This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 153

Number 5, 2017 May 1

Previous issue Next issue

203

, , and

The aim of our study is to investigate the dynamics of possible comets in the HD 10180 system. This investigation is motivated by the discovery of exocomets in various systems, especially β Pictoris, as well as in at least 10 other systems. Detailed theoretical studies about the formation and evolution of star–planet systems indicate that exocomets should be quite common. Further observational results are expected in the foreseeable future, in part, due to the availability of the Large Synoptic Survey Telescope. Nonetheless, the solar system represents the best studied example for comets, thus serving as a prime motivation for investigating comets in HD 10180 as well. HD 10180 is strikingly similar to the Sun. This system contains six confirmed planets and (at least) two additional planets subject to final verification. In our studies, we consider comets of different inclinations and eccentricities and find an array of different outcomes such as encounters with planets, captures, and escapes. Comets with relatively large eccentricities are able to enter the inner region of the system facing early planetary encounters. Stable comets experience long-term evolution of orbital elements, as expected. We also tried to distinguish cometary families akin to our solar system, but no clear distinction between possible families was found. Generally, theoretical and observational studies of exoplanets have a large range of ramifications, involving the origin, structure, and evolution of systems as well as the proliferation of water and prebiotic compounds to terrestrial planets, which will increase their chances of being habitable.

204
The following article is Open access

, , , , , , , , , et al

RR Lyrae stars may be the best practical tracers of Galactic halo (sub-)structure and kinematics. The PanSTARRS1 (PS1) $3\pi $ survey offers multi-band, multi-epoch, precise photometry across much of the sky, but a robust identification of RR Lyrae stars in this data set poses a challenge, given PS1's sparse, asynchronous multi-band light curves ($\lesssim 12$ epochs in each of five bands, taken over a 4.5 year period). We present a novel template fitting technique that uses well-defined and physically motivated multi-band light curves of RR Lyrae stars, and demonstrate that we get accurate period estimates, precise to 2 s in $\gt 80 \% $ of cases. We augment these light-curve fits with other features from photometric time-series and provide them to progressively more detailed machine-learned classification models. From these models, we are able to select the widest (three-fourths of the sky) and deepest (reaching 120 kpc) sample of RR Lyrae stars to date. The PS1 sample of ∼45,000 RRab stars is pure (90%) and complete (80% at 80 kpc) at high galactic latitudes. It also provides distances that are precise to 3%, measured with newly derived period–luminosity relations for optical/near-infrared PS1 bands. With the addition of proper motions from Gaia and radial velocity measurements from multi-object spectroscopic surveys, we expect the PS1 sample of RR Lyrae stars to become the premier source for studying the structure, kinematics, and the gravitational potential of the Galactic halo. The techniques presented in this study should translate well to other sparse, multi-band data sets, such as those produced by the Dark Energy Survey and the upcoming Large Synoptic Survey Telescope Galactic plane sub-survey.

205

and

Observations of nine transits of WASP-107 during the K2 mission reveal three separate occasions when the planet crossed in front of a starspot. The data confirm the stellar rotation period to be 17 days—approximately three times the planet's orbital period—and suggest that large spots persist for at least one full rotation. If the star had a low obliquity, at least two additional spot crossings should have been observed. They were not observed, giving evidence for a high obliquity. We use a simple geometric model to show that the obliquity is likely in the range 40°–140°, i.e., both spin–orbit alignment and anti-alignment can be ruled out. WASP-107 thereby joins the small collection of relatively low-mass stars with a high obliquity. Most such stars have been observed to have low obliquities; all of the exceptions, including WASP-107, involve planets with relatively wide orbits ("warm Jupiters," with ${a}_{{\rm{\min }}}/{R}_{\star }\gtrsim 8$). This demonstrates a connection between stellar obliquity and planet properties, in contradiction to some theories for obliquity excitation.

206

, , , , , , , , , et al

We report the beginning of activity for comet C/2015 ER61 (PANSTARRS), the first instance of watching a long-period comet turn on. Pre-discovery observations and observations from the NEOWISE space telescope suggest that the nucleus is large, with a radius of RN ∼ 9 km, assuming an albedo of 0.025. Our photometric data follows the comet from r = 8.9 to 4.8 au as it moved into solar conjunction in 2016 July. Our sublimation model shows that activity began near r = 8.8 au (true anomaly, TA = −139°) in early 2015, driven by CO2 sublimation, which peaked in 2016 April at r = 5.1 au (TA = −127°). Appreciable water sublimation began around r = 5.0 au. Our sublimation model is consistent with an active water sublimation area of 1% of the surface (equivalent to 10.2 km2), and an active surface area for CO2 sublimation of 0.029% (0.3 km2). The CO2 production rate at r = 4.66 au as measured by NEOWISE is (8.4 ± 2) × 1025 s−1. If CO2-ice had been present on the surface, dust dragged from the surface by sublimation would have been observed much farther out—as far as 20 au. Our thermal models suggest that the CO2 ice was present at a depth of 0.4 m. The comet came out of solar conjunction in 2016 December and, unless it brightens significantly, is unlikely to have water production rates much higher than a few ×1028 s−1.

207

Dormant or near-dormant short-period comets can unexpectedly regain the ability to eject dust. In many known cases, the resurrection is short-lived and lasts less than one orbit. However, it is possible that some resurrected comets can remain active in later perihelion passages. We search the archival images of various facilities to look for these "reactivated" comets. We identify two candidates, 297P/Beshore and 332P/Ikeya–Murakami, both of which were found to be inactive or weakly active in the previous orbit before their discovery. We derive a reactivation rate of $\sim 0.007\,{\mathrm{comet}}^{-1}\,{\mathrm{orbit}}^{-1}$, which implies that typical short-period comets only become temporarily dormant a few times or less. Smaller comets are prone to rotational instability and may undergo temporary dormancy more frequently. Next generation high-cadence surveys may find more reactivation events of these comets.

