This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Papers

P07028

, , , , , , , and

The Compressed Baryonic Matter-Time of Flight (CBM-TOF) wall uses high performance of Multi-gap Resistive Plate Chambers (MRPC) assembled in super modules to identify charged particles with high channel density and high measurement precision at high event rate. Electronics meet the challenge for reading data out from a super module at high speed of about 6 Gbps in real time. In this paper, the readout electronics for CBM-TOF super module quality evaluation is proposed based on 10 Gigabit Ethernet. The digitized TOF data from one super module will be concentrated at the front-end electronics residing on the side of the super module and transmitted to an extreme speed readout module (XSRM) housed in the backend crate through the PCI Express (PCIe) protocol via optic channels. Eventually, the XSRM transmits data to the data acquisition (DAQ) system through four 10 Gbps Ethernet ports in real time. This readout structure has advantages of high performance and expansibility. Furthermore, it is easy to operate. Test results on the prototype show that the overall data readout performance for each XSRM can reach up to 28.8 Gbps, which means XSRM can meet the requirement of reading data out from 4 super modules with 1280 channels in real time.

P07027

, , , , , , , , , et al

Electron Cyclotron Resonance Ion Sources are currently the most efficient ion sources among those used in facilities dedicated to nuclear physics. The need for a more flexible magnetic field and RF injection system suggested to design and develop a different type of plasma trap, named Flexible Plasma Trap (FPT). The magnetic field of FPT is generated by means of three coils while microwaves in the range 4–7 GHz can be injected by three different inputs, one placed along the axis and two placed radially. FPT can work in different plasma heating schemes so it will be an ideal tool for studies of plasma and multidisciplinary physics. Moreover, a microwave launcher has been designed and installed to the FPT for launching microwaves with a variable tilt angle with respect to the magnetic field. This paper describes the characteristics of the FPT along with the preliminary results of plasma diagnostics.

P07026

, , and

Hamamatsu Photonics introduced a new generation of their Multi-Pixel Photon Counters in 2013 with significantly reduced after-pulsing rate. In this paper, we investigate the causes of after-pulsing by testing pre-2013 and post-2013 devices using laser light ranging from 405 to 820 nm. Doing so we investigate the possibility that afterpulsing is also due to optical photons produced in the avalanche rather than to impurities trapping charged carriers produced in the avalanches and releasing them at a later time. For pre-2013 devices, we observe avalanches delayed by ns to several 100 ns at 637, 777 nm and 820 nm demonstrating that holes created in the zero field region of the silicon bulk can diffuse back to the high field region triggering delayed avalanches. On the other hand post-2013 exhibit no delayed avalanches beyond 100 ns at 777 nm. We also confirm that post-2013 devices exhibit about 25 times lower after-pulsing. Taken together, our measurements show that the absorption of photons from the avalanche in the bulk of the silicon and the subsequent hole diffusion back to the junction was a significant source of after-pulse for the pre-2013 devices. Hamamatsu appears to have fixed this problem in 2013 following the preliminary release of our results. We also show that even at short wavelength the timing distribution exhibit tails in the sub-nanosecond range that may impair the MPPC timing performances.

P07025

, , , , , , , , and

The distribution and control of temperature analyses during the brazing of lengthy accelerating structures, by induction heating usage, have been carried out. The problem of individual elements positioning, relative to each other during brazing, is solved. The results of metallographic studies for brazing zones are shown.

P07024
The following article is Open access

, , , , , , , and

This paper describes the new Antiproton Decelerator (AD) orbit measurement system and the Extra Low ENergy Antiproton ring (ELENA) orbit, trajectory and intensity measurement system. The AD machine at European Organization for Nuclear Research (CERN) is presently being used to decelerate antiprotons from 3.57 GeV/c to 100 MeV/c for matter vs anti-matter comparative studies. The ELENA machine, presently under commissioning, has been designed to provide an extra deceleration stage down to 13.7 MeV/c. The AD orbit system is based on 32 horizontal and 27 vertical electrostatic Beam Position Monitor (BPM) fitted with existing low noise front-end amplifiers while the ELENA system consists of 24 \gls{BPM}s equipped with new low-noise head amplifiers. In both systems the front-end amplifiers generate a difference (delta) and a sum (sigma) signal which are sent to the digital acquisition system, placed tens of meters away from the AD or ELENA rings, where they are digitized and further processed. The beam position is calculated by dividing the difference signal by the sum signal either using directly the raw digitized data for measuring the turn-by-turn trajectory in the ELENA system or after down-mixing the signals to baseband for the orbit measurement in both machines. The digitized sigma signal will be used in the ELENA system to calculate the bunched beam intensity and the Schottky parameters with coasting beam after passing through different signal processing chain. The digital acquisition arrangement for both systems is based on the same hardware, also used in the ELENA Low Level Radio Frequency (LLRF) system, which follows the VME Switched Serial (VXS) enhancement of the Versa Module Eurocard 64x extension (VME64x) standard and includes VITA 57 standard Field Programmable Gate Array Mezzanine Card (FMC). The digital acquisition Field Programmable Gate Array (FPGA) and Digital Signal Processor (DSP) firmware shares many common functionalities with the LLRF system but has been tailored for this measurement application in particular. Specific control and acquisition software has been developed for these systems. Both systems are installed in AD and ELENA. The AD orbit system currently measures the orbit in AD while the ELENA system is being used in the commissioning of the ELENA ring.

P07023
The following article is Open access

, and

Pulse shape discrimination performances of single stilbene crystal, pure plastic and 6Li loaded plastic scintillators have been compared. Three pulse shape discrimination algorithms have been tested for each scintillator sample, assessing their quality of neutron/gamma separation. Additionally, the digital implementation feasibility of each algorithm in a real-time embedded system was evaluated. Considering the pixelated architecture of the coded-aperture imaging system, a reliable method of simultaneous multi-channel neutron/gamma discrimination was sought, accounting for the short data analysis window available for each individual channel. In this study, each scintillator sample was irradiated with a 252Cf neutron source and a bespoke digitiser system was used to collect the data allowing detailed offline examination of the sampled pulses. The figure-of-merit was utilised to compare the discrimination quality of the collected events with respect to various discrimination algorithms. Single stilbene crystal presents superior neutron/gamma separation performance when compared to the plastic scintillator samples.

P07022

, , , , , , , , , et al

Back-streaming neutrons through the incoming proton channel at the spallation target station of China Spallation Neutron Source (CSNS) has been exploited as a white neutron beam line (so-called Back-n), and a number of spectrometers for nuclear data measurements have been planned. With a thick tungsten target and modest moderation by the cooling water through the target slices, the neutron beam is very intense which is in the order of 5.0×106 n/cm2/s at 80 m from the target and has an excellent energy spectrum spanning from 1 eV to 100 MeV. In addition, the time structure of the primary proton beam under different accelerator operation modes is fully applicable for time-of-flight measurements. Altogether, it makes the CSNS Back-n very much suitable for nuclear data measurements. The construction of the neutron beam line and five of the seven planned spectrometers are under way. It is expected that the first batch experiments be carried out from late 2017, when CSNS starts commissioning.

P07021

and

Radiation hardness of a 50 μ m thin YAG:Ce scintillator in a form of dependence of a signal efficiency on 3.1 MeV proton fluence was measured and analysed using X-ray beam. The signal efficiency is a ratio of signals given by a CCD chip after and before radiation damage. The CCD chip was placed outside the primary beam because of its protection from damage which could be caused by radiation. Using simplified assumptions, the 3.1 MeV proton fluences were recalculated to:

⋅ 150 MeV proton fluences with intention to estimate radiation damage of this sample under conditions at proton therapy centres during medical treatment,

⋅ 150 MeV proton doses with intention to give a chance to compare radiation hardness of the studied sample with radiation hardness of other detectors used in medical physics,

⋅ 1 MeV neutron equivalent fluences with intention to compare radiation hardness of the studied sample with properties of position sensitive silicon and diamond detectors used in nuclear and particle physics.

The following results of our research were obtained. The signal efficiency of the studied sample varies slightly (± 3%) up to 3.1 MeV proton fluence of c. (4 − 8) × 1014 cm−2. This limit is equivalent to 150 MeV proton fluence of (5 − 9) × 1016 cm−2, 150 MeV proton dose of (350 − 600) kGy and 1 MeV neutron fluence of (1 − 2) × 1016 cm−2. Beyond the limit, the signal efficiency goes gradually down. Fifty percent decrease in the signal efficiency is reached around 3.1 MeV fluence of (1 − 2) × 1016 cm−2 which is equivalent to 150 MeV proton fluence of around 2 × 1018 cm−2, 150 MeV proton dose of around 15 MGy and 1 MeV neutron equivalent fluence of (4 − 8) × 1017 cm−2. In contrast with position sensitive silicon and diamond radiation detectors, the studied sample has at least two order of magnitude greater radiation resistance. Therefore, YAG:Ce scintillator is a suitable material for monitoring of primary beams of particles of ionizing radiation.

