This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Papers

P03021

, and

The co-ordinate metrology has been extensively researched for its outstanding advantages in measurement range and accuracy. The alignment of different measurement systems is usually achieved by integrating local coordinates via common points before measurement. The alignment errors would accumulate and significantly reduce the global accuracy, thus need to be minimized. In this thesis, a modified common points method (MCPM) is proposed to combine different traceable system errors of the cooperating machines, and optimize the global accuracy by introducing mutual geometric constraints. The geometric constraints, obtained by measuring the common points in individual local coordinate systems, provide the possibility to reduce the local measuring uncertainty whereby enhance the global measuring certainty. A simulation system is developed in Matlab to analyze the feature of MCPM using the Monto-Carlo method. An exemplary setup is constructed to verify the feasibility and efficiency of the proposed method associated with laser tracker and indoor iGPS systems. Experimental results show that MCPM could significantly improve the alignment accuracy.

P03020

At this time, the design of the International Linear Collider (ILC) is optimized for e+e collisions; the photon collider (γ γ and ≥) is considered as an option. Unexpected discoveries, such as the diphoton excess Ϝ(750) seen at the LHC, could strongly motivate the construction of a photon collider. In order to enable the γ γ collision option, the ILC design should be compatible with it from the very beginning. In this paper, we discuss the problem of the beam crossing angle. In the ILC technical design [1], this angle is 14 mrad, which is just enough to provide enough space for the final quadrupoles and outgoing beams. For γ γ collisions, the crossing angle must be larger because the low-energy electrons that result from multiple Compton scattering get large disruption angles in collisions with the opposing electron beam and some deflection in the solenoidal detector field. For a 2E0=500 GeV collider, the required crossing angle is about 25 mrad. In this paper, we consider the factors that determine the crossing angle as well as its minimum permissible value that does not yet cause a considerable reduction of the γ γ luminosity. It is shown that the best solution is to increase the laser wavelength from the current 1 μm (which is optimal for 2E0=500 GeV) to 2 μm as this makes possible achieving high γ γ luminosities at a crossing angle of 20 mrad, which is also quite comfortable for e+e collisions, does not cause any degradation of the e+e luminosity and opens the possibility for a more energetic future collider in the same tunnel (e.g., CLIC). Moreover, the 2 μm wavelength is optimal for a 2E0 = 1 TeV; collider, e.g., a possible ILC energy upgrade. Please consider this paper an appeal to increase the ILC crossing angle from 14 to 20 mrad.

P03019

, and

The CosmicWatch Desktop Muon Detector is a self-contained, hand-held cosmic ray muon detector that is valuable for astro/particle physics research applications and outreach. The material cost of each detector is under $100 and it takes a novice student approximately four hours to build their first detector. The detectors are powered via a USB connection and the data can either be recorded directly to a computer or to a microSD card. Arduino- and Python-based software is provided to operate the detector and an online application to plot the data in real-time. In this paper, we describe the various design features, evaluate the performance, and illustrate the detectors capabilities by providing several example measurements.

P03018

and

Pulse shape discrimination using CsI(Tl) scintillators to perform neutral hadron particle identification is explored with emphasis towards application at high energy electron-positron collider experiments. Through the analysis of the pulse shape differences between scintillation pulses from photon and hadronic energy deposits using neutron and proton data collected at TRIUMF, it is shown that the pulse shape variations observed for hadrons can be modelled using a third scintillation component for CsI(Tl), in addition to the standard fast and slow components. Techniques for computing the hadronic pulse amplitudes and shape variations are developed and it is shown that the intensity of the additional scintillation component can be computed from the ionization energy loss of the interacting particles. These pulse modelling and simulation methods are integrated with GEANT4 simulation libraries and the predicted pulse shape for CsI(Tl) crystals in a 5 × 5 array of 5 × 5 × 30 cm3 crystals is studied for hadronic showers from 0.5 and 1 GeV/c KL0 and neutron particles. Using a crystal level and cluster level approach for photon vs. hadron cluster separation we demonstrate proof-of-concept for neutral hadron detection using CsI(Tl) pulse shape discrimination in high energy electron-positron collider experiments.

P03017

, , , , , and

Supercritical CO2 has the characteristics of low viscosity, high diffusion and zero surface tension, and it is considered as a new fluid for non-polluting and non-aqueous fracturing which can be used for shale gas development. Fracturing refers to a method of utilizing the high-pressure fluid to generate fractures in the rock formation so as to improve the oil and gas flow conditions and increase the oil and gas production. In this article, a new type of experimental system for supercritical CO2 fracturing under confining pressure conditions is designed, which is based on characteristics of supercritical CO2, shale reservoir and down-hole environment. The experimental system consists of three sub-systems, including supercritical CO2 generation system, supercritical CO2 fracturing system and data analysis system. It can be used to simulate supercritical COfracturing under geo-stress conditions, thus to study the rock initiation pressure, the formation of the rock fractures, fractured surface morphology and so on. The experimental system has successfully carried out a series of supercritical COfracturing experiments. The experimental results confirm the feasibility of the experimental system and the high efficiency of supercritical CO2 in fracturing tight rocks.

P03016

, , , , , , , , and

A compact, portable and large field-of-view gamma camera that is able to identify, locate and quantify gamma-ray emitting radioisotopes in real-time has been developed. The device delivers spectroscopic and imaging capabilities that enable its use it in a variety of nuclear waste characterisation scenarios, such as radioactivity monitoring in nuclear power plants and more specifically for the decommissioning of nuclear facilities. The technical development of this apparatus and some examples of its application in field measurements are reported in this article. The performance of the presented gamma-camera is also benchmarked against other conventional techniques.

P03015

, , , , and

We present a new neutrinoless double beta decay concept: the high pressure selenium hexafluoride gas time projection chamber. A promising new detection technique is outlined which combines techniques pioneered in high pressure xenon gas, such as topological discrimination, with the high Q-value afforded by the double beta decay isotope 82Se. The lack of free electrons in SeF6 mandates the use of an ion TPC. The microphysics of ion production and drift, which have many nuances, are explored. Background estimates are presented, suggesting that such a detector may achieve background indices of better than 1 count per ton per year in the region of interest at the 100 kg scale, and still better at the ton-scale.

P03014

, , , , , , , , and

We investigate the performance of large area radiation detectors, with high energy- and spatial-resolution, intended for the development of a Total Energy Detector with gamma-ray imaging capability, so-called i-TED. This new development aims for an enhancement in detection sensitivity in time-of-flight neutron capture measurements, versus the commonly used C6D6 liquid scintillation total-energy detectors. In this work, we study in detail the impact of the readout photosensor on the energy response of large area (50×50 mm2) monolithic LaCl3(Ce) crystals, in particular when replacing a conventional mono-cathode photomultiplier tube by an 8×8 pixelated silicon photomultiplier. Using the largest commercially available monolithic SiPM array (25 cm2), with a pixel size of 6×6 mm2, we have measured an average energy resolution of 3.92% FWHM at 662 keV for crystal thicknesses of 10, 20 and 30 mm. The results are confronted with detailed Monte Carlo (MC) calculations, where optical processes and properties have been included for the reliable tracking of the scintillation photons. After the experimental validation of the MC model, we use our MC code to explore the impact of a smaller photosensor segmentation on the energy resolution. Our optical MC simulations predict only a marginal deterioration of the spectroscopic performance for pixels of 3×3 mm2.

P03013

, , , and

RPC Super module (SM) detector assemblies are used for charged hadron identification in the Time-of-Flight (TOF) spectrometer at the Compressed Baryonic Matter (CBM) experiment. Each SM contains several multi-gap Resistive Plate Chambers (MRPCs) and provides up to 320 electronic channels in total for high-precision time measurements. Time resolution of the Time-to-Digital Converter (TDC) is required to be better than 20 ps. During mass production, the quality of each SM needs to be evaluated. In order to meet the requirements, the system clock signal as well as the trigger signal should be distributed precisely and synchronously to all electronics modules within the evaluation readout system. In this paper, a hierarchical clock and trigger distribution method is proposed for the quality evaluation of CBM-TOF SM detectors. In a first stage, the master clock and trigger module (CTM) allocated in a 6U PXI chassis distributes the clock and trigger signals to the slave CTM in the same chassis. In a second stage, the slave CTM transmits the clock and trigger signals to the TDC readout module (TRM) through one optical link. In a third stage, the TRM distributes the clock and trigger signals synchronously to 10 individual TDC boards. Laboratory test results show that the clock jitter at the third stage is less than 4 ps (RMS) and the trigger transmission latency from the master CTM to the TDC is about 272 ns with 11 ps (RMS) jitter. The overall performance complies well with the required specifications.