208

, , , , , , , , , et al

We describe a 20 year survey carried out by the Lick-Carnegie Exoplanet Survey Team (LCES), using precision radial velocities from HIRES on the Keck I telescope to find and characterize extrasolar planetary systems orbiting nearby F, G, K, and M dwarf stars. We provide here 60,949 precision radial velocities for 1624 stars contained in that survey. We tabulate a list of 357 significant periodic signals that are of constant period and phase, and not coincident in period and/or phase with stellar activity indices. These signals are thus strongly suggestive of barycentric reflex motion of the star induced by one or more candidate exoplanets in Keplerian motion about the host star. Of these signals, 225 have already been published as planet claims, 60 are classified as significant unpublished planet candidates that await photometric follow-up to rule out activity-related causes, and 54 are also unpublished, but are classified as "significant" signals that require confirmation by additional data before rising to classification as planet candidates. Of particular interest is our detection of a candidate planet with $M\sin (i)=3.8\,{M}_{\oplus }$, and P = 9.9 days orbiting Lalande 21185, the fourth-closest main-sequence star to the Sun. For each of our exoplanetary candidate signals, we provide the period and semi-amplitude of the Keplerian orbital fit, and a likelihood ratio estimate of its statistical significance. We also tabulate 18 Keplerian-like signals that we classify as likely arising from stellar activity.

209

, , and

We present sensitive 3.0 cm JVLA radio continuum observations of six regions of low-mass star formation that include twelve young brown dwarfs (BDs) and four young BD candidates. We detect a total of 49 compact radio sources in the fields observed, of which 24 have no reported counterparts and are considered new detections. Twelve of the radio sources show variability in timescales of weeks to months, suggesting gyrosynchrotron emission produced in active magnetospheres. Only one of the target BDs, FU Tau A, was detected. However, we detected radio emission associated with two of the BD candidates, WL 20S and CHLT 2. The radio flux densities of the sources associated with these BD candidates are more than an order of magnitude larger than expected for a BD and suggest a revision of their classification. In contrast, FU Tau A falls on the well-known correlation between radio luminosity and bolometric luminosity, suggesting that the emission comes from a thermal jet and that this BD seems to be forming as a scaled-down version of low-mass stars.

210

, , and

The hundreds of multiple planetary systems discovered by the Kepler mission are typically observed to reside in close-in ($\lesssim 0.5$ AU), low-eccentricity, low-inclination orbits. We run N-body experiments to study the effect that unstable outer ($\gtrsim 1$ AU) giant planets, whose end orbital configurations resemble those in the Radial Velocity population, have on these close-in multiple super-Earth systems. Our experiments show that the giant planets greatly reduce the multiplicity of the inner super-Earths, and the surviving population can have large eccentricities ($e\gtrsim 0.3$) and inclinations ($i\gtrsim 20^\circ $) at levels that anti-correlate with multiplicity. Consequently, this model predicts the existence of a population of dynamically hot single-transiting planets with typical eccentricities and inclinations of ∼0.1–0.5 and ∼10°–40°. We show that these results can explain the following observations: (i) the recent eccentricity measurements of Kepler super-Earths from transit durations; (ii) the tentative observation that single-transiting systems have a wider distribution of stellar obliquity angles compared to the multiple-transiting systems; (iii) the architecture of some eccentric super-Earths discovered by Radial Velocity surveys such as HD 125612c. Future observations from TESS will reveal many more dynamically hot single transiting planets, for which follow up radial velocity studies will be able to test our models and see whether they have outer giant planets.

211

, , , , , , , , , et al

We report the discovery of HAT-P-67b, which is a hot-Saturn transiting a rapidly rotating F-subgiant. HAT-P-67b has a radius of ${R}_{{\rm{p}}}={2.085}_{-0.071}^{+0.096}\,{R}_{{\rm{J}}}$, and orbites a ${M}_{* }={1.642}_{-0.072}^{+0.155}\,{M}_{\odot }$, ${R}_{* }={2.546}_{-0.084}^{+0.099}\,{R}_{\odot }$ host star in a ∼4.81 day period orbit. We place an upper limit on the mass of the planet via radial velocity measurements to be ${M}_{{\rm{p}}}\lt 0.59\,{M}_{{\rm{J}}}$, and a lower limit of $\gt 0.056\,{M}_{{\rm{J}}}$ by limitations on Roche lobe overflow. Despite being a subgiant, the host star still exhibits relatively rapid rotation, with a projected rotational velocity of $v\sin {I}_{\star }=35.8\pm 1.1\,\mathrm{km}\,{{\rm{s}}}^{-1}$, which makes it difficult to precisely determine the mass of the planet using radial velocities. We validated HAT-P-67b via two Doppler tomographic detections of the planetary transit, which eliminate potential eclipsing binary blend scenarios. The Doppler tomographic observations also confirm that HAT-P-67b has an orbit that is aligned to within 12°, in projection, with the spin of its host star. HAT-P-67b receives strong UV irradiation and is among one of the lowest density planets known, which makes it a good candidate for future UV transit observations in the search for an extended hydrogen exosphere.

