twenty-four studies were included. Within these, breath analysis technologies most commonly used were mass spectrometry (MS)-based methods; other methods included volatile organic compound sensors and silicon nanowire field effect transistors. Fourteen studies (total n = 3028) involving all technologies reported quantitative results, with sensitivities ranging from 67%–100% and specificities from 71%–98%. The summary sensitivity across six studies utilizing MS-based breath analysis methods was 82.4% (95% CI: 78%–86%); summary specificity was 91.3% (95% CI: 83%–96%). Based on these values, we estimated that screening with MS-based breath tests could lower the number needed to screen (NNS) by more than eight-fold in the 15 countries with the highest prevalence of gastric cancer.

Breath analysis is a promising method for gastric cancer detection with good diagnostic performance and potential to decrease the NNS for endoscopy-based gastric cancer detection. However, due to the heterogeneity of breath analysis technologies, rigorous studies with standardized, reproducible methods are needed to evaluate the clinical applicability of these technologies.

016014

, , , , and

Breath analysis is an alternative approach for disease diagnosis and for monitoring therapy. The lack of standardized procedures for collecting and analysing breath samples currently limits its use in clinical practice. In order to overcome this limitation, the 'Peppermint Consortium' was established within the breath community to carry out breath wash-out experiments and define reference values for a panel of compounds contained in the peppermint oil capsule. Here, we present a needle trap micro-extraction technique coupled with gas chromatography and tandem mass spectrometry for a rapid and accurate determination of alpha-pinene, beta-pinene, limonene, eucalyptol, menthofuran, menthone, menthol and menthyl acetate in mixed breath samples. Detection limits between 1 and 20 pptv were observed when 25 ml of a humidified standard gas mixture were loaded into a needle trap device at a flow rate of 10 ml min−1. Inter- and intra-day precisions were lower than 15%, thus confirming the reliability of the assay. Our procedure was used to analyse breath samples taken from a nominally healthy volunteer who was invited to swallow a 200 mg capsule of peppermint oil. Six samples were collected at various times within 6 h of ingestion. Analyte concentrations were not affected by the sampling mode (i.e. mixed vs. end-tidal fraction), whereas respiratory rate and exhalation flow rate values slightly influenced the concentration of the target compounds in breath samples.

016015
The following article is Open access

, , , , , , , , , et al

Particulate air pollution is associated with adverse respiratory effects and is a major factor for premature deaths. In-vitro assays are commonly used for investigating the direct cytotoxicity and inflammatory impacts due to particulate matter (PM) exposure. However, biological tests are often labor-intensive, destructive and limited to endpoints measured offline at single time points, making it impossible to observe the progression of cell response upon exposure. Here we explored the potential of a high-resolution proton transfer reaction mass spectrometer (PTR-MS) to detect the volatile organic compounds (VOCs) emitted by human bronchial epithelial cells (BEAS-2B) upon exposure to PM. Cells were exposed to single components (1,4-naphthoquinone and Cu(II)) known to induce oxidative stress. We also tested filter extracts of aerosols generated in a smog chamber, including fresh and aged wood burning emissions, as well as α-pinene secondary organic aerosol (SOA). We found that 1,4-naphthoquinone was rapidly internalized by the cells. Exposing cells to each of these samples induced the emission of VOCs, which we tentatively assigned to acetonitrile, benzaldehyde and dimethylbenzaldehyde, respectively. Emission rates upon exposure to fresh and aged OA from α-pinene oxidation and from biomass burning significantly exceeded those observed after exposure to similar doses of Cu(II), a proxy for transition metals with high oxidative potential. Emission rates of biomarkers from cell exposure to α-pinene SOA exhibited a statistically significant, but weak dose dependence. The emission rates of benzaldehyde scaled with cell death, estimated by measuring the apical release of cytosolic lactate dehydrogenase. Particle mass doses delivered to the BEAS-2B cells match those deposited in the human tracheobronchial tract after several hours of inhalation at elevated ambient air pollution. The results presented here show that our method has the potential to determine biomarkers of PM induced pulmonary damage in toxicological and epidemiological research on air pollution.