P03012
The following article is Open access

, , , , , , , , , et al

Gas detectors for elementary particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This work studies properties of potential eco-friendly gas replacements by computing the physical and chemical parameters relevant for use as detector media, and suggests candidates to be considered for experimental investigation.

P03011

, and

Forward wide-angle neon ion emissions in a 3.5 kJ plasma focus device (PFD) were studied using 5 different anode top geometries; hollow-end cylinder, solid triangle, solid hemisphere, hollow-end cone and flat-end cone. Position-sensitive mega-size panorama polycarbonate ion image detectors (MS-PCID) developed by dual-cell circular mega-size electrochemical etching (MS-ECE) systems were applied for processesing wide-angle neon ion images on MS-PCIDs exposed on the PFD cylinder top base under a single pinch shot. The images can be simply observed, analyzed and relatively quantified in terms of ion emission angular distributions even by the unaided eyes. By analysis of the forward neon ion emission images, the ion emission yields, ion emission angular distributions, iso-fluence ion contours and solid angles of ion emissions in 4π PFD space were determined. The neon ion emission yields on the PFD cylinder top base are in an increasing order ~2.1×109, ~2.2 ×109, ~2.8×109, ~2.9×109, and ~3.5×109 neon ions/shot for the 5 stated anode top geometries respectively. The panorama neon ion images as diagnosed even by the unaided eyes demonstrate the lowest and highest ion yields from the hollow-end cylinder and flat-end cone anode tops respectively. Relative dynamic qualitative neon ion spectrometry was made by the unaided eyes demonstrating relative neon ion energy as they appear. The study also demonstrates the unique power of the MS-PCID/MS-ECE imaging system as an advanced state-of-the-art ion imaging method for wide-angle dynamic parametric studies in PFD space and other ion study applications.

P03010

, , , , and

The design and optimization of the Electromagnetic Calorimeter (ECAL) are crucial for the Circular Electron Positron Collider (CEPC) project, a proposed future Higgs/Z factory. Following the reference design of the International Large Detector (ILD), a set of silicon-tungsten sampling ECAL geometries are implemented into the Geant4 simulation, whose performance is then scanned using Arbor algorithm. The photon energy response at different ECAL longitudinal structures is analyzed, and the separation performance between nearby photon showers with different ECAL transverse cell sizes is investigated and parametrized. The overall performance is characterized by a set of physics benchmarks, including νν H events where Higgs boson decays into a pair of photons (EM objects) or gluons (jets) and Z→τ+τ events. Based on these results, we propose an optimized ECAL geometry for the CEPC project.

P03009

, , , , , , and

The time-dependent gain variation of detectors incorporating Thick Gas Electron Multipliers (THGEM) electrodes was studied in the context of charging-up processes of the electrode's insulating surfaces. An experimental study was performed to examine model-simulation results of the aforementioned phenomena, under various experimental conditions. The results indicate that in a stable detector's environment, the gain stabilization process is mainly affected by the charging-up of the detector's insulating surfaces caused by the avalanche charges. The charging-up is a transient effect, occurring during the detector's initial operation period; it does not affect its long-term operation. The experimental results are consistent with the outcome of model-simulations.

P03008

, , and

We describe new results from the semiconductor-laser tracking frequency gauge, an instrument that can perform sub-picometer distance measurements and has applications in gravity research and in space-based astronomical instruments proposed for the study of light from extrasolar planets. Compared with previous results, we have improved incremental distance accuracy by a factor of two, to 0.9 pm in 80 s averaging time, and absolute distance accuracy by a factor of 20, to 0.17 μm in 1000 s. After an interruption of operation of a tracking frequency gauge used to control a distance, it is now possible, using a nonresonant measurement interferometer, to restore the distance to picometer accuracy by combining absolute and incremental distance measurements.

P03007

, , and

In this paper, design, simulation and construction of a high power amplifier to provide the required power of a cyclotron accelerator (IRANCYC-10) is presented step-by-step. The Push-Pull designed amplifier can generate 750 W at the operating frequency of 71 MHz continous wave (CW). In this study, achieving the best efficiency of the amplifier, as well as reducing overall volume using baluns, were two important goals. The new offered water-cooled heat sink was used for cooling the amplifier which increases the operating life of the transistor. The gain and PAE of the SSPA were obtained 20 dB and 77.7%, respectively. The simulated and measured RF results are in good agreement with each other. The results show that, using an RF transformer in matching impedance of matching networks, it causes a smaller size and also a better amplifier performance.

P03006

, and

In the present work, Monte Carlo simulations using GEANT4 are carried out to estimate the efficiency of semiconductor neutron detectors with depleted UO2 (DUO2) as converter material, in both planar (direct and indirect) and 3D geometry (cylindrical perforation and trenches structure) configurations. The simulations were conducted for neutrons of variable energy viz., thermal (25 meV) and fast (1 to 10 MeV) that were incident on varying thicknesses (0.25 μm to 1000 μm), diameters (1 μm to 9 μm) and widths (1 μm to 9 μm) along with depths (50 μm to 275 μm) of DUO2 for planar, cylindrical perforated and trench structures, respectively. In the case of direct planar detectors, efficiency was found to increase with the thickness of DUO2 and the rate at which efficiency increased was found to follow the macroscopic fission cross section at the corresponding neutron energy. In the case of indirect planar detector, efficiency was lower as compared to direct configuration and was found to saturate beyond a thickness of ∼3 μm. This saturation is explained on the basis of mean free path of neutrons in the DUO2 material. For the 3D perforated silicon detectors of cylindrical (trench) geometry, backfilled with DUO2, the efficiency for detection of thermal neutrons ∼25 meV and fast neutrons ∼ typical energy of 10 MeV was found to be ∼0.0159% (∼0.0177%) and ∼0.0088% (0.0098%), respectively. These efficiency values were two (one) order values higher than planar indirect detector for thermal (fast) neutrons. Histogram plots were also obtained from the GEANT4 simulations to monitor the energy distribution of fission products in planar (direct and indirect) and 3D geometry (cylindrical and trench) configurations. These plots revealed that, for all the detector configurations, the energy deposited by the fission products are higher as compared to the typical gamma ray background. Thus, for detectors with DUO as converter material, higher values of low level discriminator (LLD) can be set, so as to achieve good background discrimination.

P03005

, and

In the present paper, the light output distribution due to poly-energetic neutron/gamma (neutron or gamma) source was calculated using the developed MCNPX-ESUT-PE (MCNPX-Energy engineering of Sharif University of Technology-Poly Energetic version) computational code. The simulation of light output distribution includes the modeling of the particle transport, the calculation of scintillation photons induced by charged particles, simulation of the scintillation photon transport and considering the light resolution obtained from the experiment. The developed computational code is able to simulate the light output distribution due to any neutron/gamma source. In the experimental step of the present study, the neutron-gamma discrimination based on the light output distribution was performed using the zero crossing method. As a case study, 241Am–9Be source was considered and the simulated and measured neutron/gamma light output distributions were compared. There is an acceptable agreement between the discriminated neutron/gamma light output distributions obtained from the simulation and experiment.

P03004
The following article is Open access

, , , , , and

In the last few years many detector technologies for thermal neutron detection have been developed in order to face the shortage of 3He, which is now much less available and more expensive. Moreover the 3He-based detectors can not fulfil the requirements in performance, e.g. the spatial resolution and the counting rate capability needed for the new instruments. The Boron-10-based gaseous detectors have been proposed as a suitable choice. This and other alternative technologies are being developed at ESS. Higher intensities mean higher signals but higher background as well. The signal-to-background ratio is an important feature to study, in particular the γ-ray and the fast neutron contributions. This paper investigates, for the first time, the fast neutrons sensitivity of 10B-based thermal neutron detector. It presents the study of the detector response as a function of energy threshold and the underlying physical mechanisms. The latter are explained with the help of theoretical considerations and simulations.