212

, , , , , , , , , et al

We report on speckle observations of binary stars carried out at the WIYN Telescope over the period from 2010 September through 2012 February, providing relative astrometry for 2521 observations of 883 objects, 856 of which are double stars and 27 of which are triples. The separations measured span a range of 0.01–1.75 arcsec. Wavelengths of 562, 692, and 880 nm were used, and differential photometry at one or more of these wavelengths is presented in most cases. 66 components were resolved for the first time. We also estimate detection limits at 0.2 and 1.0 arcsec for high-quality observations in cases where no companion was seen, a total of 176 additional objects. Detection limits vary based on observing conditions and signal-to-noise ratio, but are approximately 4 mag at 0.2 arcsec and 6 mag at 1.0 arcsec on average. Analyzing the measurement precision of the data set, we find that the individual separations obtained have linear measurement uncertainties of approximately 2 mas, and photometry is uncertain to approximately 0.1 mag in general. This work provides fundamental, well-calibrated data for future orbit and mass determinations, and we present three first orbits and total mass estimates of nearby K-dwarf systems as examples of this potential.

213

, , and

Gas velocity dispersion measures the amount of disordered motion of a rotating disk. Accurate estimates of this parameter are of the utmost importance because the parameter is directly linked to disk stability and star formation. A global measure of the gas velocity dispersion can be inferred from the width of the atomic hydrogen (H i) 21 cm line. We explore how several systematic effects involved in the production of H i cubes affect the estimate of H i velocity dispersion. We do so by comparing the H i velocity dispersion derived from different types of data cubes provided by The H i Nearby Galaxy Survey. We find that residual-scaled cubes best recover the H i velocity dispersion, independent of the weighting scheme used and for a large range of signal-to-noise ratio. For H i observations, where the dirty beam is substantially different from a Gaussian, the velocity dispersion values are overestimated unless the cubes are cleaned close to (e.g., ∼1.5 times) the noise level.

214

, , , and

We present the results of our investigation of the star-forming potential in the Perseus star-forming complex. We build on previous starless core, protostellar core, and young stellar object (YSO) catalogs from Spitzer (3.6–70 μm), Herschel (70–500 μm), and SCUBA (850 μm) observations in the literature. We place the cores and YSOs within seven star-forming clumps based on column densities greater than $5\times {10}^{21}$ cm−2. We calculate the mean density and free-fall time for 69 starless cores as ∼5.55 $\times {10}^{-19}$ g cm−3 and ∼0.1 Myr, respectively, and we estimate the star formation rate for the near future as ∼150 M Myr−1. According to Bonnor–Ebert stability analysis, we find that majority of starless cores in Perseus are unstable. Broadly, these cores can collapse to form the next generation of stars. We found a relation between starless cores and YSOs, where the numbers of young protostars (Class 0 + Class I) are similar to the numbers of starless cores. This similarity, which shows a one-to-one relation, suggests that these starless cores may form the next generation of stars with approximately the same formation rate as the current generation, as identified by the Class 0 and Class I protostars. It follows that if such a relation between starless cores and any YSO stage exists, the SFR values of these two populations must be nearly constant. In brief, we propose that this one-to-one relation is an important factor in better understanding the star formation process within a cloud.

215

, , , , , , , , , et al

We report the discovery of a transiting exoplanet, KELT-11b, orbiting the bright (V = 8.0) subgiant HD 93396. A global analysis of the system shows that the host star is an evolved subgiant star with ${T}_{\mathrm{eff}}=5370\pm 51$ K, ${M}_{* }={1.438}_{-0.052}^{+0.061}$${M}_{\odot }$, ${R}_{* }={2.72}_{-0.17}^{+0.21}$${R}_{\odot }$, $\mathrm{log}{g}_{* }\,=\,{3.727}_{-0.046}^{+0.040}$, and $[\mathrm{Fe}/{\rm{H}}]=0.180\pm 0.075$. The planet is a low-mass gas giant in a P = 4.736529 ± 0.00006 day orbit, with MP = 0.195 ± 0.018 ${M}_{{\rm{J}}}$, ${R}_{P}={1.37}_{-0.12}^{+0.15}$${R}_{{\rm{J}}}$, ${\rho }_{P}={0.093}_{-0.024}^{+0.028}$ g cm−3, surface gravity $\mathrm{log}{g}_{P}={2.407}_{-0.086}^{+0.080}$, and equilibrium temperature ${T}_{\mathrm{eq}}={1712}_{-46}^{+51}$ K. KELT-11 is the brightest known transiting exoplanet host in the southern hemisphere by more than a magnitude and is the sixth brightest transit host to date. The planet is one of the most inflated planets known, with an exceptionally large atmospheric scale height (2763 km), and an associated size of the expected atmospheric transmission signal of 5.6%. These attributes make the KELT-11 system a valuable target for follow-up and atmospheric characterization, and it promises to become one of the benchmark systems for the study of inflated exoplanets.

216

and

We consider a dynamical shake-up model to explain the low mass of Mars and the lack of planets in the asteroid belt. In our scenario, a secular resonance with Jupiter sweeps through the inner solar system as the solar nebula depletes, pitting resonant excitation against collisional damping in the Sun's protoplanetary disk. We report the outcome of extensive numerical calculations of planet formation from planetesimals in the terrestrial zone, with and without dynamical shake-up. If the Sun's gas disk within the terrestrial zone depletes in roughly a million years, then the sweeping resonance inhibits planet formation in the asteroid belt and substantially limits the size of Mars. This phenomenon likely occurs around other stars with long-period massive planets, suggesting that asteroid belt analogs are common.