P07020
The following article is Free article

, , , , , , , , and

Muon Accelerators for Particle Physics (MUON)

Neutrino beams produced from the decay of muons in a racetrack-like decay ring (the so called Neutrino Factory) provide a powerful way to study neutrino oscillation physics and, in addition, provide unique beams for neutrino interaction studies. The Neutrinos from STORed Muons (nuSTORM) facility uses a neutrino factory-like design. Due to the particular nature of nuSTORM, it can also provide an intense, very pure, muon neutrino beam from pion decay. This so-called "Neo-conventional" muon-neutrino beam from nuSTORM makes nuSTORM a hybrid neutrino factory. In this paper we describe the facility and give a detailed description of the neutrino beams that are available and the precision to which they can be characterized. We then show its potential for a neutrino interaction physics program and present sensitivity plots that indicate how well the facility can perform for short-baseline oscillation searches. Finally, we comment on the performance potential of a "Neo-conventional" muon neutrino beam optimized for long-baseline neutrino-oscillation physics.

P07019

, , , , and

Proton precession magnetometer is a high-precision device for weak magnetostatic field measurement. The measurement accuracy depends on the frequency measurement of free induction decay (FID) signal, while the signal to noise ratio (SNR) is an important factor affecting the results. Many signal processing methods have been proposed to improve the SNR of FID signal. However, the theoretical analysis of different types of noises for FID signal has not be conducted yet. In addition, the relationship between the frequency measurement accuracy and SNR has not been explicitly established and quantified. This paper first proposes a background noise model based on the extracted features from the FID signal. With this model, background noises, such as white noise, narrow-band noise, and phase noise etc., can be calculated and estimated. Secondly, the relationship between the frequency measurement accuracy and SNR is identified. We also built a prototype proton magnetometer for field tests and validation purpose. Experiments were conducted to investigate this relation through simulation. Different values for frequency accuracy were obtained with different SNRs from the acquired FID signals from field tests. The consistence between the measurement and computational results is observed. When SNR is larger than 30 dB, the absolute frequency accuracy becomes constant which is about 0.04 Hz. With the stability taken into account, the accuracy can be better even when the SNR is higher than 30 dB. This study provides a reference to optimize the design of proton precession magnetometer and the frequency calculation for FID signal.

P07018
The following article is Free article

, and

Muon Accelerators for Particle Physics (MUON)

The goal of nuSTORM is to provide well-defined neutrino beams for precise measurements of neutrino cross-sections and oscillations. The nuSTORM decay ring is a compact racetrack storage ring with a circumference of ∼ 480 m that incorporates large aperture (60 cm diameter) magnets. There are many challenges in the design. In order to incorporate the Orbit Combination section (OCS), used for injecting the pion beam into the ring, a dispersion suppressor is needed adjacent to the OCS . Concurrently, in order to maximize the number of useful muon decays, strong bending dipoles are needed in the arcs to minimize the arc length. These dipoles create strong chromatic effects, which need to be corrected by nonlinear sextupole elements in the ring. In this paper, a FODO racetrack ring design and its optimization using sextupolar fields via both a Genetic Algorithm (GA) and a Simulated Annealing (SA) algorithm will be discussed.

P07017

, , , and

The luminescent dosimeters are widely used in clinical practice, for the monitoring of patient dose in external radiation therapy. Three of the most common dosimeter categories are the thermoluminescence (TLDs), the radiophotoluminescence (RPLs) and the optically stimulated luminescence (OSLs), with similar physical processes on their properties. The aim of the present study is to compare and evaluate the dosimetric properties of three specific luminescent detectors namely: a) RPL glass dosimeter, commercially known as GD-301, b) lithium fluoride TLD-100 (LiF:Mg,Ti) and c) carbon-doped aluminum oxide (Al2O3:C). For this purpose, Monte Carlo simulations were applied, using the MCNP5 code to estimate the responses of these dosimeters in terms of absorbed dose, output factor, the angular and energy dependence. In the present study, we found that the differences between the output factors were less than ± 4.2% for all detector materials RPLGD, TLD and OSLD. The variations in sensitivity for angles up to ± 80 degrees from the central axis of the beam were approximately 0.5%, 0.8% and 1.5% for the TLD-100, GD-301 and Al2O3:C, respectively. The energy dependence of the RPL and OSL dosimeters are stated as less than a 2.2%, and within 5.8% for TLD.

P07016

, , , and

The aim of this paper is design and implementation of an up-to-date control room. The previous control room had a lot of constraints and it was not apposite to the sophisticated diagnostic systems as well as to the modern control and multivariable systems. Although it provided the best output for the considered experiments and implementing offline algorithms among all similar plants, it needed to be developed to provide more capability for complex algorithm mechanisms and this work introduces our efforts in this area. Accordingly, four leading systems were designed and implemented, including real-time control system, online Data Acquisition System (DAS), offline DAS, monitoring and data transmission system. In the control system, three real-time control modules were established based on Digital Signal Processor (DSP). Thanks to them, implementation of the classic and linear and nonlinear intelligent controllers was possible to control the plasma position and its elongation. Also, online DAS was constructed in two modules. Using them, voltages and currents of charge for the capacitor banks and pressure of different parts in vacuum vessel were measured and monitored. Likewise, by real-time processing of the online data, the safety protocol of plant performance was accomplished. In addition, the offline DAS was organized in 13 modules based on Field Programmable Gate Array (FPGA). This system can be used for gathering all diagnostic, control, and performance data in 156 channels. Data transmission system and storing mechanism in the server was provided by data transmitting network and MDSplus standard protocol. Moreover, monitoring software was designed so that it could display the required plots for physical analyses. Taking everything into account, this new platform can improve the quality and quantity of research activities in plasma physics for Damavand tokamak.

P07015

, , , , , , , , , et al

Particle therapy is an advanced cancer therapy that uses a feature known as the Bragg peak, in which particle beams suddenly lose their energy near the end of their range. The Bragg peak enables particle beams to damage tumors effectively. To achieve precise therapy, the demand for accurate and quantitative imaging of the beam irradiation region or dosage during therapy has increased. The most common method of particle range verification is imaging of annihilation gamma rays by positron emission tomography. Not only 511-keV gamma rays but also prompt gamma rays are generated during therapy; therefore, the Compton camera is expected to be used as an on-line monitor for particle therapy, as it can image these gamma rays in real time. Proton therapy, one of the most common particle therapies, uses a proton beam of approximately 200 MeV, which has a range of ∼ 25 cm in water. As gamma rays are emitted along the path of the proton beam, quantitative evaluation of the reconstructed images of diffuse sources becomes crucial, but it is far from being fully developed for Compton camera imaging at present. In this study, we first quantitatively evaluated reconstructed Compton camera images of uniformly distributed diffuse sources, and then confirmed that our Compton camera obtained 3 %(1 σ) and 5 %(1 σ) uniformity for line and plane sources, respectively. Based on this quantitative study, we demonstrated on-line gamma imaging during proton irradiation. Through these studies, we show that the Compton camera is suitable for future use as an on-line monitor for particle therapy.

P07014

, , , and

We present a conceptual sampling electromagnetic calorimeter based on secondary electron emission process. The secondary electron emission process was implemented in Geant4 as a user physics class, which accurately reproduces the energy spectrum and yield of secondary electrons for thin metals. The simulation results for the response linearity and energy resolution are compared with that of a scintillation calorimeter. The response and energy resolution of the calorimeter were obtained for electron energies up to 50 GeV . The response linearity to electromagnetic showers is to within 1.5%, whereas the energy resolution is σ/E = (44%) GeV1/2/√E for 2.5 cm sampling of iron absorber.

P07013

, , , and

A simulation study of energy resolution, position resolution, and π0-γ separation using multivariate methods of a sampling calorimeter is presented. As a realistic example, the geometry of the calorimeter is taken from the design geometry of the Shashlik calorimeter which was considered as a candidate for CMS endcap for the phase II of LHC running. The methods proposed in this paper can be easily adapted to various geometrical layouts of a sampling calorimeter. Energy resolution is studied for different layouts and different absorber-scintillator combinations of the Shashlik detector. It is shown that a boosted decision tree using fine grained information of the calorimeter can perform three times better than a cut-based method for separation of π0 from γ over a large energy range of 20 GeV–200 GeV.