P03003
The following article is Open access

, , , , , , , , , et al

A new CMS Tracker is under development for operation at the High Luminosity LHC from 2026 onwards. It includes an outer tracker based on dedicated modules that will reconstruct short track segments, called stubs, using spatially coincident clusters in two closely spaced silicon sensor layers. These modules allow the rejection of low transverse momentum track hits and reduce the data volume before transmission to the first level trigger. The inclusion of tracking information in the trigger decision is essential to limit the first level trigger accept rate. A customized front-end readout chip, the CMS Binary Chip (CBC), containing stub finding logic has been designed for this purpose. A prototype module, equipped with the CBC chip, has been constructed and operated for the first time in a 4 GeV/c positron beam at DESY. The behaviour of the stub finding was studied for different angles of beam incidence on a module, which allows an estimate of the sensitivity to transverse momentum within the future CMS detector. A sharp transverse momentum threshold around 2 GeV/c was demonstrated, which meets the requirement to reject a large fraction of low momentum tracks present in the LHC environment on-detector. This is the first realistic demonstration of a silicon tracking module that is able to select data, based on the particle's transverse momentum, for use in a first level trigger at the LHC . The results from this test are described here.

P03002
The following article is Open access

, , and

Matched filtering is a well-known method frequently used in digital signal processing to detect the presence of a pattern in a signal. In this paper, we suggest a time variant matched filter, which, unlike a regular matched filter, maintains a given alignment between the input signal and the template carrying the pattern, and can be realized recursively. We introduce a method to synchronize the two signals for presence detection, usable in case direct synchronization between the signal generator and the receiver is not possible or not practical. We then propose a way of realizing and extending the same filter by modifying a recursive spectral observer, which gives rise to orthogonal filter channels and also leads to another way to synchronize the two signals.

P03001

, , and

The Fukushima Daiichi Nuclear Power Station (FDNPS), operated by Tokyo Electric Power Company Holdings, Inc., went into meltdown after the occurrence of a large tsunami caused by the Great East Japan Earthquake of March 11, 2011. The radiation distribution measurements inside the FDNPS buildings are indispensable to execute decommissioning tasks in the reactor buildings. We have developed a three-dimensional (3D) image reconstruction method for radioactive substances using a compact Compton camera. Moreover, we succeeded in visually recognizing the position of radioactive substances in real space by the integration of 3D radiation images and the 3D photo-model created using photogrammetry.

Conference proceedings

C03047

Calorimetry for the High Energy Frontier (CHEF2017)

Calorimeters with silicon detectors have many unique features and are proposed for several world-leading experiments. We describe the R&D program of the large scale detector element with up to 12 000 readout channels for the International Large Detector (ILD) at the future e+e ILC collider. The program is focused on the readout front-end electronics embedded inside the calorimeter. The first part with 2 000 channels and two small silicon sensors has already been constructed, the full prototype is planned for the beginning of 2018.

C03046

11th International Conference on Position Sensitive Detectors (PSD11)

Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC) . As the closest detector component to the interaction point, these detectors will be subject to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC) [1], the innermost layers will receive a fluence in excess of 1015 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is essential in order to make accurate predictions for current and future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects on the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside early studies with LHC Run 2 proton-proton collision data.

C03045

19th International Workshop on Radiation Imaging Detectors (IWORID2017)

The ATLAS experiment is preparing for an extensive modification of its detectors in the course of the planned HL-LHC accelerator upgrade around 2025. The ATLAS upgrade includes the replacement of the entire tracking system by an all-silicon detector (Inner Tracker, ITk). The five innermost layers of ITk will be a pixel detector built of new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL-LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m2, depending on the final layout choice, which is expected to take place in 2018. In this paper an overview of the ongoing R&D activities on modules and electronics for the ATLAS ITk is given including the main developments and achievements in silicon planar and 3D sensor technologies, readout and power challenges.

C03044

Calorimetry for the High Energy Frontier (CHEF2017)

In this paper we will present the design and expected performance for the Electromagnetic and Small Angle Calorimeters (ECAL, SAC) of the PADME experiment. The design of the calorimeters has been optimized for the detection of the final state γ from the annihilation production (and subsequent "invisible" decay) of a "Dark Photon" produced by a positron beam on a thin, low Z target. Beam tests have been made in 2016 and 2017 at the INFN Frascati National Laboratories Linac Beam Test Facility (BTF) with positron beams of energy 100–400 MeV and results are presented. The PADME experiment will be built at the INFN Frascati National Laboratories by the end of 2017 and will be taking data in 2018 (and possibly also 2019). At the moment the collaboration is composed by the following institutions: INFN Roma and "La Sapienza" University of Roma, INFN Frascati, INFN Lecce and University of Salento, MTA Atomki Debrecen, University of Sofia, Cornell University, U.S. William and Mary College.

C03043

International Workshop on Fast Cherenkov Detectors - Photon detection, DIRC design and DAQ (DIRC2017)

The Barrel Time-of-Flight detector system will be installed in the upcoming bar PANDA experiment at FAIR in Germany. The detector has a barrel shape of ϕ=0.5 m and 1.8 m long, covering about 5 m2, which corresponds to the laboratory polar angle coverage of 22o<θ<140o. The detector is a scintillation tile hodoscope. A single scintillation tile segment has a dimension of 90× 30 mm2 and 5 mm thickness, and photons are detected by Silicon Photomultipliers at both ends. 4 Silicon Photomultipliers are combined to work as a single sensor in order to increase the sensitive area and to improve the timing performance. In total, the system consists of 1920 scintillator tiles, 3840 readout channels, and makes use of 15360 Silicon Photomultiplier sensors. In this paper, the requirement, design and the result of an actual performance test of the bar PANDA Barrel Time-of-Flight detector are presented. The test shows that the current design fulfils satisfactorily the required timing performance (σt 56 ps) and the timing performance depends little on the hit position on the surface.

C03042

, and

XII International Symposium on Radiation from Relativistic Electrons in Periodic Structures (RREPS-17)

We have analyzed relativistic (∼ MeV) electron ejection from potential channels of standing laser wave taking into account both rapid and averaged oscillations within the region of declining field of standing wave. We show that only a few last rapid oscillations can define transverse speed and, therefore, angle at which a particle leaves standing wave. This conclusion might drastically simplify numerical simulations of charged particles channeling and accompanying radiation in crossed lasers field. Moreover, it might provide a valuable information for estimation of charged particle beams parameters after their interaction with finite standing wave.

C03041

, , , , , , , , , et al

Light Detection in Noble Elements (LIDINE2017)

Silicon photomultipliers (SiPMs) are potential solid-state alternatives to traditional photomultiplier tubes (PMTs) for single-photon detection. In this paper, we report on evaluating SensL MicroFC-10035-SMT SiPMs for their suitability as PMT alternatives. We successfully operated these devices in a liquid-xenon detector, which demonstrates that SiPMs can be used in noble element time projection chambers as photosensors. The devices were also cooled down to 170 K to observe dark count dependence on temperature. No dependencies on the direction of an applied 3.2 kV/cm electric field were observed with respect to dark-count rate, gain, or photon detection efficiency.

C03040

, , , , , , , and

Light Detection in Noble Elements (LIDINE2017)

The Liquid Argon Time Projection Chambers (LArTPCs) are a choice for the next generation of large neutrino detectors due to their optimal performance in particle tracking and calorimetry. The detection of Argon scintillation light plays a crucial role in the event reconstruction as well as the time reference for non-beam physics such as supernovae neutrino detection and baryon number violation studies. In this contribution, we present the current R&D work on the ARAPUCA (Argon R&D Advanced Program at UNICAMP), a light trap device to enhance Ar scintillation light collection and thus the overall performance of LArTPCs. The ARAPUCA working principle is based on a suitable combination of dichroic filters and wavelength shifters to achieve a high efficiency in light collection. We discuss the operational principles, the last results of laboratory tests and the application of the ARAPUCA as the alternative photon detection system in the protoDUNE detector.

C03039

, , , , , , , , , et al

19th International Workshop on Radiation Imaging Detectors (IWORID2017)

Depleted monolithic active pixel sensors (DMAPS), which exploit high voltage and/or high resistivity add-ons of modern CMOS technologies to achieve substantial depletion in the sensing volume, have proven to have high radiation tolerance towards the requirements of ATLAS in the high-luminosity LHC era. DMAPS integrating fast readout architectures are currently being developed as promising candidates for the outer pixel layers of the future ATLAS Inner Tracker, which will be installed during the phase II upgrade of ATLAS around year 2025. In this work, two DMAPS prototype designs, named LF-Monopix and TJ-Monopix, are presented. LF-Monopix was fabricated in the LFoundry 150 nm CMOS technology, and TJ-Monopix has been designed in the TowerJazz 180 nm CMOS technology. Both chips employ the same readout architecture, i.e. the column drain architecture, whereas different sensor implementation concepts are pursued. The paper makes a joint description of the two prototypes, so that their technical differences and challenges can be addressed in direct comparison. First measurement results for LF-Monopix will also be shown, demonstrating for the first time a fully functional fast readout DMAPS prototype implemented in the LFoundry technology.