217

, , and

HD 189733 b is one of the most well studied exoplanets due to its large transit depth and host star brightness. The focus on this object has produced a number of high-cadence transit observations using high-resolution optical spectrographs. Here we present an analysis of seven full Hα transits of HD 189733 b using HARPS on the 3.6 meter La Silla telescope and HIRES on Keck I, taken over the course of nine years from 2006 to 2015. Hα transmission signals are analyzed as a function of the stellar activity level, as measured using the normalized core flux of the Ca ii H and K lines. We find strong variations in the strength of the Hα transmission spectrum from epoch to epoch. However, there is no clear trend between the Ca ii core emission and the strength of the in-transit Hα signal, although the transit showing the largest absorption value also occurs when the star is the most active. We present simulations of the in-transit contrast effect and find that the planet must consistently transit active latitudes with very strong facular and plage emission regions in order to reproduce the observed line strengths. We also investigate the measured velocity centroids with models of planetary rotation and show that the small line profile velocities could be due to large velocities in the upper atmosphere of the planet. Overall, we find it more likely that the measured Hα signals arise in the extended planetary atmosphere, although a better understanding of active region emission for active stars such as HD 189733 is needed.

218
The following article is Open access

, , and

In this paper, 426 well known confirmed Ap and Am stars are photometrically studied in the infrared. The 2MASS, Wide-field Infrared Survey Explorer (WISE), and IRAS data are employed to make analyses. The results in this paper have shown that in the 1–3 μm region over 90% Ap and Am stars have no or little infrared excesses, and infrared radiations in the near-infrared from these stars are probably dominated by the free–free emissions. It is also shown that in the 3–12 μm region, the majority of Ap stars and Am stars have very similar behavior, i.e., in the W1–W2 (3.4–4.6 μm) region, over half of Ap and Am stars have clear infrared excesses, which are possibly due to the binarity, the multiplicity, and/or the debris disk, but in the W2–W3 (4.6–12 μm) region they have no or little infrared excess. In addition, in the 12–22 μm region, some of Ap stars and Am stars show the infrared excesses and infrared radiations for these Ap and Am stars are probably due to the free–free emissions. In addition, it is seen that the probability of being the binarity, the multiplicity and/or the debris disk for Am stars is much higher than that for Ap stars. Furthermore, it can be seen that, in general, no relations can be found between infrared colors and spectral types either for Ap stars or for Am stars.

219

, , , , , and

We have analyzed images from the VST-ATLAS survey to identify candidate gravitationally lensed quasar systems in a sample of WISE sources with $W1-W2\gt 0.7$. Results from follow-up spectroscopy with the Baade 6.5 m telescope are presented for eight systems. One of them is a quadruply lensed quasar, and two are doubly lensed systems. Two are projected superpositions of two quasars at different redshifts. In one system, two quasars, although at the same redshift, have very different emission line profiles and constitute a physical binary. In two systems, the component spectra are consistent with the lensing hypothesis, after allowing for microlensing. However, as no lensing galaxy is detected in these two systems, we classify them as lensless twins. More extensive observations are needed to establish whether they are in fact lensed quasars or physical binaries.

220

, , , , , and

As the largest, clearly defined building blocks of our universe, galaxy clusters are interesting astrophysical laboratories and important probes for cosmology. X-ray surveys for galaxy clusters provide one of the best ways to characterize the population of galaxy clusters. We provide a description of the construction of the NORAS II galaxy cluster survey based on X-ray data from the northern part of the ROSAT All-Sky Survey. NORAS II extends the NORAS survey down to a flux limit of 1.8 × 10−12 erg s−1 cm−2 (0.1–2.4 keV), increasing the sample size by about a factor of two. The NORAS II cluster survey now reaches the same quality and depth as its counterpart, the southern REFLEX II survey, allowing us to combine the two complementary surveys. The paper provides information on the determination of the cluster X-ray parameters, the identification process of the X-ray sources, the statistics of the survey, and the construction of the survey selection function, which we provide in numerical format. Currently NORAS II contains 860 clusters with a median redshift of z = 0.102. We provide a number of statistical functions, including the log N–log S and the X-ray luminosity function and compare these to the results from the complementary REFLEX II survey. Using the NORAS II sample to constrain the cosmological parameters, σ8 and Ωm, yields results perfectly consistent with those of REFLEX II. Overall, the results show that the two hemisphere samples, NORAS II and REFLEX II, can be combined without problems into an all-sky sample, just excluding the zone of avoidance.

221

, , , , and

We present a survey for water maser emission toward a sample of 44 low-luminosity young objects, comprising (proto-)brown dwarfs, first hydrostatic cores (FHCs), and other young stellar objects (YSOs) with bolometric luminosities lower than 0.4 L. Water maser emission is a good tracer of energetic processes, such as mass-loss and/or accretion, and is a useful tool to study these processes with very high angular resolution. This type of emission has been confirmed in objects with Lbol ≳ 1 L. Objects with lower luminosities also undergo mass-loss and accretion, and thus, are prospective sites of maser emission. Our sensitive single-dish observations provided a single detection when pointing toward the FHC L1448 IRS 2E. However, follow-up interferometric observations showed water maser emission associated with the nearby YSO L1448 IRS 2 (a Class 0 protostar of Lbol ≃ 3.6–5.3 L) and did not find any emission toward L1448 IRS 2E. The upper limits for water maser emission determined by our observations are one order of magnitude lower than expected from the correlation between water maser luminosities and bolometric luminosities found for YSOs. This suggests that this correlation does not hold at the lower end of the (sub)stellar mass spectrum. Possible reasons are that the slope of this correlation is steeper at Lbol ≤ 1 L or that there is an absolute luminosity threshold below which water maser emission cannot be produced. Alternatively, if the correlation still stands at low luminosity, the detection rates of masers would be significantly lower than the values obtained in higher-luminosity Class 0 protostars.

