This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Brought to you by:

Table of contents

Volume 152

Number 5, 2016 November 1

Previous issue Next issue

111

, , , , , , and

The trans-Neptunian objects (TNOs) preserve evidence of planet building processes in their orbital and size distributions. While all populations show steep size distributions for large objects, a relative deficit of Neptunian trojans and scattering objects with diameters of D < 100 km has been detected. We investigated this deficit with a 32 square degree survey, in which we detected 77 TNOs that are brighter than a limiting r-band magnitude of 24.6. Our plutino sample (18 objects in 3:2 mean-motion resonance with Neptune) shows a deficit of D < 100 km objects, rejecting a single power-law size distribution at >99% confidence. Combining our survey with the Canada–France Ecliptic Plane Survey, we perform a detailed analysis of the allowable parameters for the plutino size distribution, including knees and divots. We surmise the existence of 9000 ± 3000 plutinos with an absolute magnitude of Hr ≤ 8.66 and ${37000}_{-10000}^{+12000}$ with Hr ≤ 10.0 (95% confidence). Our survey also discovered one temporary Uranian trojan, one temporary Neptunian trojan, and one stable Neptunian trojan, for which we estimate populations of ${110}_{-100}^{+500}$, ${210}_{-200}^{+900}$, and ${150}_{-140}^{+600}$ with Hr ≤ 10.0, respectively. All three populations are thus less numerous than the main belt asteroids (592 asteroids with Hr ≤ 10.0). With such population sizes, the temporary Neptunian trojans cannot be previously stable trojans diffusing out of the resonance now; they must be recently captured Centaurs or scattering objects. As the bias against the detection of objects grows with larger semimajor axes, our discovery of three 3:1 resonators and one 4:1 resonator adds to the growing evidence that the high-order resonances are far more populated than is typically predicted.

112

, , , , , , , , , et al

We report the detections of a giant planet (MARVELS-7b) and a brown dwarf (BD) candidate (MARVELS-7c) around the primary star in the close binary system, HD 87646. To the best of our knowledge, it is the first close binary system with more than one substellar circumprimary companion that has been discovered. The detection of this giant planet was accomplished using the first multi-object Doppler instrument (KeckET) at the Sloan Digital Sky Survey (SDSS) telescope. Subsequent radial velocity observations using the Exoplanet Tracker at the Kitt Peak National Observatory, the High Resolution Spectrograph at the Hobby Eberley telescope, the "Classic" spectrograph at the Automatic Spectroscopic Telescope at the Fairborn Observatory, and MARVELS from SDSS-III confirmed this giant planet discovery and revealed the existence of a long-period BD in this binary. HD 87646 is a close binary with a separation of ∼22 au between the two stars, estimated using the Hipparcos catalog and our newly acquired AO image from PALAO on the 200 inch Hale Telescope at Palomar. The primary star in the binary, HD 87646A, has ${T}_{\mathrm{eff}}$  = 5770 ± 80 K, log g  = 4.1 ± 0.1, and [Fe/H] = −0.17 ± 0.08. The derived minimum masses of the two substellar companions of HD 87646A are 12.4 ± 0.7 ${M}_{\mathrm{Jup}}$ and 57.0 ± 3.7 ${M}_{\mathrm{Jup}}$. The periods are 13.481 ± 0.001 days and 674 ± 4 days and the measured eccentricities are 0.05 ± 0.02 and 0.50 ± 0.02 respectively. Our dynamical simulations show that the system is stable if the binary orbit has a large semimajor axis and a low eccentricity, which can be verified with future astrometry observations.

113

, , , , , , , , , et al

Young (125 Myr), populous (>1000 members), and relatively nearby, the Pleiades has provided an anchor for stellar angular momentum models for both younger and older stars. We used K2 to explore the distribution of rotation periods in the Pleiades. With more than 500 new periods for Pleiades members, we are vastly expanding the number of Pleiades with periods, particularly at the low-mass end. About 92% of the members in our sample have at least one measured spot-modulated rotation period. For the ∼8% of the members without periods, non-astrophysical effects often dominate (saturation, etc.), such that periodic signals might have been detectable, all other things being equal. We now have an unusually complete view of the rotation distribution in the Pleiades. The relationship between P and ${(V-{K}_{{\rm{s}}})}_{0}$ follows the overall trends found in other Pleiades studies. There is a slowly rotating sequence for 1.1 ≲ ${(V-{K}_{{\rm{s}}})}_{0}$ ≲ 3.7 and a primarily rapidly rotating population for ${(V-{K}_{{\rm{s}}})}_{0}$ ≳ 5.0. There is a region in which there seems to be a disorganized relationship between P and ${(V-{K}_{{\rm{s}}})}_{0}$ for 3.7 ≲ ${(V-{K}_{{\rm{s}}})}_{0}$ ≲ 5.0. Paper II continues the discussion, focusing on multiperiod structures, and Paper III speculates about the origin and evolution of the period distribution in the Pleiades.