P07012

and

The digital integration method based on using high-speed precision analog-to-digital converters (ADC) has become widely used over the recent years. The paper analyzes the limitations of this method that are caused by the signal properties, ADC sampling rate and noise spectral density of the ADC signal path. This analysis allowed creating digital integrators with accurate synchronization and achieving an integration error of less than 10−5 in the time range from microseconds to tens of seconds. The structure of the integrator is described and its basic parameters are presented. The possibilities of different ADC chips in terms of their applicability to digital integrators are discussed. A comparison with other integrating devices is presented.

P07011

, , , and

In the upgrade of ATLAS experiment [1], the front-end electronics components are subjected to a large radiation background. Meanwhile high speed optical links are required for the data transmission between the on-detector and off-detector electronics. The GBT architecture and the Versatile Link (VL) project are designed by CERN to support the 4.8 Gbps line rate bidirectional high-speed data transmission which is called GBT link [2]. In the ATLAS upgrade, besides the link with on-detector, the GBT link is also used between different off-detector systems. The GBTX ASIC is designed for the on-detector front-end, correspondingly for the off-detector electronics, the GBT architecture is implemented in Field Programmable Gate Arrays (FPGA). CERN launches the GBT-FPGA project to provide examples in different types of FPGA [3]. In the ATLAS upgrade framework, the Front-End LInk eXchange (FELIX) system [4, 5] is used to interface the front-end electronics of several ATLAS subsystems. The GBT link is used between them, to transfer the detector data and the timing, trigger, control and monitoring information. The trigger signal distributed in the down-link from FELIX to the front-end requires a fixed and low latency. In this paper, several optimizations on the GBT-FPGA IP core are introduced, to achieve a lower fixed latency. For FELIX, a common firmware will be used to interface different front-ends with support of both GBT modes: the forward error correction mode and the wide mode. The modified GBT-FPGA core has the ability to switch between the GBT modes without FPGA reprogramming. The system clock distribution of the multi-channel FELIX firmware is also discussed in this paper.

P07010

This document describes a reconstruction chain that was developed for the ArgoNeuT and MicroBooNE experiments at Fermilab. These experiments study accelerator neutrino interactions that occur in a Liquid Argon Time Projection Chamber. Reconstructing the properties of particles produced in these interactions benefits from the knowledge of the micro-physics processes that affect the creation and transport of ionization electrons to the readout system. A wire signal deconvolution technique was developed to convert wire signals to a standard form for hit reconstruction, to remove artifacts in the electronics chain and to remove coherent noise. A unique clustering algorithm reconstructs line-like trajectories and vertices in two dimensions which are then matched to create of 3D objects. These techniques and algorithms are available to all experiments that use the LArSoft suite of software.

P07009

and

Mammographic density is considered a major risk factor for developing breast cancer. This paper proposes an automated approach to classify breast tissue types in digital mammogram. The main objective of the proposed Computer-Aided Diagnosis (CAD) system is to investigate various feature extraction methods and classifiers to improve the diagnostic accuracy in mammogram density classification. Texture analysis methods are used to extract the features from the mammogram. Texture features are extracted by using histogram, Gray Level Co-Occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Difference Matrix (GLDM), Local Binary Pattern (LBP), Entropy, Discrete Wavelet Transform (DWT), Wavelet Packet Transform (WPT), Gabor transform and trace transform. These extracted features are selected using Analysis of Variance (ANOVA). The features selected by ANOVA are fed into the classifiers to characterize the mammogram into two-class (fatty/dense) and three-class (fatty/glandular/dense) breast density classification. This work has been carried out by using the mini-Mammographic Image Analysis Society (MIAS) database. Five classifiers are employed namely, Artificial Neural Network (ANN), Linear Discriminant Analysis (LDA), Naive Bayes (NB), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM). Experimental results show that ANN provides better performance than LDA, NB, KNN and SVM classifiers. The proposed methodology has achieved 97.5% accuracy for three-class and 99.37% for two-class density classification.

P07008

, , and

To achieve a quality neutron radiographic image in a relatively short exposure time, the neutron radiography beam must be of good quality and relatively high neutron flux. Characterization of a neutron radiography beam, such as determination of the image quality and the neutron flux, is vital for producing quality radiographic images and also provides a means to compare the quality of different neutron radiography facilities. This paper provides a characterization of the radial and tangential neutron radiography beamlines at the Tehran research reactor. This work includes determination of the facilities category according to the American Society for Testing and Materials (ASTM) standards, and also uses the gold foils to determine the neutron beam flux. The radial neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. The tangential beam is a Category IV neutron radiography facility. Gold foil activation experiments show that the measured neutron flux for radial beamline with length-to-diameter ratio (L/D) =150 is 6.1× 106 n cm−2 s−1 and for tangential beamline with (L/D)=115 is 2.4× 104 n cm−2 s−1.

P07007

, , , , , , and

In this paper we present experimental results for ion reduced mobilities (K0) in gaseous trimethylamine, TMA—(CH3)3N, and xenon-TMA mixtures for reduced electric fields E/N between 7.5 and 60 Td and in the pressure range from 0.5 to 10 Torr, at room temperature. Both in the mixtures and in pure TMA only one peak was observed in the time of arrival spectra, which is believed to be due to two TMA ions with similar mass, (CH3)3N+ (59 u) and (CH3)2CH2N+ (58 u), whose mobility is indistinguishable in our experimental system. The possibility of ion cluster formation is also discussed. In pure TMA, for the E/N range investigated, an average value of 0.56 cm2V−1s−1 was obtained for the reduced mobility of TMA ions. For the studied mixtures, it was observed that even a very small amount of gaseous TMA (∼0.2%) in xenon leads to the production of the above referred TMA ions or clusters. The reduced mobility value of this ion or ions in Xe-TMA mixtures is higher than the value in pure TMA: around 0.8 cm2V−1s−1 for TMA concentrations from 0.2% to about 10%, decreasing for higher TMA percentages, eventually converging to the reduced mobility value in pure TMA.

P07006
The following article is Open access

, , , , , , , , , et al

The High Luminosity Upgrade of the LHC will require the replacement of the Inner Detector of ATLAS with the Inner Tracker (ITk) in order to cope with higher radiation levels and higher track densities. Prototype silicon strip detector modules are currently developed and their performance is studied in both particle test beams and X-ray beams. In previous test beam measurements of prototype modules, the response of silicon sensors has been studied in detailed scans across individual sensor strips. These scans found instances of sensor strips collecting charge across areas on the sensor deviating from the geometrical width of a sensor strip. The variations have been linked to local features of the sensor architecture. This paper presents results of detailed sensor measurements in both X-ray and particle beams investigating the impact of sensor features (metal pads and p-stops) on the sensor strip response.

P07005

, , and

TPC is a promising technology for the future electron positron colliders. However, its application might be limited at high event rate and high hit occupancies. In this paper, we study the feasibility of using TPC at the circular electron positron collider (CEPC) at Z pole using full simulated Z qbar q samples, by evaluating the local charge density and voxel occupancy at different TPC parameters. Our study shows that the TPC could be applied to the CEPC Z pole operation if back flow ion is controlled to per mille level. We also find that the distortion is considerable for the FCC-ee Z pole operation. And a few approaches are proposed to reduce the distortion.

P07004

, and

In this work, a new method is proposed for extracting some X-ray detection properties of ZnO nanowires electrodeposited on Anodized Aluminum Oxide (AAO) nanoporous template. The results show that the detection efficiency for 12μm thickness of zinc oxide nano scintillator at an energy of 9.8 keV, near the K-edge of ZnO (9.65 keV), is 24%. The X-rays that interact with AAO can also generate electrons that reach the nano scintillator. The scintillation events of these electrons are seen as a low energy tail in the spectrum. In addition, it is found that all the X-rays that are absorbed in 300 nm thickness of the gold layer on the top of the zinc oxide nanowires can participate in the scintillation process with an efficiency of 6%. Hence, the scintillation detection efficiency of the whole detector for 9.8 keV X-ray energy is 30%. The simulation results from Geant4 and the experimental detected photons per MeV energy deposition are also used to extract the light yield of the zinc oxide nano scintillator. The results show that the light yield of the zinc oxide nanowires deposited by the electrochemical method is approximately the same as for single crystal zinc oxide scintillator (9000). Much better spatial resolution of this nano scintillator in comparison to the bulk ones is an advantage which candidates this nano scintillator for medical imaging applications.