222

, , and

Overcoming type I migration and preventing low-mass planets from spiralling into the central star is a long-studied topic. It is well known that outward migration is possible in viscously heated disks relatively close to the central star because the entropy gradient can be sufficiently steep for the positive corotation torque to overcome the negative Lindblad torque. Yet efficiently trapping planets in this region remains elusive. Here we study disk conditions that yield outward migration for low-mass planets under specific planet migration prescriptions. In a steady-state disk model with a constant α-viscosity, outward migration is only possible when the negative temperature gradient exceeds ∼0.87. We derive an implicit relation for the highest mass at which outward migration is possible as a function of viscosity and disk scale height. We apply these criteria, using a simple power-law disk model, to planets that have reached their pebble isolation mass after an episode of rapid accretion. It is possible to trap planets with the pebble isolation mass farther than the inner edge of the disk provided that αcrit ≳ 0.004 for disks older than 1 Myr. In very young disks, the high temperature causes the planets to grow to masses exceeding the maximum for outward migration. As the disk evolves, these more massive planets often reach the central star, generally only toward the end of the disk lifetime. Saving super-Earths is therefore a delicate interplay between disk viscosity, the opacity profile, and the temperature gradient in the viscously heated inner disk.

223

, , , , , and

We present an analysis of new and published data on P/2013 R3, the first asteroid detected while disintegrating. Thirteen discrete components are measured in the interval between UT 2013 October 01 and 2014 February 13. We determine a mean, pair-wise velocity dispersion among these components of Δv = 0.33 ± 0.03 m s−1 and find that their separation times are staggered over an interval of ∼5 months. Dust enveloping the system has, in the first observations, a cross-section of ∼30 km2 but fades monotonically at a rate consistent with the action of radiation pressure sweeping. The individual components exhibit comet-like morphologies and also fade except where secondary fragmentation is accompanied by the release of additional dust. We find only upper limits to the radii of any embedded solid nuclei, typically ∼100–200 m (geometric albedo 0.05 assumed). Combined, the components of P/2013 R3 would form a single spherical body with a radius of $\lesssim 400$ m, which is our best estimate of the size of the precursor object. The observations are consistent with rotational disruption of a weak (cohesive strength of ∼50 to 100 N m−2) parent body, ∼400 m in radius. Estimated radiation (YORP) spin-up times of this parent are $\lesssim 1\,\mathrm{Myr}$, shorter than the collisional lifetime. If present, water ice sublimating at as little as 10−3 kg s−1 could generate a torque on the parent body rivaling the YORP torque. Under conservative assumptions about the frequency of similar disruptions, the inferred asteroid debris production rate is ≳103 kg s−1, which is at least 4% of the rate needed to maintain the Zodiacal Cloud.

224

, , , , , , , , , et al

We report a detailed characterization of the Kepler-19 system. This star was previously known to host a transiting planet with a period of 9.29 days, a radius of 2.2 R, and an upper limit on the mass of 20 M. The presence of a second, non-transiting planet was inferred from the transit time variations (TTVs) of Kepler-19b over eight quarters of Kepler photometry, although neither the mass nor period could be determined. By combining new TTVs measurements from all the Kepler quarters and 91 high-precision radial velocities obtained with the HARPS-N spectrograph, using dynamical simulations we obtained a mass of 8.4 ± 1.6 M for Kepler-19b. From the same data, assuming system coplanarity, we determined an orbital period of 28.7 days and a mass of 13.1 ± 2.7 M for Kepler-19c and discovered a Neptune-like planet with a mass of 20.3 ± 3.4 M on a 63-day orbit. By comparing dynamical simulations with non-interacting Keplerian orbits, we concluded that neglecting interactions between planets may lead to systematic errors that can hamper the precision in the orbital parameters when the data set spans several years. With a density of 4.32 ± 0.87 g cm−3 (0.78 ± 0.16 ρ) Kepler-19b belongs to the group of planets with a rocky core and a significant fraction of volatiles, in opposition to low-density planets characterized only by transit time variations and an increasing number of rocky planets with Earth-like density. Kepler-19 joins the small number of systems that reconcile transit timing variation and radial velocity measurements.

225

, , , , , and

We present results of our study of the PDS 11 binary system, which belongs to a rare class of isolated, high Galactic latitude T Tauri stars. Our spectroscopic analysis reveals that PDS 11 is an M2–M2 binary system with both components showing similar Hα emission strengths. Both the components appear to be accreting and are classical T Tauri stars. The lithium doublet Li i λ6708, a signature of youth, is present in the spectrum of PDS 11A, but not in PDS 11B. From the application of lithium depletion boundary age-dating method and a comparison with the Li i λ6708 equivalent width distribution of moving groups, we estimated an age of 10–15 Myr for PDS 11A. Comparison with pre-main sequence evolutionary models indicates that PDS 11A is a 0.4 M T Tauri star at a distance of 114–131 pc. PDS 11 system does not appear to be associated with any known star-forming regions or moving groups. PDS 11 is a new addition, after TWA 30 and LDS 5606, to the interesting class of old, dusty, wide binary classical T Tauri systems in which both components are actively accreting.

226

, , , , , , , , and

Debris disk morphology is wavelength dependent due to the wide range of particle sizes and size-dependent dynamics influenced by various forces. Resolved images of nearby debris disks reveal complex disk structures that are difficult to distinguish from their spectral energy distributions. Therefore, multi-wavelength resolved images of nearby debris systems provide an essential foundation to understand the intricate interplay between collisional, gravitational, and radiative forces that govern debris disk structures. We present the Stratospheric Observatory for Infrared Astronomy (SOFIA) 35 μm resolved disk image of epsilon Eri, the closest debris disk around a star similar to the early Sun. Combining with the Spitzer resolved image at 24 μm and 15–38 μm excess spectrum, we examine two proposed origins of the inner debris in epsilon Eri: (1) in situ planetesimal belt(s) and (2) dragged-in grains from the cold outer belt. We find that the presence of in situ dust-producing planetesmial belt(s) is the most likely source of the excess emission in the inner 25 au region. Although a small amount of dragged-in grains from the cold belt could contribute to the excess emission in the inner region, the resolution of the SOFIA data is high enough to rule out the possibility that the entire inner warm excess results from dragged-in grains, but not enough to distinguish one broad inner disk from two narrow belts.