114

, , , , , , , , , et al

We use K2 to continue the exploration of the distribution of rotation periods in Pleiades that we began in Paper I. We have discovered complicated multiperiod behavior in Pleiades stars using these K2 data, and we have grouped them into categories, which are the focal part of this paper. About 24% of the sample has multiple, real frequencies in the periodogram, sometimes manifesting as obvious beating in the LCs. Those having complex and/or structured periodogram peaks, unresolved multiple periods, and resolved close multiple periods are likely due to spot/spot group evolution and/or latitudinal differential rotation; these largely compose the slowly rotating sequence in P versus (V − Ks)0 identified in Paper I. The fast sequence in P versus (V − Ks)0 is dominated by single-period stars; these are likely to be rotating as solid bodies. Paper III continues the discussion, speculating about the origin and evolution of the period distribution in the Pleiades.

115

, , , , , , , , , et al

We use high-quality K2 light curves for hundreds of stars in the Pleiades to better understand the angular momentum evolution and magnetic dynamos of young low-mass stars. The K2 light curves provide not only rotational periods but also detailed information from the shape of the phased light curve that was not available in previous studies. A slowly rotating sequence begins at ${(V-{K}_{{\rm{s}}})}_{0}$ ∼ 1.1 (spectral type F5) and ends at ${(V-{K}_{{\rm{s}}})}_{0}$ ∼ 3.7 (spectral type K8), with periods rising from ∼2 to ∼11 days in that interval. A total of 52% of the Pleiades members in that color interval have periods within 30% of a curve defining the slow sequence; the slowly rotating fraction decreases significantly redward of ${(V-{K}_{{\rm{s}}})}_{0}$ = 2.6. Nearly all of the slow-sequence stars show light curves that evolve significantly on timescales less than the K2 campaign duration. The majority of the FGK Pleiades members identified as photometric binaries are relatively rapidly rotating, perhaps because binarity inhibits star–disk angular momentum loss mechanisms during pre-main-sequence evolution. The fully convective late M dwarf Pleiades members (5.0 < ${(V-{K}_{{\rm{s}}})}_{0}$ < 6.0) nearly always show stable light curves, with little spot evolution or evidence of differential rotation. During pre-main-sequence evolution from ∼3 Myr (NGC 2264 age) to ∼125 Myr (Pleiades age), stars of 0.3 ${M}_{\odot }$ shed about half of their angular momentum, with the fractional change in period between 3 and 125 Myr being nearly independent of mass for fully convective stars. Our data also suggest that very low mass binaries form with rotation periods more similar to each other and faster than would be true if drawn at random from the parent population of single stars.

116

and

Statistical characterization of secondary subsystems in binaries helps to distinguish between various scenarios of multiple-star formation. The Differential Speckle Survey Instrument was used at the Gemini-N telescope for several hours in 2015 July to probe the binarity of 25 secondary components in nearby solar-type binaries. Six new subsystems were resolved, with meaningful detection limits for the remaining targets. The large incidence of secondary subsystems agrees with other similar studies. The newly resolved subsystem HIP 115417 Ba,Bb causes deviations in the observed motion of the outer binary from which an astrometric orbit of Ba,Bb with a period of 117 years is deduced.