P07003

, , and

The impact of neutral impurity scattering of electrons on the charge drift mobility in high purity n-type germanium crystals at 77 Kelvin is investigated. We calculated the contributions from ionized impurity scattering, lattice scattering, and neutral impurity scattering to the total charge drift mobility using theoretical models. The experimental data such as charge carrier concentration, mobility and resistivity are measured by Hall Effect system at 77 Kelvin. The neutral impurity concentration is derived from the Matthiessen's rule using the measured Hall mobility and ionized impurity concentration. The radial distribution of the neutral impurity concentration in the self-grown crystals is determined. Consequently, we demonstrated that neutral impurity scattering is a significant contribution to the charge drift mobility, which has a dependence on the concentration of neutral impurities in high purity n-type germanium crystal.

P07002

and

Non-destructive technique based on visible (VIS) spectroscopy using light emitting diode (LED) as lighting was used for evaluation of the internal quality of mango fruit. The objective of this study was to investigate feasibility of white LED as lighting in spectroscopic instrumentation to predict the acidity and soluble solids content of intact Sala Mango. The reflectance spectra of the mango samples were obtained and measured in the visible range (400–700 nm) using VIS spectroscopy illuminated under different white LEDs and tungsten-halogen lamp (pro lamp). Regression models were developed by multiple linear regression to establish the relationship between spectra and internal quality. Direct calibration transfer procedure was then applied between master and slave lighting to check on the acidity prediction results after transfer. Determination of mango acidity under white LED lighting was successfully performed through VIS spectroscopy using multiple linear regression but otherwise for soluble solids content. Satisfactory results were obtained for calibration transfer between LEDs with different correlated colour temperature indicated this technique was successfully used in spectroscopy measurement between two similar light sources in prediction of internal quality of mango.

P07001

, , , , , , , , , et al

Fondazione Bruno Kessler (FBK) (Trento, Italy) has recently introduced High Density (HD) and Ultra High-Density (UHD) SiPMs, featuring very small micro-cell pitch. The high cell density is a very important factor to improve the linearity of the SiPM in high-dynamic-range applications, such as the scintillation light readout in high-energy gamma-ray spectroscopy and in prompt gamma imaging for proton therapy. The energy resolution at high energies is a trade-off between the excess noise factor caused by the non-linearity of the SiPM and the photon detection efficiency of the detector. To study these effects, we developed a new setup that simulates the LYSO light emission in response to gamma photons up to 30 MeV, using a pulsed light source. We measured the non-linearity and energy resolution vs. energy of the FBK RGB-HD e RGB-UHD SiPM technologies. We considered five different cell sizes, ranging from 10 μm up to 25 μm. With the UHD technology we were able to observe a remarkable reduction of the SiPM non-linearity, less than 5% at 5 MeV with 10 μm cells, which should be compared to a non-linearity of 50% with 25 μm-cell HD-SiPMs. With the same setup, we also measured the different components of the energy resolution (intrinsic, statistical, detector and electronic noise) vs. cell size, over-voltage and energy and we separated the different sources of excess noise factor.

Conference proceedings

C07044

, , , , , , , , , et al

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

Since 2010 the CMD-3 detector has been collecting data at the e+e collider VEPP-2000 in the Budker Institute of Nuclear Physics. One of the main goals of experiments with CMD-3 detector is the precise measurement of the cross sections of the e+e annihilation into hadrons. For a large number of processes the main source of systematic uncertainty in cross sections determination due to accuracy of polar angles determination of the tracks. Z-chamber is used for the reconstruction of the track longitudinal coordinate which is with low systematic uncertainty. The measurement of longitudinal coordinates is performed by the collecting of the charge which is induced on the strip cathodes of the Z-chamber. The algorithms of the reconstruction of cathodes clusters and calibration procedure are presented.

C07043

, , , , , , , , , et al

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

The development of the new spectrometric channel for the SND electromagnetic calorimeter is described. The time resolution of about 1 ns is achieved at an energy deposition in the calorimeter crystal of 100 MeV . The amplitude resolution is about 250 keV.

C07042

, , , and

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

At high luminosity area, beam loss monitor with fast response and high radiation resistance is crucial for accelerator operation. In this article, we report the design and test results of a fast response and radiation-resistant scintillator detector as the beam loss monitor for high luminosity collider, especially at low energy region such as RFQ. The detector is consisted of a 2 cm× 2 cm× 0.5 cm LYSO crystal readout by a 6 mm × 6 mm Silicon photomultiplier. Test results from various radioactive sources show that the detector has good sensitivity to photons from tens of keV to several MeV with good linearity and energy resolution (23% for 60 keV γ-ray). For field test, two such detectors are installed outside of the vacuum chamber shell of an 800 MeV electron storage ring. The details of the test and results are introduced.

C07041

, , , , , , , , , et al

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

The particle identification system of the KEDR detector is based on aerogel threshold Cherenkov counters ASHIPH (Aerogel, SHifter, PHotomultiplier).The simulation program of the ASHIPH counters was developed on the base of the Geant3.21 package and integrated into the KEDR full detector simulation.

C07040

, , , , , , , , , et al

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

The CMD-3 detector has begun to take data at the electron-positron collider VEPP-2000 since december 2010. The collected data sample corresponds to an integrated luminosity of 60 pb−1 in the c.m. energy range from 0.32 up to 2 GeV and about 50pb−1 for RUN2017. The integrated luminosity was measured by counting e+e → e+e and e+e → γγ events, allowing additional photons in the final state. Preliminary results of the luminosity measurement are presented for various energy ranges and its accuracy is estimated to be 1%.

C07039

, , , and

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

In February 2016, the SuperKEKB positron-electron high-luminosity collider of the KEK laboratory (Tsukuba, Japan) started being commissioned. A dedicated commissioning detector, named BEAST2, has been used to characterize beam backgrounds before the Belle2 detector was rolled into the beams and to provide tuning parameters for Monte Carlo simulations. BEAST2 consists of a fiberglass support structure and several sub-detectors mounted onto it, including time projection chambers (TPCs) and He-3 tubes. In this work, we present direct measurements of radiation-induced single event upsets in a SRAM-based FPGA device installed in BEAST2 at a distance of ∼ 1 m from the beam interaction point. Our goal was to provide experimental results of the expected radiation-induced configuration upset rate and power consumption variation at Belle2 and at other experiments operating in similar radiation environments. Beam currents for both electron and positron rings spanned a range between 50 and 500 mA, therefore providing data about the FPGA operation in different radiation conditions. Even if the machine has not been providing collisions yet, as the beams were not focused to the interaction point, our results show a rate of 0.15 upsets/day averaged over the whole commissioning time frame. We had neither evidence of total dose effects on the FPGA power consumption nor of permanent damage to the device.

C07038

, , , , , , , , , et al

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

A cylindrical GEM detector is under development, to serve as an upgraded inner tracker at the BESIII spectrometer. It will consist of three layers of cylindrically-shaped triple GEMs surrounding the interaction point. The experiment is taking data at the e+e collider BEPCII in Beijing (China) and the GEM tracker will be installed in 2018. Tests on the performances of triple GEMs in strong magnetic field have been run by means of the muon beam available in the H4 line of SPS (CERN) with both planar chambers and the first cylindrical prototype. Efficiencies and resolutions have been evaluated using different gains, gas mixtures, with and without magnetic field. The obtained efficiency is 97–98% on single coordinate view, in many operational arrangements. The spatial resolution for planar GEMs has been evaluated with two different algorithms for the position determination: the charge centroid and the micro time projection chamber (μ-TPC) methods. The two modes are complementary and are able to cope with the asymmetry of the electron avalanche when running in magnetic field, and with non-orthogonal incident tracks. With the charge centroid, a resolution lower than 100 μm has been reached without magnetic field and lower than 200 μm with a magnetic field up to 1 T. The μ-TPC mode showed to be able to improve those results. In the first beam test with the cylindrical prototype, the detector had a very good stability under different voltage configurations and particle intensities. The resolution evaluation is in progress.