227

, , , , and

The outer architectures of Kepler's compact systems of multiple transiting planets remain poorly constrained, and few of these systems have lower bounds on the orbital distance of any massive outer planets. We infer a minimum orbital distance and upper limits on the inclination of a hypothetical Jovian-mass planet orbiting exterior to the six transiting planets at Kepler-11. Our constraints are derived from dynamical models together with observations provided by the Kepler mission. First, the lack of transit timing variations (TTV) in the outermost transiting planet Kepler-11 g imply that the system does not contain a Jovian-mass perturber within 2 au from the star. Second, we test under what initial conditions a Jovian-mass planet moderately inclined from the transiting planets would make their co-transiting configuration unlikely. The transiting planets are secularly coupled and exhibit small mutual inclinations over long timescales, although the outermost transiting planet, Kepler-11 g, is weakly coupled to the inner five. We rule out a Jovian-mass planet on a 3° inclination within 3.0 au, and higher inclinations out to farther orbital distances, unless an undetected planet exists orbiting in the dynamical gap between Kepler-11 f and Kepler-11 g. Our constraints depend little on whether we assume the six transiting planets of Kepler-11 were initially perfectly coplanar or whether a minimum initial mutual inclination between the transiting planets is adopted based on the measured impact parameters of the transiting planets.

228

, , , and

We revisited a mass ejection phenomenon that occurred in asteroid P/2010 A2 in terms of the dynamical properties of the dust particles and large fragments. We constructed a model assuming anisotropic ejection within a solid cone-shaped jet and succeeded in reproducing the time-variant features in archival observational images over ∼3 years from 2010 January to 2012 October. We assumed that the dust particles and fragments were ejected in the same direction from a point where no object had been detected in any observations, and the anisotropic model explains all of the observations including (i) the unique dust cloud morphology, (ii) the trail surface brightness, and (iii) the motions of the fragments. Our results suggest that the original body was shattered by an impact with specific energy ${Q}^{* }\lesssim 350$ J kg−1, and remnants of slow antipodal ejecta (i.e., anisotropic ejection in our model) were observed as P/2010 A2. The observed quantities are consistent with those obtained through laboratory impact experiments, supporting the idea that the P/2010 A2 event is the first evidence of the impact shattering that occurred in the present main asteroid belt.

229

, , , , , , , , , et al

We describe a Bayesian rejection-sampling algorithm designed to efficiently compute posterior distributions of orbital elements for data covering short fractions of long-period exoplanet orbits. Our implementation of this method, Orbits for the Impatient (OFTI), converges up to several orders of magnitude faster than two implementations of Markov Chain Monte Carlo (MCMC) in this regime. We illustrate the efficiency of our approach by showing that OFTI calculates accurate posteriors for all existing astrometry of the exoplanet 51 Eri b up to 100 times faster than a Metropolis–Hastings MCMC. We demonstrate the accuracy of OFTI by comparing our results for several orbiting systems with those of various MCMC implementations, finding the output posteriors to be identical within shot noise. We also describe how our algorithm was used to successfully predict the location of 51 Eri b six months in the future based on less than three months of astrometry. Finally, we apply OFTI to 10 long-period exoplanets and brown dwarfs, all but one of which have been monitored over less than 3% of their orbits, producing fits to their orbits from astrometric records in the literature.

230

, , and

(60558) 174P/Echeclus is an unusual object that belongs to a class of minor planets called Centaurs, which may be intermediate between Kuiper Belt objects and Jupiter family comets. It is sporadically active throughout its orbit at distances too far for water ice, the source of activity for most comets, to sublimate. Thus, its coma must be triggered by another mechanism. In 2005, Echeclus had a strong outburst with peculiar behavior that raised questions about the nucleus' homogeneity. To test nucleus models, we performed the most sensitive search to date for the highly volatile CO molecule via its J = 2-1 emission toward Echeclus during 2016 May–June (at 6.1 astronomical units from the Sun) using the Arizona Radio Observatory 10 m Submillimeter Telescope. We obtained a 3.6σ detection with a slightly blueshifted (δv = −0.55 ± 0.10 km s−1) and narrow (ΔvFWHM = 0.53 ± 0.23 km s−1) line. The data are consistent with emission from a cold gas from the sunward side of the nucleus, as seen in two other comets at 6 au. We derive a production rate of Q(CO) = (7.7 ± 3.3)$\,\times \,{10}^{26}$ mol s−1, which is capable of driving the estimated dust production rates. Echeclus' CO outgassing rate is ∼40 times lower than what is typically seen for another Centaur at this distance, 29P/Schwassmann–Wachmann 1. We also used the IRAM 30 m telescope to search for the CO J = 2-1 line, and derive an upper limit that is above the SMT detection. Compared with the relatively unprocessed comet C/1995 O1 (Hale–Bopp), Echeclus produces significantly less CO, as do Chiron and four other Centaurs.