016016

, , , , , , and

Introduction. Sarcoidosis is a chronic granulomatous disease of unknown aetiology with a variable clinical course and prognosis. There is an urgent need to identify new and novel biomarkers to help differentiate between clinical phenotypes and guide clinical decisions with respect to commencing and monitoring treatment. Across the spectrum of respiratory disease there has been a growing interest in the role of breath-based biomarkers given their non-invasive nature and ability to repeat sampling with ease for serial monitoring. Soluble interleukin-2 receptor (sIL2R) in bronchoalveolar lavage and serum correlates with disease activity in sarcoidosis; however, no previous study has evaluated sIL2R in exhaled breath. Objectives. The main aim of this cross-sectional case-controlled pilot study was to determine the concentration of sIL2R in exhaled breath condensate (EBC) from patients with recently diagnosed sarcoidosis compared to healthy volunteers and to establish, if present, if this correlated with markers of disease activity, pulmonary function tests and serological markers used in current clinical practice. Methods. Paired serum and EBC samples were collected from twelve treatment naïve patients with histologically proven sarcoidosis diagnosed during the previous six months and compared to twelve healthy volunteers matched for age and gender. Results. Mean concentration of serum sIL2R was significantly elevated in participants with sarcoidosis compared to healthy controls (1584.3 ± 489.1 versus 874.2 ± 235.7 pg mL−1; p = 0.001). Soluble interleukin-2 receptor in EBC was detectable in only five subjects including three participants with sarcoidosis. The range of sIL2R across all five samples was 148.0–288.2 pg mL−1 with the two highest concentrations observed in two participants with sarcoidosis. There was no significant difference observed in EBC sIL2R between sarcoidosis and healthy controls (p = 0.71). No apparent correlations were observed between EBC sIL2R and radiological stage, pulmonary function tests or serological markers. Conclusion. Soluble interleukin-2 receptor is detectable in EBC; however, the findings from our study do not support its role as a diagnostic marker in sarcoidosis. Further research is required to evaluate its prognostic utility.

016017

, , , , , , , , , et al

Exhaled breath analysis has emerged as a promising non-invasive method for diagnosing lung cancer (LC), whereas reliable biomarkers are lacking. Herein, a standardized and systematic study was presented for LC diagnosis, classification and metabolism exploration. To improve the reliability of biomarkers, a validation group was included, and quality control for breath sampling and analysis, comprehensive pollutants analysis, and strict biomarker screening were performed. The performance of exhaled breath biomarkers was shown to be excellent in diagnosing LC even in early stages (stage I and II) with surpassing 0.930 area under the receiver operating characteristic (ROC) curve (AUC), 90% of sensitivity and 88% of specificity both in the discovery and validation analyses. Meanwhile, in these two groups, diagnosing subtypes of LC attained AUCs over 0.930 and reached 1.00 in the two subtypes of adenocarcinomas. It is demonstrated that the metabolism changes in LC are possibly related to lipid oxidation, gut microbial, cytochrome P450 and glutathione S-transferase, and glutathione pathways change in LC progression. Overall, the reliable biomarkers contribute to the clinical application of breath analysis in screening LC patients as well as those in early stages.

Special Issue Articles

Special Issue Paper

017101
The following article is Open access

, , , , , , , and

Toward Clinical Applications: A Special Issue on Pilot Studies Toward Clinical Applications: A Special Issue on Pilot Studies

Ketone testing is an important element of the self-management of illness in type 1 diabetes. The aim of the present study was to see if a breath test for acetone could be used to predict quantitatively the levels of the ketone betahydroxybutyrate in the blood of those with type 1 diabetes, and thus be used as an alternative to capillary testing for ketones. Simultaneous capillary ketones and breath acetone were measured in 72 individuals with type 1 diabetes attending a diabetes clinic and on 9 individuals admitted to hospital with diabetic ketoacidosis. Capillary blood measurements ranged from 0.1 mmol l−1 (the lower limit of the ketone monitor) to over 7 mmol l−1, with breath acetone varying between 0.25 and 474 parts per million by volume. The two variables were found to be correlated and allowed modelling to be carried out which separated breath acetone levels into three categories corresponding to normal, elevated and 'at risk' levels of blood ketones. The results on this limited set of participants suggest that a breath acetone test could be a simple, non-invasive substitute for capillary ketone measurement in type 1 diabetes.

017102
The following article is Open access

, , and

Toward Clinical Applications: A Special Issue on Pilot Studies Toward Clinical Applications: A Special Issue on Pilot Studies

Background. In the human body, volatile organic compounds (VOCs) are produced by different tissues then secreted in different body fluids and subsequently excreted. Here we explore a non-invasive method for the detection of liver, prostate and bladder cancers. Methods. We recruited 140 cases. There were 31 hepatocellular carcinomas (HCC), 62 prostate carcinomas, 29 bladder carcinomas and 18 non-cancer cases. Male to female ratio was 5:1 and mean age was 72 years. Urinary VOCs were detected by applying solid-phase microextraction (SPME) technique. Results. The sensitivity for detection of HCC with normal alpha fetoprotein (AFP) was 68% (SE 0.06, 95% CI 0.54 to 0.81 and P < 0.005). The VOCs sensitivity in the detection of HCC cases with raised AFP was 83%. (SE 0.05, 95% CI 0.73 to 0.93 and P < 0.0001). The VOCs sensitivity for prostate cancer detection was 70% (SE 0.049, 95% CI 0.60 to 0.79 and P < 0.0002) and sensitivity for bladder cancer detection was 81% (SE 0.052, 95% CI 0.70 to 0.91 and P < 0.0001). Conclusions. SPME urinary VOCs analysis was able to differentiate between controls and each of hepatocellular, prostate and bladder cancers. This suggests that urinary VOCs are cancer specific and could potentially be used as a diagnostic method.