C07037

, , , , , , , , , et al

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

Micro-pattern gaseous detectors (MPGDs) allow operation at very high background particle flux with high efficiency and spatial resolution. This combination of parameters determines the main application of these detectors in particle physics experiments: precise tracking in the areas close to the beam and in the end-cap regions of general-purpose detectors. MPGDs of different configurations have been developed and are under development for several experiments in the Budker INP. The system of eight two-coordinate detectors based on a cascade of Gas Electron Multipliers (GEM) is working in the KEDR experiment at the VEPP-4M collider in the tagging system that detects electrons and positrons that lost their energy in two-photon interactions and left the equilibrium orbit due to a dedicated magnetic system. Another set of cascaded GEM detectors is developed for the almost-real Photon Tagging System (PTS) of the DEUTRON facility at the VEPP-3 storage ring. The PTS contains three very light detectors with very high spatial resolution (below 50 μm). Dedicated detectors based on cascaded GEMs are developed for the extracted electron beam facility at the VEPP-4M collider. These devices will allow precise particle tracking with minimal multiple scattering due to very low material content. An upgrade of the coordinate system of the CMD-3 detector at the VEPP-2000 collider is proposed on the basis of the resistive micro-WELL (μ-rWELL). A research activity on this subject has just started.

C07036

, , and

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

The goal of the extracted beam facility at the VEPP-4M collider is to test prototypes of new detectors for particle physics. Measurements taken at this installation require high-resolution low-mass tracking detectors to precisely determine particle trajectories. The high-resolution GEM-based tracking detector developed for this facility is described in this paper.

C07035

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

We have studied a system based on scintillator counters with WLS fiber light collection and SiPM readout for the Belle II experiment. We have identified a few simple improvements in the strip production technology which allow significant increases in the light collection efficiency, thus increasing the efficiency and robustness of the entire detector. The new system should work efficiently at background rates and radiation doses ∼100 times larger than those observed for the Belle experiment. As demonstrated by many tests, the system has sufficient robustness to operate well in a strong magnetic field and high radiation and interaction environment with no significant degradation anticipated after many years of data taking. While this system was designed for a particular experiment, namely Belle II, our study can be applied to the construction of muon systems in many experiments.

C07034

, and

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

The tagging system of the KEDR detector for the two-photon studies is briefly described. The procedure of the energy calibration of the system is considered. Two-photon events e+e → e+e +μ+μ selected with the central detector were employed to check the energy calibration and to measure the tagging efficiencies. The results obtained demonstrate that the achieved accuracy of the energy calibration is about 1%. To improve the accuracy to the level of 0.3% the upgrade of the calibration system is ongoing. The tagging efficiencies obtained with the simulation agree with the measured one within the error of the measurement.

C07032

, , , , , , , , , et al

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

The new SuperKEKB collider will be an upgrade of the existing KEKB electron-positron asymmetric machine, with a target luminosity of 8×1035 cm−2s−1, about 40 times greater than the previous one. The accelerator upgrade is based on the novel low-emittance "nanobeams" scheme. The detector will also be upgraded to cope with the higher luminosity, pile-up and occupancy. We report on the development of the new pure CsI calorimeter for the forward region. An intensive R&D has been carried out to study the performance of pure CsI crystals with Large Area Avalanche Photodiodes readout (LAAPD). Results on the signal to noise ratio for different sensors and front end electronics configurations will be presented as well as the use of filters and wavelength shifters. Measurements with a source, simulating the background machine, have been performed and will also be presented.

C07031

, , , , , , and

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

Design of central tracker system based on Double-Sided Silicon Detectors (DSSD) for BM@N experiment is described. A coordinate plane with 10240 measuring channels, pitch adapter, reading electronics was developed. Each element was tested and assembled into a coordinate plane. The first tests of the plane with 106Ru source were carried out before installation for the BM@N experiment. The results of the study indicate that noisy channels and inefficient channels are less than 3%. In general, single clusters 87% (one group per module of consecutive strips) and 75% of clusters with a width equal to one strip.

C07030

, , , , , and

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

We studied performances of two SiPMs before and after irradiation at the Lubljana reactor. These high density (15 μ m cell pitch size) SiPMs were developed by Hamamatsu (in cooperation with the CMS SiPM group) for the CMS HCAL Upgrade Phase I project. The S10943-4732 is a photosensor selected for the CMS HE HCAL where the SiPMs will be exposed to 2× 1011 n/cm2 (1 MeV equivalent) for the operation time of the SLHC (integrated luminosity—5000 fb−1). The HD-1015CN SiPM was developed using new Hamamatsu trench technology to reduce optical cross-talk (X-talk) between SiPM cells. Both SiPMs are considered as candidates for the CMS HCAL barrel upgrade. The SiPMs were irradiated with reactor neutrons up to 1 MeV equivalent fluence of 2× 1012 n/cm2 (that corresponds to the maximum integrated neutron fluence in the HCAL barrel for the duration of the SLHC operation).

C07029

, , , , , , , , and

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

The new URAN array has been constructed in the National Research Nuclear University MEPhI (Moscow, Russia). It is aimed at studying of primary cosmic rays in the "knee" region of energy spectrum and detects neutrons produced in interactions of EAS particles with nuclei of atmosphere or matter. The array consists of 72 detectors based on the scintillator with natural boron. Scintillator represents a silicon plate with the granules of ZnS(Ag) and B2O3 mixture. The area of the detector is 0.36 sq. m. Detectors are located on two roofs of the MEPhI laboratory buildings and are combined into clusters of 12 detectors. The structure and the main elements of the URAN array are described.

C07028

, , , , , , , , , et al

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280 m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280's measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295 km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector (WAGASCI) has been developed. A magnetized iron neutrino detector (Baby MIND) will be used to measure momentum and charge identification of the outgoing muons from charged current interactions. The Baby MIND modules are composed of magnetized iron plates and long plastic scintillator bars read out at the both ends with wavelength shifting fibers and silicon photomultipliers. The front-end electronics board has been developed to perform the readout and digitization of the signals from the scintillator bars. Detector elements were tested with cosmic rays and in the PS beam at CERN. The obtained results are presented in this paper.

C07027

, , , , , , , , and

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

The time-of-flight (TOF) system now is installed at the CMD-3 detector of the VEPP-2000 electron-positron collider at the Budker Institute of Nuclear Physics. It is based on the strips of organic scintillator with shifter fibers readout and silicon photomultiplier (SiPM) photodetectors. The new electronics for TOF system is designed at the Budker Institute of Nuclear Physics. The main feature of the new electronics is usage a ripple-free technology for providing a bias voltage for SiPM photodetectors. Also this design has very low power consumption. It allows the individual controlled bias voltage generator to be integrated to front-end electronics, near the photodetectors. In this paper the structure of the TOF electronic hardware is described.

C07026

, , , , and

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

The RICH detector of the COMPASS Experiment at CERN SPS is undergoing an important upgrade: the central MWPC-based photon detectors have been replaced with novel Micropattern detectors, to cope with the challenging efficiency and stability requirements of the new COMPASS measurements. The new hybrid MPGD detector consists of two layers of ThickGEMs and a capacitive bulk Micromegas. Photoconversion takes place on the CsI layer deposited onto the first ThickGEM, while position information and signals are read out from the pad-segmented anode via capacitive coupling by analog front-end electronics based on APV25 chips. The paper focuses on the main issues of production, detailed quality assessment technique, and the commissioning status of the first in-experiment MPGD-based photon detectors for RICH application.

C07025

, and

Precision Astronomy with Fully Depleted CCDS (PACCD2016)

Charge transfer efficiency (CTE) is one of the most important CCD characteristics. This paper examines ways to optimize the algorithms used to analyze 55Fe x-ray data on the CCDs, as well as explores new types of observables for CTE determination that can be used for testing LSST CCDs. The observables are modeled employing simple Monte Carlo simulations to determine how the charge diffusion in thick, fully depleted silicon affects the measurement. The data is compared to the simulations for one of the observables, integral flux of the x-ray hit.

C07024

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

The design of the LHCb Calorimeter System and its performance during the LHC Run I (2010–2012) and Run II (2015–2016) are presented. The effects of detector ageing and radiation degradation are discussed, as well as improvements in the monitoring and calibration procedures intended to compensate the detector ageing employed for the LHC Run II. Finally, the plans for LHCb Calorimeter system upgrades for the LHC LS2 (2019–2020) and beyond are discussed.