231

, , , and

We present the multi-band photometric and spectroscopic study of an over-contact binary system, EPIC 211957146. The light curves exhibit a variable O' Connell effect, confirmed from our observational data and the Kepler K2 data. The best photometric solution incorporating a dark spot over the primary component unveils that the system has a low-mass ratio (q ∼ 0.17) and a high inclination (i ∼ 85°). To confirm the solution and constrain the uncertainty, Monte-Carlo simulations are performed and the results are reported. Based on the O–C diagram analysis, we see that the variable shows a period increase at the rate of dP/dt ∼ 1.06 × 10−6 days yr−1, which is higher than the theoretically predicted value. Presence of a third body having a period of ∼16.23 years is evident from the O–C diagram. No filled-in effect is observed in the Hα line, while the effect is vividly present in the Na line. From the Kepler K2 data, we found that the primary and secondary minima exhibit an anti-correlated O–C variation followed by an erratic behavior. This is possibly caused by the longitudinal motion of the spot, and hence, we set a lower limit of ∼40 days for the spot modulation. We also observe a possibly associated photometric difference in the primary depth by comparing our light curves with Kepler K2 normalized light curves. This system has a low-mass ratio and a high fill-out factor, and, theoretically, such a physical configuration would lead to a merger.

232

, , , , , and

In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting–Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI. The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μm band and 3.0% in the 18 μm band. In order to reveal dust properties causing leading–trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and a dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading–trailing asymmetry so that intermediate sized dust (∼10–100 μm) produces a greater asymmetry than zodiacal light. The leading–trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μm and 18 μm bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μm and 18 μm bands, respectively, if the maximum dust radius is set to be smax = 3000 μm. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ∼10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.

233

, , , , , , , , , and

We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of molecular line emission from d216-0939, one of the largest and most massive protoplanetary disks in the Orion Nebula Cluster. We model the spectrally resolved HCO+ (4–3), CO (3–2), and HCN (4–3) lines observed at 0farcs5 resolution to fit the temperature and density structure of the disk. We also weakly detect and spectrally resolve the CS (7–6) line but do not model it. The abundances we derive for CO and HCO+ are generally consistent with expected values from chemical modeling of protoplanetary disks, while the HCN abundance is higher than expected. We dynamically measure the mass of the central star to be $2.17\pm 0.07\,{M}_{\odot }$, which is inconsistent with the previously determined spectral type of K5. We also report the detection of a spatially unresolved high-velocity blueshifted excess emission feature with a measurable positional offset from the central star, consistent with a Keplerian orbit at 60 ± 20 au. Using the integrated flux of the feature in HCO+ (4–3), we estimate the total H2 gas mass of this feature to be at least $1.8\mbox{--}8\,{M}_{\mathrm{Jupiter}}$, depending on the assumed temperature. The feature is due to a local temperature and/or density enhancement consistent with either a hydrodynamic vortex or the expected signature of the envelope of a forming protoplanet within the disk.

234

, , , , , and

The Space Telescope Imaging Spectrograph has measured the spectral energy distributions for several stars of types O, B, A, F, and G. These absolute fluxes from the CALSPEC database are fit with a new spectral grid computed from the ATLAS-APOGEE ATLAS9 model atmosphere database using a chi-square minimization technique in four parameters. The quality of the fits are compared for complete LTE grids by Castelli & Kurucz (CK04) and our new comprehensive LTE grid (BOSZ). For the cooler stars, the fits with the MARCS LTE grid are also evaluated, while the hottest stars are also fit with the NLTE Lanz & Hubeny OB star grids. Unfortunately, these NLTE models do not transition smoothly in the infrared to agree with our new BOSZ LTE grid at the NLTE lower limit of Teff = 15,000 K. The new BOSZ grid is available via the Space Telescope Institute MAST archive and has a much finer sampled IR wavelength scale than CK04, which will facilitate the modeling of stars observed by the James Webb Space Telescope. Our result for the angular diameter of Sirius agrees with the ground-based interferometric value.

235

and

Many topics in planetary studies demand an estimate of the collision probability of two objects moving on nearly Keplerian orbits. In the classic works of Öpik and Wetherill, the collision probability was derived by linearizing the motion near the collision points, and there is now a vast amount of literature using their method. We present here a simpler and more physically motivated derivation for non-tangential collisions in Keplerian orbits, as well as for tangential collisions that were not previously considered. Our formulas have the added advantage of being manifestly symmetric in the parameters of the two colliding bodies. In common with the Öpik–Wetherill treatments, we linearize the motion of the bodies in the vicinity of the point of orbit intersection (or near the points of minimum distance between the two orbits) and assume a uniform distribution of impact parameter within the collision radius. We point out that the linear approximation leads to singular results for the case of tangential encounters. We regularize this singularity by use of a parabolic approximation of the motion in the vicinity of a tangential encounter.

236

, , , , , , , , , et al

The High Ecliptic Latitude (HiLat) extension of the Canada–France Ecliptic Plane Survey (CFEPS), conducted from 2006 June to 2009 July, discovered a set of Trans-Neptunian objects (TNOs) that we report here. The HiLat component was designed to address one of the shortcomings of ecliptic surveys (like CFEPS), their low sensitivity to high-inclination objects. We searched 701 deg2 of sky ranging from 12° to 85° ecliptic latitude and discovered 24 TNOs, with inclinations between 15° and 104°. This survey places a very strong constraint on the inclination distribution of the hot component of the classical Kuiper Belt, ruling out any possibility of a large intrinsic fraction of highly inclined orbits. Using the parameterization of Brown, the HiLat sample combined with CFEPS imposes a width 14° ≤ σ ≤ 15fdg5, with a best match for σ = 14fdg5. HiLat discovered the first retrograde TNO, 2008 KV42, with an almost polar orbit with inclination 104°, and (418993) = 2009 MS9, a scattering object with perihelion in the region of Saturn's influence, with a ∼ 400 au and i = 68°.