C03038

and

International Workshop on Fast Cherenkov Detectors - Photon detection, DIRC design and DAQ (DIRC2017)

The High Acceptance Di-Electron Spectrometer (HADES) is operational since the year 2000 and uses a hadron blind RICH detector for electron identification. The RICH photon detector is currently replaced by Hamamatsu H12700 MAPMTs with a readout system based on the DiRICH front-end module. The electronic readout chain is being developed as a joint effort of the HADES-, CBM- and PANDA collaborations and will also be used in the photon detectors for the upcoming Compressed Baryonic Matter (CBM) and PANDA experiments at FAIR . This article gives a brief overview on the photomultipliers and their quality assurance test measurements, as well as first measurements of the new DiRICH front-end module in final configurations.

C03037

, , , , and

24th International congress on x-ray optics and microanalysis (IXCOM24)

A sensitive, accurate, and real-time measurement of the photon beam profile is a crucial issue in synchrotron radiation experiments. Most common solutions include the use of insulated wires and phosphorescent materials with remote (in atmosphere) TV cameras. To face this request we designed and realized a micro-fabricated wire scanner fully UHV compatible, based on electrons photoemission under UV-X irradiation, suitable for in situ/on line beam characterization. The device provides micrometer accuracy, is compatible with most end-station sample holders, is easy to operate providing the requested information in a matter of minutes.

C03036

, , , , , and

11th International Conference on Position Sensitive Detectors (PSD11)

ESA's JUICE (JUpiter ICy moon Explorer) spacecraft is an L-class mission destined for the Jovian system in 2030. Its primary goals are to investigate the conditions for planetary formation and the emergence of life, and how does the solar system work. The JANUS camera, an instrument on JUICE, uses a 4T back illuminated CMOS image sensor, the CIS115 designed by Teledyne e2v. JANUS imager test campaigns are studying the CIS115 following exposure to gammas, protons, electrons and heavy ions, simulating the harsh radiation environment present in the Jovian system. The degradation of 4T CMOS device performance following proton fluences is being studied, as well as the effectiveness of thermal annealing to reverse radiation damage. One key parameter for the JANUS mission is the Dark current of the CIS115, which has been shown to degrade in previous radiation campaigns. A thermal anneal of the CIS115 has been used to accelerate any annealing following the irradiation as well as to study the evolution of any performance characteristics. CIS115s have been irradiated to double the expected End of Life (EOL) levels for displacement damage radiation (2×1010 protons, 10 MeV equivalent). Following this, devices have undergone a thermal anneal cycle at 100oC for 168 hours to reveal the extent to which CIS115 recovers pre-irradiation performance. Dark current activation energy analysis following proton fluence gives information on trap species present in the device and how effective anneal is at removing these trap species. Thermal anneal shows no quantifiable change in the activation energy of the dark current following irradiation.

C03035

, , , , , , , , , et al

24th International congress on x-ray optics and microanalysis (IXCOM24)

In this contribution we present the new experimental end-station to characterize XUV diffractive optics, such as Micro Channel Plates (MCPs) and other polycapillary optics, presently under commission at the Elettra synchrotron radiation laboratory (Trieste, Italy). To show the opportunities offered by these new optical devices for 3rd and 4th generation radiation sources, in this work we present also some patterns collected at different energies of the primary XUV radiation transmitted by MCP optical devices working in the normal incidence geometry.

C03034

, , , , , , , and

2nd European Conference on Plasma Diagnostics (ECPD 2017)

Recently, a new diagnostic method, Laser-driven Ion-beam Trace Probe (LITP), has been proposed to reconstruct 2D profiles of the poloidal magnetic field (Bp) and radial electric field (Er) in the tokamak devices. A linear assumption and test particle model were used in those reconstructions. In some toroidal devices such as the spherical tokamak and the Reversal Field Pinch (RFP), Bp is not small enough to meet the linear assumption. In those cases, the error of reconstruction increases quickly when Bp is larger than 10% of the toroidal magnetic field (Bt), and the previous test particle model may cause large error in the tomography process. Here a nonlinear reconstruction method is proposed for those cases. Preliminary numerical results show that LITP could be applied not only in tokamak devices, but also in other toroidal devices, such as the spherical tokamak, RFP, etc.

C03033

, , , , , , , , , et al

2nd European Conference on Plasma Diagnostics (ECPD 2017)

A new gas puff imaging (GPI) diagnostic has been developed on the HL-2A tokamak to study two-dimensional plasma edge turbulence in poloidal vs. radial plane. During a discharge, neutral helium or deuterium gas is puffed at the edge of the plasma through a rectangular multi\nobreakdash-capillaries nozzle to generate a gas cloud on the observing plane. Then a specially designed telescope and a high-speed camera are used to observe and photograph the emission from the neutral gas cloud. The brightness and contrast in the 2-D poloidal vs. radial frames reveal the structures and movements of the turbulence. The diagnostic was put into the first experiment during the latest campaign and successfully captured blob structures of different shapes and sizes in scrape-off layer (SOL).

C03032

, , , , , , , , , et al

24th International congress on x-ray optics and microanalysis (IXCOM24)

Low-energy X-ray fluorescence (LEXRF) is an essential tool for bio-related research of organic samples, whose composition is dominated by light elements. Working at energies below 2 keV and being able to detect fluorescence photons of lightweight elements such as carbon (277 eV) is still a challenge, since it requires in-vacuum operations to avoid in-air photon absorption. Moreover, the detectors must have a thin entrance window and collect photons at an angle of incidence near 90 degrees to minimize the absorption by the protective coating. Considering the low fluorescence yield of light elements, it is important to cover a substantial part of the solid angle detecting ideally all emitted X-ray fluorescence (XRF) photons. Furthermore, the energy resolution of the detection system should be close to the Fano limit in order to discriminate elements whose XRF emission lines are often very close within the energy spectra. To ensure all these features, a system consisting of four monolithic multi-element silicon drift detectors was developed. The use of four separate detector units allows optimizing the incidence angle on all the sensor elements. The multi-element approach in turn provides a lower leakage current on each anode, which, in combination with ultra-low noise preamplifiers, is necessary to achieve an energy resolution close to the Fano limit. The potential of the new detection system and its applicability for typical LEXRF applications has been proved on the Elettra TwinMic beamline.

C03031

, and

Light Detection in Noble Elements (LIDINE2017)

After a short review of previous attempts to observe and measure the near-infrared scintillation in liquid argon, we present new results obtained with NIR, a dedicated cryostat at the Fermilab Proton Assembly Building (PAB). The new results give confidence that the near-infrared light can be used as the much needed light signal in large liquid argon time projection chambers.

C03030

Calorimetry for the High Energy Frontier (CHEF2017)

The MAPS (Monolithic Active Pixel Sensors) prototype of the proposed ALICE Forward Calorimeter (FoCal) is the highest granularity electromagnetic calorimeter, with 39 million pixels with a size of 30 × 30 μm2. Particle showers can be studied with unprecedented detail with this prototype. Electromagnetic showers at energies between 2 GeV and 244 GeV have been studied and compared with GEANT4 simulations. Simulation models can be tested in more detail than ever before and the differences observed between FoCal data and GEANT4 simulations illustrate that improvements in electromagnetic models are still possible.

C03029

Calorimetry for the High Energy Frontier (CHEF2017)

The physics reach and feasibility of the Future Circular Collider are currently under investigation. The goal is to collide protons with centre-of-mass energies up to 100 TeV, extending the research carried out at the current HEP facilities. The detectors designed for the FCC experiments need to tackle harsh conditions of the unprecedented collision energy and luminosity. The baseline technology for the calorimeter system of the FCC-hh detector is described. The electromagnetic calorimeter in the barrel, as well as the electromagnetic and hadronic calorimeters in the endcaps and the forward regions, are based on the liquid argon as active material. The detector layout in the barrel region combines the concept of a high granularity calorimeter with precise energy measurements. The calorimeters have to meet the requirements of high radiation hardness and must be able to deal with a very high number of collisions per bunch crossings (pile-up). A very good energy and angular resolution for a wide range of electrons' and photons' momentum is needed in order to meet the demands based on the physics benchmarks. First results of the performance studies with the new liquid argon calorimeter are presented, meeting the energy resolution goal.