C07023

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase-II shutdown (foreseen to take place around 2025) by an all-silicon detector called the ``ITk'' (Inner Tracker). The innermost portion of ITk will consist of a pixel detector with five layers in the barrel region and ring-shaped supports in the end-cap regions. It will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation levels. The new pixel system could include up to 14 m2 of silicon, depending on the final layout, which is expected to be decided in 2017. Several layout options are being investigated at the moment, including some with novel inclined support structures in the barrel end-cap overlap region and others with very long innermost barrel layers. Forward coverage could be as high as |eta| <4. Supporting structures will be based on low mass, highly stable and highly thermally conductive carbon-based materials cooled by evaporative carbon dioxide circulated in thin-walled titanium pipes embedded in the structures. Planar, 3D, and CMOS sensors are being investigated to identify the optimal technology, which may be different for the various layers. The RD53 Collaboration is developing the new readout chip. The pixel off-detector readout electronics will be implemented in the framework of the general ATLAS trigger and DAQ system. A readout speed of up to 5 Gb/s per data link will be needed in the innermost layers going down to 640 Mb/s for the outermost. Because of the very high radiation level inside the detector, the first part of the transmission has to be implemented electrically, with signals converted for optical transmission at larger radii. Extensive tests are being carried out to prove the feasibility of implementing serial powering, which has been chosen as the baseline for the ITk pixel system due to the reduced material in the servicing cables foreseen for this option.

C07022

, , , , , , , and

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

The MEG experiment searches for the charged lepton flavor violating decay, μ +→ e+γ. MEG has already determined the world best upper limit on the branching ratio BR<4.2× 10−13 at 90% CL. An upgrade of the whole detector has been approved to obtain a substantial increase in sensitivity. Currently MEG is in upgrade phases, this phase involves all the detectors. The new positron tracker is a single volume, full stereo, small cells drift chamber (DCH) co-axial to the beam line. It is composed of 10 concentric layers and each single drift cell is approximately square 7 mm side, with a 20 μ m gold plated W sense wire surrounded by 40 μ m and 50 μ m silver plated Al field wires in a ratio of 5:1, about 12,000 wires. Due to the high wire density (12 wires/cm2), the use of the classical feed-through technique as wire anchoring system could hardly be implemented and therefore it was necessary to develop new wiring strategies. The number of wires and the stringent requirements on the precision of their position and on the uniformity of the wire mechanical tension impose the use of an automatic system to operate the wiring procedures. This wiring robot, designed and built at the INFN Lecce and University of Salento laboratories, consists of:

⋅ a semiautomatic wiring machine with a high precision on wire mechanical tensioning (better than 0.5 g) and on wire positioning (20 μ m) for simultaneous wiring of multiwire layers;

⋅ a contact-less infrared laser soldering tool;

⋅ an automatic handling system for storing and transporting the multi-wire layers.

The drift chamber is currently under construction at INFN and should be completed by the end of summer 2017 to be then delivered to PSI for commissioning.

C07021

, , , , , , , , and

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

Ultra-low mass and high granularity Drift Chambers seems to be a better choice for modern HEP experiments, to achieve a good momentum resolution on the charged particle. We present how, in Helium based gas mixture, by counting and measuring the arrival time of each individual ionization cluster and by using statistical tools, it is possible to reconstruct a bias free estimate of the impact parameter and a more discriminant Particle Identification.

C07020

, and

2nd European Conference on Plasma Diagnostics (ECPD 2017)

Our proposal for a LIDAR Thomson scattering system to measure Te and ne profiles in the ITER core plasma, is based on experience with the LIDAR system on JET, which is still operational after 30 years. The design uses currently available technology and complies with the measurement requirements given by ITER. In addition, it offers the following advantages over the conventional imaging approach currently being adopted by ITER: 1) No gas fill of the vessel required for absolute calibration. 2) Easier alignment. 3) Measurements over almost the complete plasma diameter. 4) Two mirrors only as front optics. For a given laser wavelength the dynamic range of the Te measurements is mainly limited by the collection optics' transmission roll-off in the blue and the range of spectral sensitivity of the required fast photomultipliers. With the originally proposed Ti:Sapphire laser, measurements of the envisaged maximum temperature of 40 keV are marginally possible. Here we present encouraging simulation results on the use of other laser systems and on the use of two lasers with different wavelength. Alternating two wavelengths was proposed already in 1997 as a method for calibrating the transmission of the collection system. In the present analysis, the two laser pulses are injected simultaneously. We find that the use of Nd:YAG lasers operated at fundamental and second harmonic, respectively, yields excellent results and preserves the spectral recalibration feature.

C07019

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

The beam energy measurement system for BEPCII is described. The system is based on measuring the energies of Compton back-scattered photons. The relative systematic uncertainty of the beam energy determination is estimated as 2 × 105. The upgrade of the system guarantees a smooth and efficient measurement of beam energy at BEPCII and enables accurate offline energy values for further physics analysis at BESIII.

C07018

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

The LHC high-luminosity upgrade in 2024-2026 requires the associated detectors to operate at luminosities about 5-7 times larger than assumed in their original design. The pile-up is expected to increase to up to 200 events per proton bunch-crossing. To be able to retain interesting physics events at electroweak energy scales, increased trigger rates are foreseen for the ATLAS detector. At the hardware selection stage acceptance rates of up to 1 MHz are planned, combined with longer latencies up to 40 micro-seconds in order to read out the necessary data from all detector channels. The current readout of the ATLAS Liquid Argon (LAr) Calorimeters does not provide sufficient buffering and bandwidth capabilities. For these reasons a replacement of the LAr front-end and off-detector readout systems is foreseen for all 182,500 readout channels, with the exception of the cold pre-amplifier and summing devices of the hadronic LAr Calorimeter. The new low-power electronics must be able to capture the triangular detector pulses of about 400-600 nano-seconds length with signal currents up to 10 mA and a dynamic range of 16 bits. Results from performance simulation of the calorimeter readout system for different options and results from first tests of the components are presented.

C07017

, , , , , , , , , et al

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

For the upgrade of the inner tracker of the BESIII spectrometer, planned for 2018, a lightweight tracker based on an innovative Cylindrical Gas Electron Multiplier (CGEM) detector is now under development. The analogue readout of the CGEM enables the use of a charge centroid algorithm to improve the spatial resolution to better than 130 μm while loosening the pitch strip to 650 μm, which allows to reduce the total number of channels to about 10 000. The channels are readout by 160 dedicated integrated 64-channel front-end ASICs, providing a time and charge measurement and featuring a fully-digital output. The energy measurement is extracted either from the time-over-threshold (ToT) or the 10-bit digitisation of the peak amplitude of the signal. The time of the event is generated by quad-buffered low-power TDCs, allowing for rates in excess of 60 kHz per channel. The TDCs are based on analogue interpolation techniques and produce a time stamp (or two, if working in ToT mode) of the event with a time resolution better than 50 ps. The front-end noise, based on a CSA and a two-stage complex conjugated pole shapers, dominate the channel intrinsic time jitter, which is less than 5 ns r.m.s. The time information of the hit can be used to reconstruct the track path, operating the detector as a small TPC and hence improving the position resolution when the distribution of the cloud, due to large incident angle or magnetic field, is very broad. Event data is collected by an off-detector motherboard, where each GEM-ROC readout card handles 4 ASIC carrier FEBs (512 channels). Configuration upload and data readout between the off-detector electronics and the VME-based data collector cards are managed by bi-directional fibre optical links. This paper covers the design of a custom front-end electronics for the readout of the new inner tracker of the BESIII experiment, addressing the relevant design aspects of the detector electronics and the front-end ASIC for the CGEM readout, and reviewing the first silicon results of the chip prototype.

C07016

, , , , , , , , and

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

The KLOE-2 experiment started its data taking campaign in November 2014 with an upgraded tracking system at the DAΦNE electron-positron collider at the Frascati National Laboratory of INFN. The new tracking device, the Inner Tracker, operated together with the KLOE-2 Drift Chamber, has been installed to improve track and vertex reconstruction capabilities of the experimental apparatus. The Inner Tracker is a cylindrical GEM detector composed of four cylindrical triple-GEM detectors, each provided with an X-V strips-pads stereo readout. Although GEM detectors are already used in high energy physics experiments, this device is considered a frontier detector due to its fully-cylindrical geometry: KLOE-2 is the first experiment benefiting of this novel detector technology. Alignment and calibration of this detector will be presented together with its operating performance and reconstruction capabilities.

C07015

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

The imaging Time-Of-Propagation (iTOP) detector, constructed for the Belle II experiment at the SuperKEKB e+e collider, is an 8192-channel high precision Cherenkov particle identification detector with timing resolution below 50 ps. To acquire data from the iTOP, a novel front-end electronic readout system was designed, built, and integrated. Switched-capacitor array application-specific integrated circuits are used to sample analog signals. Triggering, digitization, readout, and data transfer are controlled by Xilinx Zynq-7000 system on a chip devices.

C07014

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

The construction of the Belle II detector is being completed and the focus shifts towards the reconstruction of higher level objects from the detector signals with the aim to search for new physics effects in huge data samples. The software is providing the connection between detector hardware and physics analyses. This article describes the development infrastructure and main components of the Belle II software which are essential for the success of the Belle II physics program.