237

, , , , and

Over the past two decades, both X-ray and gamma-ray astronomy have experienced great progress. However, the region of the electromagnetic spectrum around ∼1 MeV is not so thoroughly explored. Future medium-sized gamma-ray telescopes will fill this gap in observations. As the timescale for the development and launch of a medium-class mission is ∼10 years, with substantial costs, we propose a different approach for the immediate future. In this paper, we evaluate the viability of a much smaller and cheaper detector: a nano-satellite Compton telescope, based on the CubeSat architecture. The scientific performance of this telescope would be well below that of the instrument expected for the future larger missions; however, via simulations, we estimate that such a compact telescope will achieve a performance similar to that of COMPTEL.

238

, , , and

DV UMa is an eclipsing dwarf nova with an orbital period of ∼2.06 hr, which lies just at the bottom edge of the period gap. To detect its orbital period changes, we present 12 new mid-eclipse times by using our CCD photometric data and archival data. The latest version of the OC diagram, combined with the published mid-eclipse times in quiescence, and spanning ∼30 years, was obtained and analyzed. The best fit to those available eclipse timings shows that the orbital period of DV UMa is undergoing a cyclic oscillation with a period of $17.58(\pm 0.52)$ years and an amplitude of $71.1(\pm 6.7)$ s. The periodic variation most likely arises from the light-travel-time effect via the presence of a circumbinary object, because the required energy to drive the Applegate mechanism is too high in this system. The mass of the unseen companion was derived as ${M}_{3}\sin i^{\prime} =0.025(\pm 0.004)\,{M}_{\odot }$. If the third body is in the orbital plane (i.e., $i^{\prime} =i=82\buildrel{\circ}\over{.} 9$) of the eclipsing pair, this would indicate it is a brown dwarf. This hypothetical brown dwarf is orbiting its host star at a separation of ∼8.6 au in an eccentric orbit (e = 0.44).

239

and

A freely available Python code for modeling supernova remnant (SNR) evolution has been created. This software is intended for two purposes: to understand SNR evolution and to use in modeling observations of SNR for obtaining good estimates of SNR properties. It includes all phases for the standard path of evolution for spherically symmetric SNRs. In addition, alternate evolutionary models are available, including evolution in a cloudy ISM, the fractional energy-loss model, and evolution in a hot low-density ISM. The graphical interface takes in various parameters and produces outputs such as shock radius and velocity versus time, as well as SNR surface brightness profile and spectrum. Some interesting properties of SNR evolution are demonstrated using the program.

240

, , , , , , , and

The σ Orionis cluster is important for studying protoplanetary disk evolution, as its intermediate age (∼3–5 Myr) is comparable to the median disk lifetime. We use ALMA to conduct a high-sensitivity survey of dust and gas in 92 protoplanetary disks around σ Orionis members with M* ≳ 0.1 M. Our observations cover the 1.33 mm continuum and several CO J = 2–1 lines: out of 92 sources, we detect 37 in the millimeter continuum and 6 in 12CO, 3 in 13CO, and none in C18O. Using the continuum emission to estimate dust mass, we find only 11 disks with Mdust ≳ 10 M, indicating that after only a few Myr of evolution most disks lack sufficient dust to form giant planet cores. Stacking the individually undetected continuum sources limits their average dust mass to 5×  lower than that of the faintest detected disk, supporting theoretical models that indicate rapid dissipation once disk clearing begins. Comparing the protoplanetary disk population in σ Orionis to those of other star-forming regions supports the steady decline in average dust mass and the steepening of the MdustM* relation with age; studying these evolutionary trends can inform the relative importance of different disk processes during key eras of planet formation. External photoevaporation from the central O9 star is influencing disk evolution throughout the region: dust masses clearly decline with decreasing separation from the photoionizing source, and the handful of CO detections exist at projected separations of >1.5 pc. Collectively, our findings indicate that giant planet formation is inherently rare and/or well underway by a few Myr of age.

241

, , , , , , , and

Comet C/2006 W3 (Christensen) remained outside a heliocentric distance (Rh) of 3.1 au throughout its apparition, but it presented an exceptional opportunity to directly sense a suite of molecules released from its nucleus. The Cryogenic Infrared Echelle Spectrograph at ESO-VLT detected infrared emissions from the three "hypervolatiles" (CO, CH4, and C2H6) that have the lowest sublimation temperatures among species that are commonly studied in comets by remote sensing. Even at Rh = 3.25 au, the production rate of each molecule exceeded those measured for the same species in a number of other comets, although these comets were observed much closer to the Sun. Detections of CO at Rh = 3.25, 4.03, and 4.73 au constrained its post-perihelion decrease in production rate, which most likely dominated the outgassing. At 3.25 au, our measured abundances scaled as CO/CH4/C2H6 ≈ 100/4.4/2.1. The C2H6/CH4 ratio falls within the range of previously studied comets at Rh < 2 au, while CO/CH4 is comparatively high and similar to in situ measurements from Rosetta at ∼10 km from the nucleus of 67P/Churyumov-Gerasimenko conducted at a very similar Rh (3.15 au). The independent detections of ${\rm{H}}{}_{2}{\rm{O}}$ (Herschel Space Observatory) and CO (this work) imply a coma abundance ${{\rm{H}}}_{2}{\rm{O}}/\mathrm{CO}\approx 20 \% $ in C/2006 W3 near Rh = 5 au. All these measurements are of high value for constraining models of nucleus sublimation (plausibly CO-driven) beyond Rh = 3 au, where molecular detections in comets are still especially sparse.