C03028

XII International Symposium on Radiation from Relativistic Electrons in Periodic Structures (RREPS-17)

The CMS Beam Radiation Instrumentation and Luminosity Project (BRIL) is responsible for the simulation and measurement of luminosity, beam conditions and radiation fields in the CMS experiment. The project is engaged in operating and developing new detectors (luminometers), adequate for the experimental conditions associated with high values of instantaneous luminosity delivered by the CERN LHC . BRIL operates several detectors based on different physical principles and technologies. Precise and accurate measurements of the delivered luminosity is of paramount importance for the CMS physics program. The absolute calibration of luminosity is achieved by the van der Meer method, which is carried out under specially tailored conditions. This paper presents models used to simulate of beam-dynamic effects arising due to the electromagnetic interaction of colliding bunches. These effects include beam-beam deflection and dynamic-β effect. Both effects are important to luminosity measurements and influence calibration constants at the level of 1–2%. The simulations are carried out based on 2016 CMS van der Meer scan data for proton-proton collisions at a center-of-mass energy of 13 TeV.

C03027
The following article is Open access

, , , , , , , , , et al

International Workshop on Imaging II

Synchrotron X-ray Phase Contrast micro-Tomography (SXrPCμT) is a powerful tool in the investigation of biological tissues, including the central nervous system (CNS), and it allows to simultaneously detect the vascular and neuronal network avoiding contrast agents or destructive sample preparations. However, specific sample preparation procedures aimed to optimize the achievable contrast- and signal-to-noise ratio (CNR and SNR, respectively) are required. Here we report and discuss the effects of perfusion with two different fixative agents (ethanol and paraformaldehyde) and with a widely used contrast medium (MICROFIL®) on mouse spinal cord. As a main result, we found that ethanol enhances contrast at the grey/white matter interface and increases the contrast in correspondence of vascular features and fibres, thus providing an adequate spatial resolution to visualise the vascular network at the microscale. On the other hand, ethanol is known to induce tissue dehydration, likely reducing cell dimensions below the spatial resolution limit imposed by the experimental technique. Nonetheless, neurons remain well visible using either perfused paraformaldehyde or MICROFIL® compound, as these latter media do not affect tissues with dehydration effects. Paraformaldehyde appears as the best compromise: it is not a contrast agent, like MICROFIL®, but it is less invasive than ethanol and permits to visualise well both cells and blood vessels. However, a quantitative estimation of the relative grey matter volume of each sample has led us to conclude that no significant alterations in the grey matter extension compared to the white matter occur as a consequence of the perfusion procedures tested in this study.

C03026

Light Detection in Noble Elements (LIDINE2017)

This work concerned the preliminary tests and characterization of a cryogenic preamplifier board for an array made of 16 S13370-3050CN (VUV4 family) Multi-Pixel Photon Counters manufactured by Hamamatsu and operated at liquid xenon temperature. The proposed prototype is based on the use of the Analog Devices AD8011 current feedback operational amplifier. The detector allows for single photon detection, making this device a promising choice for the future generation of neutrino and dark matter detectors based on liquid xenon targets.

C03025

and

Calorimetry for the High Energy Frontier (CHEF2017)

Various calibration techniques for the CMS Hadron calorimeter in Run 2 and the results of calibration using 2016 collision data are presented. The radiation damage corrections, intercalibration of different channels using the phi-symmetry technique for barrel, endcap and forward calorimeter regions are described, as well as the intercalibration with muons of the outer hadron calorimeter. The achieved intercalibration precision is within 3%. The in situ energy scale calibration is performed in the barrel and endcap regions using isolated charged hadrons and in the forward calorimeter using the Zarrow ee process. The impact of pileup and the developed technique of correction for pileup is also discussed. The achieved uncertainty of the response to hadrons is 3.4% in the barrel and 2.6% in the endcap region (at the pseudorapidity range |η|<2) and is dominated by the systematic uncertainty due to pileup contributions.

C03024

Calorimetry for the High Energy Frontier (CHEF2017)

The circular electron and positron collider (CEPC) was proposed as a future Higgs factory. To meet the physics requirements, a particle flow algorithm-oriented calorimeter system with high energy resolution and precise reconstruction is considered. A sampling calorimeter with scintillator-tungsten sandwich structure is selected as one of the electromagnetic calorimeter (ECAL) options due to its good performance and relatively low cost. We present the design, the test and the optimization of the scintillator module read out by silicon photomultiplier (SiPM), including the design and the development of the electronics. To estimate the performance of the scintillator and SiPM module for particles with different energy, the beam test of a mini detector prototype without tungsten shower material was performed at the E3 beams in Institute of High Energy Physics (IHEP). The results are consistent with the expectation. These studies provide a reference and promote the development of particle flow electromagnetic calorimeter for the CEPC.

C03023

, , , , , and

19th International Workshop on Radiation Imaging Detectors (IWORID2017)

Recently, high-energy radiation has been widely used in various industrial fields, including the medical industry, and increasing research efforts have been devoted to the development of radiation detectors to be used with high-energy radiation. In particular, nondestructive industrial applications use high-energy radiation for ships and multilayered objects for accurate inspection. Therefore, it is crucial to verify the accuracy of radiation dose measurements and evaluate the precision and reproducibility of the radiation output dose. Representative detectors currently used for detecting the dose in high-energy regions include Si diodes, diamond diodes, and ionization chambers. However, the process of preparing these detectors is complex in addition to the processes of conducting dosimetric measurements, analysis, and evaluation. Furthermore, the minimum size that can be prepared for a detector is limited. In the present study, the disadvantages of original detectors are compensated by the development of a detector made of a mixture of polycrystalline PbI2 and PbO powder, which are both excellent semiconducting materials suitable for detecting high-energy gamma rays and X-rays. The proposed detector shows characteristics of excellent reproducibility and stable signal detection in response to the changes in energy, and was analyzed for its applicability. Moreover, the detector was prepared through a simple process of particle-in-binder to gain control over the thickness and meet the specific value designated by the user. A mixture mass ratio with the highest reproducibility was determined through reproducibility testing with respect to changes in the photon energy. The proposed detector was evaluated for its detection response characteristics with respect to high-energy photon beam, in terms of dose-rate dependence, sensitivity, and linearity evaluation. In the reproducibility assessment, the detector made with 15 wt% PbO powder showed the best characteristics of 0.59% and 0.25% at 6 and 15 MV, respectively. Based on its selection in the reproducibility assessment, the 15 wt% PbO detector showed no dependence on the dose-rate changes, with R-SD < 1%. Finally, a coefficient of determination of 1 in the linearity assessment demonstrated very good linearity with regards to changes in dose. These results demonstrate the applicability and usefulness of the proposed detector made from a mixture of PbI2 and PbO semiconductors.

C03022

, , , and

Calorimetry for the High Energy Frontier (CHEF2017)

We present updated results from a simulation study of a conceptual sampling electromagnetic calorimeter based on secondary electron emission process. We implemented the secondary electron emission process in Geant4 as a user physics list and produced the energy spectrum and yield of secondary electrons. The energy resolution of the SEE calorimeter was σ/E = (41%) GeV1/2/√E and the response linearity to electromagnetic showers was to within 1.5%. The simulation results were also compared with a traditional scintillator calorimeter.

C03021

Calorimetry for the High Energy Frontier (CHEF2017)

The LHCb calorimeters play a key role in the hardware trigger of the experiment. They also serve the measurement of radiative heavy flavor decays and the identification of electrons. Located at twelve meters from the interaction region, they are composed of a plane of scintillating tiles, a preshower detector, an electromagnetic and a hadronic sampling calorimeters using scintillators as active elements. In these proceedings, technical and operational aspects of these detectors are described. Emphasis is then put on calorimeter reconstruction and calibration. Finally, performance for benchmark physics modes are briefly reported.

C03020
The following article is Open access

, , , , , , , , , et al

24th International congress on x-ray optics and microanalysis (IXCOM24)

Maia Mapper is a laboratory μXRF mapping system for efficient elemental imaging of drill core sections serving minerals research and industrial applications. It targets intermediate spatial scales, with imaging of up to ∼80 M pixels over a 500×150 mm2 sample area. It brings together (i) the Maia detector and imaging system, with its large solid-angle, event-mode operation, millisecond pixel transit times in fly-scan mode and real-time spectral deconvolution and imaging, (ii) the high brightness MetalJet D2 liquid metal micro-focus X-ray source from Excillum, and (iii) an efficient XOS polycapillary lens with a flux gain ∼15,900 at 21 keV into a ∼32 μm focus, and (iv) a sample scanning stage engineered for standard drill-core sections. Count-rates up to ∼3 M/s are observed on drill core samples with low dead-time up to ∼1.5%. Automated scans are executed in sequence with display of deconvoluted element component images accumulated in real-time in the Maia detector. Application images on drill core and polished rock slabs illustrate Maia Mapper capabilities as part of the analytical workflow of the Advanced Resource Characterisation Facility, which spans spatial dimensions from ore deposit to atomic scales.