C07013

, , , , , , , , , et al

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

Calorimeters with silicon detectors have many unique features and are proposed for several world-leading experiments. We discuss the tests of the first three 18×18 cm2 layers segmented into 1024 pixels of the technological prototype of the silicon-tungsten electromagnetic calorimeter for a future e+e collider. The tests have beem performed in November 2015 at CERN SPS beam line.

C07012

, , , , , and

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

Radiation hardness is an important requirement for solid state readout devices operating in high radiation environments common in particle physics experiments. The MEG II experiment, at PSI, Switzerland, investigates the forbidden decay μ+ → e+ γ. Exploiting the most intense muon beam of the world. A significant flux of non-thermal neutrons (kinetic energy Ek 0.5 MeV) is present in the experimental hall produced along the beam-line and in the hall itself. We present the effects of neutron fluxes comparable to the MEG II expected doses on several Silicon Photomultiplier (SiPMs). The tested models are: AdvanSiD ASD-NUV3S-P50 (used in MEG II experiment), AdvanSiD ASD-NUV3S-P40, AdvanSiD ASD-RGB3S-P40, Hamamatsu and Excelitas C30742-33-050-X. The neutron source is the thermal Sub-critical Multiplication complex (SM1) moderated with water, located at the University of Pavia (Italy). We report the change of SiPMs most important electric parameters: dark current, dark pulse frequency, gain, direct bias resistance, as a function of the integrated neutron fluency.

C07011

, , , , , and

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

Mu3e is a dedicated experiment to search for the rare lepton flavour violating decay μ+ → e+ee+. Its ultimate goal is to find or exclude this process with a sensitivity of one in 1016 muon decays. This constitutes four orders of magnitude improvement with respect to the current state-of-the art. A thin multi-layer scintillating fibre detector consisting of 250μm fibres read out on both sides with silicon photomultiplier arrays provides an excellent time measurement with σ<500ps in order to reject combinatorial background at a muon stopping rate around 108 muon/s, concurrently minimizing the material budget to X/X0<0.3%. The design, performance and readout concept, including the dedicated readout chip MuTRiG, is presented.

C07010

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

To accommodate high-luminosity LHC operation at a 13 TeV collision energy, the CMS Endcap Muon Level-1 Trigger system had to be significantly modified. To provide robust track reconstruction, the trigger system must now import all available trigger primitives generated by the Cathode Strip Chambers and by certain other subsystems, such as Resistive Plate Chambers (RPC). In addition to massive input bandwidth, this also required significant increase in logic and memory resources. To satisfy these requirements, a new Sector Processor unit has been designed. It consists of three modules. The Core Logic module houses the large FPGA that contains the track-finding logic and multi-gigabit serial links for data exchange. The Optical module contains optical receivers and transmitters; it communicates with the Core Logic module via a custom backplane section. The Pt Lookup table (PTLUT) module contains 1 GB of low-latency memory that is used to assign the final Pt to reconstructed muon tracks. The μ TCA architecture (adopted by CMS) was used for this design. The talk presents the details of the hardware and firmware design of the production system based on Xilinx Virtex-7 FPGA family. The next round of LHC and CMS upgrades starts in 2019, followed by a major High-Luminosity (HL) LHC upgrade starting in 2024. In the course of these upgrades, new Gas Electron Multiplier (GEM) detectors and more RPC chambers will be added to the Endcap Muon system. In order to keep up with all these changes, a new Advanced Processor unit is being designed. This device will be based on Xilinx UltraScale+ FPGAs. It will be able to accommodate up to 100 serial links with bit rates of up to 25 Gb/s, and provide up to 2.5 times more logic resources than the device used currently. The amount of PTLUT memory will be significantly increased to provide more flexibility for the Pt assignment algorithm. The talk presents preliminary details of the hardware design program.

C07009

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

The innermost tracking device of the CMS experiment is a silicon pixel detector. It has to cope with high particle fluxes and radiation damage, and was built to withstand the LHC design luminosity of 1×1034 cm−2s−1. This luminosity was already exceeded in 2016 and it is foreseen that it will increase further, potentially reaching two times the design value before 2018. Under such conditions the inefficiencies due to a limited readout bandwidth will increase by as much as 16% in the innermost layer. To maintain high tracking efficiency, the CMS collaboration has built a new pixel detector that was installed in March 2017. In this paper, the design of this so-called Phase-1 pixel detector is summarised, the production and the qualification of the pixel modules is described and the current status of the project is reported.

C07008

, , and

Precision Astronomy with Fully Depleted CCDS (PACCD2016)

e2v designs and manufactures a wide range of sensors for space and astronomy applications. This includes high performance CCDs for X-ray, visible and near-IR wavelengths. In this paper we illustrate the maturity of CMOS capability for these applications; examples are presented together with performance data. The majority of e2v sensors for these applications are back-thinned for highest spectral response and designed for very low read-out noise; the combination delivers high signal to noise ratio in association with a variety of formats and package designs. The growing e2v capability in delivery of sub-systems and cryogenic cameras is illustrated—including the 1.2 Giga-pixel J-PAS camera system.

C07007

, , and

2nd European Conference on Plasma Diagnostics (ECPD 2017)

Three vacuum vessel sectors in ITER will be instrumented by the outer vessel steady-state magnetic field sensors. Each sensor unit features a pair of metallic Hall sensors with a sensing layer made of bismuth to measure tangential and normal components of the local magnetic field. The influence of temperature and magnetic field on the Hall coefficient was tested for the temperature range from 25 to 250 oC and the magnetic field range from 0 to 0.5 T. A fit of the Hall coefficient normalized temperature function independent of magnetic field was found, and a model of the Hall coefficient functional dependence at a wide range of temperature and magnetic field was built with the purpose to simplify the calibration procedure.

C07006

, , , , , , , , , et al

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

The PANDA detector at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) addresses fundamental questions of hadron physics. An excellent hadronic particle identification (PID) will be accomplished by two DIRC (Detection of Internally Reflected Cherenkov light) counters in the target spectrometer. The design for the barrel region covering polar angles between 22o to 140o is based on the successful BABAR DIRC with several key improvements, such as fast photon timing and a compact imaging region. The novel Endcap Disc DIRC will cover the smaller forward angles between 5o (10o) to 22o in the vertical (horizontal) direction. Both DIRC counters will use lifetime-enhanced microchannel plate PMTs for photon detection in combination with fast readout electronics. Geant4 simulations and tests with several prototypes at various beam facilities have been used to evaluate the designs and validate the expected PID performance of both PANDA DIRC counters.

C07005

, , , , , , , , , et al

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

The results of experiments of the last decades have shown that with the increase of energy of primary cosmic rays a clear excess of muon groups in comparison with the existing models of extensive air shower development (even assuming pure iron composition of PCR) appears. The problem is called 'muon puzzle' and it can be explained either by cosmo- or nuclear-physical reasons. One of the experiments in which the excess of muon groups was registered is a NEVOD-DECOR. The new large-scale coordinate-tracking detector of 254 m2 area based on drift chambers will increase the coverage of the side aperture of the Cherenkov water detector (CWD) NEVOD and significantly improve the resolution of close tracks. Multi-wire drift chambers TREK developed in IHEP for experiments at the neutrino channel of U-70 accelerator have large effective area (1.85 m2), a good coordinate and angular resolution with a small number of measuring channels. The first part of the detector named Coordinate-Tracking Unit based on the Drift Chambers (CTUDC) representing two coordinate planes of 8 drift chambers in each has been developed and mounted on the opposite sides of the CWD. It has the same principle of joint operation with NEVOD-DECOR triggering system so the main features of the TREK detector will be examined. Results of an examination of drift chambers at muon hodoscope URAGAN, a calibration of the CTUDC with DECOR and the first results of its joint operation with NEVOD triggering system are presented.

C07004

, , , , , , and

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

A new type of scintillation detector for the use in high energy physics is described. The octagonal detector consists of eight triangular scintillator sectors with total area of 1 m2. Each sector represents two plates of 2 cm thick plastic scintillator. Seven 1 mm thick WLS fibers are laid evenly between the plates. The space between the fibers is filled with silicone compound to provide better light collection. Fiber ends from all eight sectors are gathered in the central part of the detector into a bunch and docked to the cathode of a FEU-115m photomultiplier. The read-out of the counter signals is carried out from 7th and 12th dynodes, providing a wide dynamic range up to about 10000 particles. The front-end electronics of the detector is based on the flash-ADC with a sampling frequency of 200 MHz. The features of detecting and recording systems of the multisector scintillation detector (MSD) and the results of its testing are discussed.

C07003

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

The muon system of the Compact Muon Solenoid (CMS) experiment at the LHC is currently not instrumented for pseudorapidity higher than |η|> 2.4. The main challenges to the installation of a detector in that position are the high particle flux to be sustained, a high level of radiation, and the ability to accomodate a multilevel detector into the small available space (less than 30 cm). A new back-to-back configuration of a Gas Electron Multiplier (GEM) detector is presented with the aim of developing a compact, multi-layer GEM detector. It is composed of two independent stacked triple-GEM detectors, positioned with the anodes toward the outside and sharing the same cathode plane, which is located at the center of the chamber, to reduce the total detector's thickness. A first prototype has been produced and tested with an X-Ray source and muon beam. First results on its performance are presented.

C07002

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

A physically motivated method is proposed for determining the avalanche breakdown voltage of silicon photomultipliers (SiPM). The method is based on measuring the dependence of the relative photon detection efficiency (PDErel) on the bias voltage when one type of carriers (electron or hole) is injected into the avalanche multiplication zone of the pn junction. The injection of electrons or holes from the base region of the SiPM semiconductor structure is performed using short-wave or long-wave light. At a low overvoltage (1–2 V) the detection efficiency is linearly dependent on the bias voltage; therefore, extrapolation to zero PDErel value determines the SiPM avalanche breakdown voltage with an accuracy within a few millivolts.

C07001

, , , , , , , , , et al

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

The BESIII experiment at the BEPCII electron positron collider at IHEP (Beijing) is collecting data in the charm-τ mass region. Electron positron collisions are a very well suited environment for the study of initial state radiation (ISR). However, the photons from ISR are strongly peaked towards small polar angles and are currently detected with limited efficiency. In order to increase the detection efficiency of ISR photons, we are developing small-size calorimeters to be placed in the very forward and backward regions. Each detector will consist of two 4×3 arrays of 1×1×14 cm3 LYSO crystals. A 1 cm gap separating each of the two arrays will reduce the contamination from background at very low angles. The scintillation light will be collected by silicon photomultipliers (SiPMs). The expected event rate in the MHz range requires flash ADCs recording the preamplified SiPM outputs.The digitized waveforms will be analyzed in realtime yielding data reduction and pile-up detection. This high bandwidth data stream will be transmitted via optical fibers to FPGA-based hardware performing sub-event building, buffering, and event correlation with the BESIII trigger. The sub-events with a corresponding trigger will be sent to the BESIII event builder via TCP/IP. A single crystal equipped with a SiPM was instrumented as a prototype detector. Tests with radioactive sources were performed successfully.

Technical reports

T07009

, , , and

A fast-swept Langmuir probe capable to be biased at a high voltages has been constructed and successfully operated at the VINETA-II magnetic reconnection experiment. The presented circuit has two main features beneficial for fast transient parameter changes in laboratory experiments as, e.g., plasma guns or magnetic reconnection: the implementation simplicity and the high voltage sweep range. This work presents its design and performance for time-dependent measurements of VINETA-II plasmas. The probe is biased with a sinusoidal voltage at a fixed frequency. Current − voltage characteristics are measured along the falling and rising slopes of the probe bias. The sweep frequency is fsweep= 150 kHz. The spatiotemporal evolution of radial plasma profiles is obtained by evaluation of the probe characteristics. The plasma density measurements agree with those derived from a microwave interferometer, demonstrating the reliability of the measurements. As a model plasma system, a plasma gun discharge with typical pulse times of 60 μ s is chosen.

T07008

, , , , , , , , and

In cosmic rays physics often a simple charged particle detector with fast response, best possible pulse time resolution and large linear range is required. For that purpose, we have developed a design that is based on the detection of Cherenkov radiation produced by charged particles in a thick optical glass used as a detection medium by a photomultiplier tube. In this work, the results of detector parameters simulation and experimental verification are presented.

T07007

, , and

Neutron spectrometry using a single-sphere containing dosimeters has been developed recently, as an effective replacement for Bonner sphere spectrometry. The aim of this study is unfolding the neutron energy spectra using GRNN artificial neural network, from the response of thermoluminescence dosimeters, TLDs, located inside a polyethylene sphere. The spectrometer was simulated using MCNP5. TLD-600 and TLD-700 dosimeters were simulated at different positions in all directions. Then the GRNN was used for neutron spectra prediction, using the TLDs' readings. Comparison of spectra predicted by the network with the real spectra, show that the single-sphere dosimeter is an effective instrument in unfolding neutron spectra.

T07006

, , and

Methods for the determination of efficiency of an aged high purity germanium (HPGe) detector for gaseous sources have been presented in the paper. X-ray radiography of the detector has been performed to get detector dimensions for computational purposes. The dead layer thickness of HPGe detector has been ascertained from experiments and Monte Carlo computations. Experimental work with standard point and liquid sources in several cylindrical geometries has been undertaken for obtaining energy dependant efficiency. Monte Carlo simulations have been performed for computing efficiencies for point, liquid and gaseous sources. Self absorption correction factors have been obtained using mathematical equations for volume sources and MCNP simulations. Self-absorption correction and point source methods have been used to estimate the efficiency for gaseous sources. The efficiencies determined from the present work have been used to estimate activity of cover gas sample of a fast reactor.

T07005

, , , and

We worked on the R&D of an innovative photodetector, the Vacuum Silicon Photomultiplier Tube (VSiPMT). The VSiPMT is composed by a photocathode and a solid state amplification stage. A semi-transparent conductive layer is necessary to supply voltage and to obtain a highly efficient CsI photocathode. Since the literature is poor on this topic we performed a systematic and detailed study of a set of semi-transparent conductive layers, made by different material and thickness. A CsI photocathode was evaporated on each sample. The impact of the semi-transparent conductive layer on the quantum efficiency of the photocathode is discussed.

T07004

, and

A 30 MeV RF electron linac based neutron source will be set up by APPD, BARC at IGCAR, Kalpakkam. This facility will include neutron activation of sodium by photo neutrons for FBR shielding studies and Neutron Time of Flight (n-TOF) facility for various research applications. In n-TOF facility, 10 ns, 10 A electron beam having 40% energy spread (18–30 MeV) will be generated by S-band linac. A compression magnet will compress 10 ns, 10 A electron pulse to 1 ns, 100 A. It will be a 360o, 5-sector, zero gradient magnet having rectangular yoke of dimensions 3.2 m × 2.7 m × 0.4 m and weight ∼ 24 Ton. The pulse compression ratio of 10:1 will be achieved at a magnetic field of 0.1 T. A scale down model of the magnet is designed, fabricated and tested. This magnet produces 0.1 T field at 4200 A-turns. It can compress the 6 MeV electron pulse with 3:1 ratio. The present paper describes the compression magnet design, simulation results, fabrication details and the experimental results.

T07003
The following article is Free article

, , , and

Muon Accelerators for Particle Physics (MUON)

A high-energy muon collider requires a "final cooling" system that reduces transverse emittance by a factor of ∼ 10, while allowing the longitudinal emittance to increase. The baseline approach has low-energy transverse cooling within high-field solenoids, with strong longitudinal heating. This approach and its recent simulation are discussed. Alternative approaches, which more explicitly include emittance exchange are also presented. Round-to-flat beam transform, transverse slicing, and longitudinal bunch coalescence are possible components of an alternative approach. Wedge-based emittance exchange could provide much of the required transverse cooling with longitudinal heating. Li-lens and quadrupole focusing systems could also provide much of the required final cooling.

T07002

, , , , , , and

A quad-GEM prototype is built and tested with Ar+CO2 gas in 70:30 ratio with positive pressure at a flow rate of 100 ml/min. The detector is tested with Fe55 X-ray source and a X-ray generator. The measurements are performed with a high gain preamplifier. The gain and energy resolution are measured. The anode current is also measured for different configurations. The detail measurements and results are presented.

T07001

, , , , , , , , , et al

The Fluorescence detector Array of Single-pixel Telescopes is a proposed low-cost, large-area, next-generation experiment for the detection of ultrahigh-energy cosmic rays via the atmospheric fluorescence technique. The proposed design involves the deployment of several hundred large field-of-view fluorescence telescopes on a regular grid of several thousand square kilometers in ground area. This paper describes the optical design of the prototype telescope, as well as its mechanical support structure.

Addendum

A07001
The following article is Free article

, , , , , , , , , et al

We update a figure caption and the acknowledgements.