C03019

, and

XII International Symposium on Radiation from Relativistic Electrons in Periodic Structures (RREPS-17)

In the framework of quantum mechanics, we investigate muon channeling in the Si (200) crystal. The transverse energy levels and wave functions are obtained for the Pöschl-Teller and the Doyle-Turner potentials. Comparative analysis demonstrates that analytical results of calculations obtained on the base of the Pöschl-Teller potential are in a good agreement with the numerical results of calculations in the Doyle-Turner model for the low energy levels. These results for the muon with rest mass mμ and relativistic factor γ are valid for any particle with elementary charge and rest mass m and relativistic factor γm = γ (mμ/m). Therefore, our results can be useful for the preparation and performing the experimental investigation of the various phenomena accompanying particle channeling.

C03018

, , , , , , , , , et al

International Workshop on Fast Cherenkov Detectors - Photon detection, DIRC design and DAQ (DIRC2017)

In its latest Long Range Plan for Nuclear Science Research in the U.S., the Nuclear Science Advisory Committee to the Department of Energy recommended that in regards to new nuclear-physics facilities, the construction of an Electron Ion Collider (EIC) be of the highest priority after the completion of the Facility for Rare Isotope Beams. In order to carry out key aspects of the scientific program of the EIC, the EIC central detector must be capable of hadron particle identification (PID) over a broad momentum range of up to 50 GeV/c. The goal of the EIC-PID consortium is to develop an integrated program for PID at EIC, which employs several different technologies for imaging Cherenkov detectors. Here we discuss the conceptual designs and the expected PID performance of two of these detectors, as well as the newest results of gain evaluation studies of photon sensors that are good candidates to read out these detectors. Development of a gas-aerogel dual-radiator Ring Imaging Cherenkov (dRICH) detector with outward focusing mirrors is being pursued for the hadron endcap. Simulations demonstrate that the dRICH can provide a continuous ⩾ 3σ π /K/p separation from 2.5 GeV/c to 50 GeV/c. A modular aerogel Ring Imaging Cherenkov (mRICH) detector with a Fresnel lens as a focusing element is being pursued for the electron endcap. The design provides for hadron identification over a momentum range of 3 GeV/c–10 GeV/c. The working principle of the mRICH design has been proven in a beam test with a first prototype. The location of the sensor readout planes of the Cherenkov detectors in the magnetic field of the central-detector solenoid, which is expected to be within 1.5 T–3 T, makes is necessary to evaluate the limit of the acceptable performance of commercially available photosensors, such as microchannel-plate photomultipliers (MCP PMTs). Here we present the results of gain evaluation of multi-anode MCP PMTs with a pore size of 10 μm. Overall, our preliminary results suggest that the 10-μm pore-size sensors can be operated in a magnetic field with magnitude up to Bmax of 2 T. The value of Bmax depends on the relative orientation between the sensor and the field.

C03017

Calorimetry for the High Energy Frontier (CHEF2017)

The LHC high-luminosity upgrade in 2024–2026 requires the associated detectors to operate at luminosities about 5–7 times larger than assumed in their original design. The pile-up is expected to increase to up to 200 events per proton bunch-crossing. The current readout of the ATLAS liquid argon calorimeters does not provide sufficient buffering and bandwidth capabilities to accommodate the hardware triggers requirements imposed by these harsh conditions. Furthermore, the expected total radiation doses are beyond the qualification range of the current front-end electronics. For these reasons an almost complete replacement of the front-end and off-detector readout system is foreseen for the 182,468 readout channels. The new readout system will be based on a free-running architecture, where calorimeter signals are amplified, shaped and digitized by on-detector electronics, then sent at 40 MHz to the off-detector electronics for further processing. Results from the design studies on the performance of the components of the readout system are presented, as well as the results of the tests of the first prototypes.

C03016

Calorimetry for the High Energy Frontier (CHEF2017)

The hadron-hadron Future Circular Collider (FCC-hh) project studies the physics reach of a proton-proton machine with a centre-of-mass-energy of 100 TeV and five times greater peak luminosities than at the High-Luminosity LHC (HL-LHC). The high-energy regime of the FCC-hh opens new opportunities for the discovery of physics beyond the standard model. At 100 TeV a large fraction of the W, Z, H bosons and top quarks are produced with a significant boost. It implies an efficient reconstruction of very high energetic objects decaying hadronically. The reconstruction of those boosted objects sets the calorimeter performance requirements in terms of energy resolution, containment of highly energetic hadron showers, and high transverse granularity. We present the current baseline technologies for the calorimeter system in the barrel region of the FCC-hh reference detector: a liquid argon electromagnetic and a scintillator-steel hadronic calorimeters. The focus of this paper is on the hadronic calorimeter and the performance studies for hadrons. The reconstruction of single particles and the achieved energy resolution for the combined system of the electromagnetic and hadronic calorimeters are discussed.

C03015

, , , , , , , , , et al

Calorimetry for the High Energy Frontier (CHEF2017)

The ILD Si-W ECAL is a sampling calorimeter with tungsten absorber and highly segmented silicon layers for the International Large Detector (ILD), one of the two detector concepts for the International Linear Collider. SKIROC2 is an ASIC for the ILD Si-W ECAL. To investigate the issues found in prototype detectors, we prepared dedicated ASIC evaluation boards with either BGA sockets or directly soldered SKIROC2. We report a performance study with the evaluation boards, including signal-to-noise ratio and TDC performance with comparing SKIROC2 and an updated version, SKIROC2A.

C03014
The following article is Open access

, , , , , , , and

11th International Conference on Position Sensitive Detectors (PSD11)

A new avalanche silicon detector concept is introduced with a low gain in the region of ten, known as a Low Gain Avalanche Detector, LGAD. The detector's characteristics are simulated via a full process simulation to obtain the required doping profiles which demonstrate the desired operational characteristics of high breakdown voltage (500 V) and a gain of 10 at 200 V reverse bias for X-ray detection. The first low gain avalanche detectors fabricated by Micron Semiconductor Ltd are presented. The doping profiles of the multiplication junctions were measured with SIMS and reproduced by simulating the full fabrication process which enabled further development of the manufacturing process. The detectors are 300 μm thick p-type silicon with a resistivity of 8.5 kΩcm, which fully depletes at 116 V. The current characteristics are presented and demonstrate breakdown voltages in excess of 500 V and a current density of 40 to 100 nAcm−2 before breakdown measured at 20oC. The gain of the LGAD has been measured with a red laser (660 nm) and shown to be between 9 and 12 for an external bias voltage range from 150 V to 300 V.

C03013

Calorimetry for the High Energy Frontier (CHEF2017)

A new design of a detector module of submillimeter thickness for an electromagnetic calorimeter is presented. It is aimed to be used in the luminometers LumiCal and BeamCal in future linear e+e collider experiments. The module prototypes were produced utilizing novel connectivity scheme technologies. They are installed in a compact prototype of the calorimeter and tested at DESY with an electron beam of 1 GeV–6 GeV. The performance of eight detector modules in a prototype of a compact LumiCal is studied.

C03012

Calorimetry for the High Energy Frontier (CHEF2017)

The Particle Flow Algorithms attempt to measure each particle in a hadronic jet individually, using the detector providing the best energy/momentum resolution. Therefore, the spatial segmentation of the calorimeter plays a crucial role. In this context, the CALICE Collaboration developed the Digital Hadron Calorimeter. The Digital Hadron Calorimeter uses Resistive Plate Chambers as active media and has a 1-bit resolution (digital) readout of 1 × 1 cm2 pads. The calorimeter was tested with steel and tungsten absorber structures, as well as with no absorber structure, at the Fermilab and CERN test beam facilities over several years. In addition to conventional calorimetric measurements, the Digital Hadron Calorimeter offers detailed measurements of event shapes, rigorous tests of simulation models and various tools for improved performance due to its very high spatial granularity. Here we report on the results from the analysis of pion and positron events. Results of comparisons with the Monte Carlo simulations are also discussed. The analysis demonstrates the unique utilization of detailed event topologies.

C03011

and

Calorimetry for the High Energy Frontier (CHEF2017)

In the context of ILD project, impact studies of environmental loads on the Electromagnetic CALorimeter (ECAL) have been initiated. The ECAL part considered is the barrel and it consists of several independent modules which are mounted on the Hadronic CALorimeter barrel (HCAL) itself mounted on the cryostat coil and the yoke. The estimate of the gap required between each ECAL modules is fundamental to define the assembly step and avoid mechanical contacts over the barrel lifetime. In the meantime, it has to be done in consideration to the dead spaces reduction and detector hermiticity optimization. Several Finite Element Analysis (FEA) with static and dynamic loads have been performed in order to define correctly the minimum values for those gaps. Due to the implantation site of the whole project in Japan, seismic analysis were carried out in addition to the static ones. This article shows results of these analysis done with the Finite Element Method (FEM) in ANSYS. First results show the impact of HCAL design on the ECAL modules motion in static load. The second study dedicated to seismic approach on a larger model (including yoke and cryostat) gives additional results on earthquake consequences.

C03010

, , , , , , , , and

Light Detection in Noble Elements (LIDINE2017)

The MicroBooNE detector uses scintillation light from particle interactions in liquid argon as a data acquisition trigger. This scintillation light has wavelengths in the vacuum ultra violet (VUV) range, and must be converted into visible light to be detected by photomultiplier tubes (PMTs). To convert the light, MicroBooNE uses wavelength shifting plates coated with Tetraphenyl butadiene (TPB) placed in front of its PMTs. While basic tuning of this plate-PMT system is sufficient for triggering, precise calibration of the system makes additional calorimetry possible. This note will outline how a photon simulation which accounts for the geometry and optical details of the MicroBooNE detector can accompany a measurement of observed photoelectrons in a plate-PMT test stand, and how the results may be used to determine a "global quantum efficiency" for the plate-PMT system. This global quantum efficiency is one required ingredient for improving the capabilities of the light collection system.

C03009

and

Calorimetry for the High Energy Frontier (CHEF2017)

Pyrame 3 is the new version of the Pyrame framework [1], with emphasize on the online data treatment and the complex tasks scripting. A new mechanism has been implemented to allow any module to treat and publish data in real time. Those data are made available to any requesting module. A circular buffer mechanism allows to break the real-time constraint and to serve the slower programs in a generic subsampling way. On the other side, a programming facility called event-loop has been provided in C/C++ language to ease the development of monitoring programs. On the SiW-Ecal prototype, the acquisition chain launches a bunch of online decoders that makes available raw data plus some basic reconstruction data (true coordinate, true time, data quality tags\ldots). With the event-loop, it is now really very easy to implement new online monitoring programs. On the other side, the scripting mechanism has been enhanced to provide complete control of the detector to the scripts. This way, we are able to script and monitor complex behaviours like position or energy scanning, calibrations or data driven reconfigurations.

C03008

, , , and

11th International Conference on Position Sensitive Detectors (PSD11)

The design and evaluation of a large-area detector module for positron emission imaging applications, is presented. The module features a SensL ArrayC-60035-64P-PCB solid state detector (8×8 array of tileable silicon photomultipliers by SensL, 7.2 mm pitch) covering a total area of 57.4×57.4 mm2. The detector module was formed using a pixelated array of 40×40 lutetium-yttrium oxyorthosilicate (LYSO) scintillator crystal elements with 1.43 mm pitch. A 7 mm thick coupling light guide was used to allow light sharing between adjacent SiPM. A 16-channel symmetric charge division (SCD) readout board was designed to multiplex the number of signals from 64 to 16 (8 columns and 8 rows) and a center-of-gravity algorithm to identify the position. Data acquisition and digitization was accomplished using a custom-made system based on FPGAs boards. Crystal maps were obtained using 18F-positron sources and Voronoi diagrams were used to correct for geometric distortions and to generate a non-uniformity correction matrix. All measurements were taken at a controlled room temperature of 22oC. The crystal maps showed minor distortion, 90% of the 1600 total crystal elements could be identified, a mean peak-to-valley ratio of 4.3 was obtained and a 10.8% mean energy resolution for 511 keV annihilation photons was determined. The performance of the detector using our own readout board was compared to that using two different commercially readout boards using the same detector module arrangement. We show that these large-area SiPM arrays, combined with a 16-channel SCD readout board, can offer high spatial resolution, excellent energy resolution and detector uniformity and thus, can be used for positron emission imaging applications.

C03007

, , , , , and

24th International congress on x-ray optics and microanalysis (IXCOM24)

Turkey red is a traditional pigment for textile dyeing and its use has been proven for various cultures within the last three millennia. The pigment is a dye-mordant complex consisting of Al and an extract from R. tinctorum that contains mainly the anthraquinone derivative alizarin. The chemical structure of the complex has been analyzed by various spectroscopic and crystallographic techniques for extractions from textiles or directly in solution. We present an in-situ study of Turkey red by means of μ-XRF mapping and NEXAFS spectroscopy on textile fibres dyed according to a traditional process to gain insight into the coordination chemistry of the pigment in realistic matrix. We find an octahedral coordination of Al that corresponds well to the commonly accepted structure of the Al alizarin complex derived from ex-situ studies.

C03006

, , and

Calorimetry for the High Energy Frontier (CHEF2017)

The proposed Iron Calorimeter (ICAL) at India-based Neutrino Observatory (INO) will be a 50 kt magnetised iron detector for the detection of atmospheric neutrinos. The atmospheric neutrinos interact via both charged current (CC) and neutral current (NC) interactions with the target iron to produce the detectable final state particles. While CC νμ (bar nuμ) leave a muon track and a hadron shower in the detector, the NC will leave only a hadron shower apart from the secondary invisible neutrino. A GEANT4 based simulation studies to reconstruct hadron showers in CC and NC, using two techniques namely the Orientation Matrix Method (OMM) and the Raw Hit Method (RHM) are presented here. While OMM requires information about the interaction vertex obtained from muon track reconstruction, RHM requires only the shower hit positions and timings and no vertex information and hence can be used for NC events as well. Hadrons from neutrino events generated with NUANCE neutrino generator are analysed. For hadrons in the energy range 0.5–15 GeV produced in CC νμ and bar nuμ interactions, a Δθ'h resolution of around 19o−9o (around 20.5o−12o) is obtained in the |cosθ'h|=[0.8, 1] bin with OMM (RHM). For NC events in the same true energy and direction bins, Δθ'h resolution varies from around 20.5o−13o, from RHM only. OMM (RHM) gives a resolution of about 55o−20o (38o−14o) for the angle between the muon and the hadron shower, βμ h', in the [E'had;cos θ'h] range [0.5–15 GeV; [0.8,1.0]].

C03005

and

Calorimetry for the High Energy Frontier (CHEF2017)

The final phase of the CMS Hadron Forward Calorimeters Phase I Upgrade was performed during the Extended Year End Technical Stop of 2016–2017. In the framework of the upgrade, the PMT boxes were reworked to implement two channel readout in order to exploit the benefits of the multi-anode PMTs in background tagging and signal recovery. The front-end electronics were also upgraded to QIE10-based electronics which implement larger dynamic range and a 6-bit TDC. Following this major upgrade, the Hadron Forward Calorimeters were commissioned for operation readiness in 2017. Here we describe the details and the components of the upgrade, and discuss the operational experience and results obtained during the upgrade and commissioning.

C03004

, , , , , , , , , et al

International Workshop on Fast Cherenkov Detectors - Photon detection, DIRC design and DAQ (DIRC2017)

The PANDA experiment at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) near GSI, Darmstadt, Germany will address fundamental questions of hadron physics. Excellent Particle Identification (PID) over a large range of solid angles and particle momenta will be essential to meet the objectives of the rich physics program. Charged PID for the barrel region of the PANDA target spectrometer will be provided by a DIRC (Detection of Internally Reflected Cherenkov light) detector. The Barrel DIRC will cover the polar angle range of 22o–140o and cleanly separate charged pions from kaons for momenta between 0.5 GeV/c and 3.5 GeV/c with a separation power of at least 3 standard deviations. The design is based on the successful BABAR DIRC and the SuperB FDIRC R&D with several important improvements to optimize the performance for PANDA, such as a focusing lens system, fast timing, a compact fused silica prism as expansion region, and lifetime-enhanced Microchannel-Plate PMTs for photon detection. This article describes the technical design of the PANDA Barrel DIRC and the result of the design validation using a "vertical slice" prototype in hadronic particle beams at the CERN PS.

C03003

and

Calorimetry for the High Energy Frontier (CHEF2017)

The High Luminosity LHC (HL-LHC) will require a significant upgrade of the readout electronics for the CMS Electromagnetic Calorimeter (ECAL). The Very Front-End (VFE) output signal will be sampled at 160 MS/s (i.e. four times the current sampling rate) with a 13 bits resolution. Therefore, a high-speed, high-resolution ADC is required. Moreover, each readout channel will produce 2.08 Gb/s, thus requiring a fast data transmission circuitry. A new readout architecture, based on two 12 bit, 160 MS/s ADCs, lossless data compression algorithms and fast serial links have been developed for the ECAL upgrade. These functions will be integrated in a single ASIC which is currently under design in a commercial CMOS 65 nm technology using radiation damage mitigation techniques.

C03002

, , , , , , , and

Calorimetry for the High Energy Frontier (CHEF2017)

The India based Neutrino Observatory (INO) is a proposed particle physics research project to study the atmospheric neutrinos. INO-Iron Calorimeter (ICAL) will consist of 28,800 detectors having 3.6 million electronic channels expected to activate with 100 Hz single rate, producing data at a rate of 3 GBps. Data collected contains a few real hits generated by muon tracks and the remaining noise-induced spurious hits. Estimated reduction factor after filtering out data of interest from generated data is of the order of 103. This makes trigger generation critical for efficient data collection and storage. Trigger is generated by detecting coincidence across multiple channels satisfying trigger criteria, within a small window of 200 ns in the trigger region. As the probability of neutrino interaction is very low, track detection algorithm has to be efficient and fast enough to process 5 × 10 events-candidates/s without introducing significant dead time, so that not even a single neutrino event is missed out. A hardware based trigger system is presently proposed for on-line track detection considering stringent timing requirements. Though the trigger system can be designed with scalability, a lot of hardware devices and interconnections make it a complex and expensive solution with limited flexibility. A software based track detection approach working on the hit information offers an elegant solution with possibility of varying trigger criteria for selecting various potentially interesting physics events. An event selection approach for an alternative triggerless readout scheme has been developed. The algorithm is mathematically simple, robust and parallelizable. It has been validated by detecting simulated muon events for energies of the range of 1 GeV–10 GeV with 100% efficiency at a processing rate of 60 μs/event on a 16 core machine. The algorithm and result of a proof-of-concept for its faster implementation over multiple cores is presented. The paper also discusses about harnessing the computing capabilities of multi-core computing farm, thereby optimizing number of nodes required for the proposed system.

C03001

, and

11th International Conference on Position Sensitive Detectors (PSD11)

This paper describes the readout components for Belle II that have been designed as integrated circuits. The ICs are connected to DEPFET sensor by bump bonding. Three types of ICs have been developed: SWITCHER for pixel matrix control, DCD for readout and digitizing of sensor signals and DHP for digital data processing. The ICs are radiation tolerant and use several novel features, such as the multiple-input differential amplifiers and the fast and radiation hard high-voltage drivers. SWITCHER and DCD have been developed at University of Heidelberg, Karlsruhe Institute of Technology (KIT) and DHP at Bonn University. The IC-development started in 2009 and was accomplished in 2016 with the submissions of final designs. The final ICs for Belle II pixel detector and the related measurement results will be presented in this contribution.

Technical reports

T03006
The following article is Free article

, , , , , , , , , et al

Cornell's Electron/positron Storage Ring (CESR-TA)

After operating as a High Energy Physics electron-positron collider, the Cornell Electron-positron Storage Ring (CESR) has been converted to become a dedicated synchrotron light source for the Cornell High Energy Synchrotron Source (CHESS). Over the course of several years CESR was adapted for accelerator physics research as a test accelerator, capable of studying topics relevant to future damping rings, colliders and light sources. Initially some specific topics were targeted for accelerator physic research with the storage ring in this mode, labeled CesrTA. These topics included 1) tuning techniques to produce low emittance beams, 2) the study of electron cloud (EC) development in a storage ring and 3) intra-beam scattering effects. The complete conversion of CESR to CesrTA occurred over a several year period, described elsewhere [1–3]. A number of specific instruments were developed for CesrTA. Much of the pre-existing instrumentation was modified to accommodate the scope of these studies and these are described in a companion paper [4]. To complete this research, a number of procedures were developed or modified, often requiring coordinated measurements among different instruments [5]. This paper provides an overview of types of measurements employed for the study of beam dynamics during the operation of CesrTA.

T03005

, , , , , and

In this paper, we report the measurement of the neutron radiation hardness of custom Silicon Photomultipliers arrays (SiPMs) manufactured by three companies: Hamamatsu (Japan), AdvanSiD (Italy) and SensL (Ireland). These custom SiPMs consist of a 2×3 array of 6×6 mm2 monolithic cells with pixel sizes of respectively 50 μm (Hamamatsu and SensL) and 30 μm (AdvanSiD). A sample from each vendor has been exposed to neutrons generated by the Elbe Positron Source facility (Dresden), up to a total fluence of ∼ 8.5 × 1011 n1 MeV/cm2. Test results show that the dark current increases almost linearly with the neutron fluence. The room temperature annealing was quantified by measuring the dark current two months after the irradiation test. The dependence of the dark current on the device temperature and on the applied bias have been also evaluated.

T03004
The following article is Open access

, , , , , , , , , et al

In the high luminosity era of the Large Hadron Collider, the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. To cope with the resultant increase in occupancy, bandwidth and radiation damage, the ATLAS Inner Detector will be replaced by an all-silicon system, the Inner Tracker (ITk). The ITk consists of a silicon pixel and a strip detector and exploits the concept of modularity. Prototyping and testing of various strip detector components has been carried out. This paper presents the developments and results obtained with reduced-size structures equivalent to those foreseen to be used in the forward region of the silicon strip detector. Referred to as petalets, these structures are built around a composite sandwich with embedded cooling pipes and electrical tapes for routing the signals and power. Detector modules built using electronic flex boards and silicon strip sensors are glued on both the front and back side surfaces of the carbon structure. Details are given on the assembly, testing and evaluation of several petalets. Measurement results of both mechanical and electrical quantities are shown. Moreover, an outlook is given for improved prototyping plans for large structures.

T03003

, , , , and

The Jiangmen Neutrino Underground Observatory (JUNO) is a 20 kton liquid scintillator detector currently under construction near Kaiping in China. The physics program focuses on the determination of the neutrino mass hierarchy with reactor anti-neutrinos. For this purpose, JUNO is located 650 m underground with a distance of 53 km to two nuclear power plants. As a result, it is exposed to a muon flux that requires a precise muon reconstruction to make a veto of cosmogenic backgrounds viable. Established muon tracking algorithms use time residuals to a track hypothesis. We developed an alternative muon tracking algorithm that utilizes the geometrical shape of the fastest light. It models the full shape of the first, direct light produced along the muon track. From the intersection with the spherical PMT array, the track parameters are extracted with a likelihood fit. The algorithm finds a selection of PMTs based on their first hit times and charges. Subsequently, it fits on timing information only. On a sample of through-going muons with a full simulation of readout electronics, we report a spatial resolution of 20 cm of distance from the detector's center and an angular resolution of 1.6o over the whole detector. Additionally, a dead time estimation is performed to measure the impact of the muon veto. Including the step of waveform reconstruction on top of the track reconstruction, a loss in exposure of only 4% can be achieved compared to the case of a perfect tracking algorithm. When including only the PMT time resolution, but no further electronics simulation and waveform reconstruction, the exposure loss is only 1%.

T03002

, , , and

The beam produced by a thermionic RF gun has wide energy spread that makes it unsuitable for direct usage in photon sources. Here in the present work, we optimize the extracted beam from a thermionic RF gun by a compact economical bunch compressor. A compact magnetic bunch compressor (Alpha magnet) is designed and constructed. A comparison between simulation results and experimental measurements shows acceptable conformity. The beam dynamics simulation results show a reduction of the energy spread as well as a compression of length less than 1 ps with 2.3 mm-mrad emittance.

T03001
The following article is Open access

, , , , , , , , , et al

A novel detector for ionization signals in a single phase LAr-TPC has been experimented in the ICARINO test facility at the INFN Laboratories in Legnaro. It is based on the adoption of a multilayer Large Electron Multiplier (LEM) replacing the traditional anodic wire arrays. Cosmic muon tracks were detected allowing the measurement of energy deposition and a first determination of the signal to noise ratio. The analysis of the recorded events demonstrated the 3D reconstruction capability of this device for ionizing events in liquid Argon. The collected fraction of ionization charge is close to about 90%, with signal to noise ratio similar to that measured with more traditional wire chambers.