117

, , , , , and

We investigated the physical properties of molecular clouds and star formation (SF) processes around infrared bubbles, which are essentially expanding H ii regions. We performed observations of 13 galactic infrared bubble fields containing 18 bubbles. We observed five molecular lines—12CO ($J=1\to 0$), 13CO ($J=1\to 0$), C18O ($J=1\to 0$), HCN ($J=1\to 0$), and HCO+ ($J=1\to 0$)—and several publicly available surveys were used for comparison: Galactic Legacy Infrared Mid-Plane Survey Extraordinaire, Multiband Imaging Photometer for Spitzer Galactic Plane Survey, APEX Telescope Large Area Survey of the Galaxy, Bolocam Galactic Plane Survey, Very Large Array (VLA) Galactic Plane Survey, Multi-Array Galactic Plane Imaging Survey, and NRAO VLA Sky Survey. We find that these bubbles are generally connected with molecular clouds, most of which are giant. Several bubble regions display velocity gradients and broad-shifted profiles, which could be due to the expansion of bubbles. The masses of molecular clouds within bubbles range from 100 to 19,000 M, and their dynamic ages are about 0.3–3.7 Myr, which takes into account the internal turbulence pressure of surrounding molecular clouds. Clumps are found in the vicinity of all 18 bubbles, and molecular clouds near four of these bubbles with larger angular sizes show shell-like morphologies, indicating that either collect-and-collapse or radiation-driven implosion processes may have occurred. Due to the contamination of adjacent molecular clouds, only six bubble regions are appropriate to search for outflows, and we find that four have outflow activities. Three bubbles display ultra-compact H ii regions at their borders, and one is probably responsible for its outflow. In total, only six bubbles show SF activities in the vicinity, and we suggest that SF processes might have been triggered.

118

, , , , , , , , , et al

Optical astrometry of 12 fields containing quasi-stellar objects (QSOs) is presented. The targets are radio sources in the International Celestial Reference Frame with accurate radio positions that also have optical counterparts. The data are used to test several quantities: the internal precision of the relative optical astrometry, the relative parallaxes and proper motions, the procedures to correct from relative to absolute parallax and proper motion, the accuracy of the absolute parallaxes and proper motions, and the stability of the optical photocenters for these optically variable QSOs. For these 12 fields, the mean error in absolute parallax is 0.38 mas and the mean error in each coordinate of absolute proper motion is 1.1 mas yr−1. The results yield a mean absolute parallax of −0.03 ± 0.11 mas. For 11 targets, we find no significant systematic motions of the photocenters at the level of 1–2 mas over the 10 years of this study; for one BL Lac object, we find a possible motion of 4 mas correlated with its brightness.

119

, , , and

We consider Earth satellite orbits in the range of semimajor axes where the perturbing effects of Earth's oblateness and lunisolar gravity are of comparable order. This range covers the medium-Earth orbits (MEO) of the Global Navigation Satellite Systems and the geosynchronous orbits (GEO) of the communication satellites. We recall a secular and quadrupolar model, based on the Milankovitch vector formulation of perturbation theory, which governs the long-term orbital evolution subject to the predominant gravitational interactions. We study the global dynamics of this two-and-a-half degrees-of-freedom Hamiltonian system by means of the fast Lyapunov indicator (FLI), used in a statistical sense. Specifically, we characterize the degree of chaoticity of the action space using angle-averaged normalized FLI maps, thereby overcoming the angle dependencies of the conventional stability maps. Emphasis is placed upon the phase-space structures near secular resonances, which are of primary importance to the space debris community. We confirm and quantify the transition from order to chaos in MEO, stemming from the critical inclinations and find that highly inclined GEO orbits are particularly unstable. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors and, from a mathematical perspective, have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.

120

, , and

The first two sets of complete charge-coupled device light curves in the B and V bands of the short-period binary system, V532 Mon, are presented. The light curves are analyzed with spot models using the Wilson–Devinney code. V532 Mon is found to be an A-subtype intermediate-contact binary with a degree of contact factor of $f=47.1 \% (\pm 2.7 \% )$, a mass ratio of $q=0.2502(\pm 0.0019)$, and a cool spot on the primary component. The period changes of the system are investigated by combining newly determined times of light minimum with others published in the literature. We found that the general trend of the observed-calculated $(O-C)$ curve shows a downward parabolic variation that corresponds to a long-term decrease in the orbital period at a rate of ${dP}/{dt}=-1.716(\pm 0.002)\times {10}^{-7}{dyr}$−1. The long-term decrease of the orbital period can be explained by mass transfer from the more-massive component to the less massive one. The long-time period decrease, the intermediate-contact configuration, and the astrophysical parameters of the binary system suggest that V532 Mon will evolve into high fill-out, extreme mass-ratio overcontact binaries.

121

To explore the capabilities of moderate-size optical telescopes used in surveys, a set of nine new wide-field designs, having apertures of up to 1 m, was created. The designs were optimized to ensure the widest possible field of view with an image quality better than 3'' across the field. All but one of the systems have an angular field in a range of 3fdg5–10° and a flat focal surface; the field of the last system is 45° in diameter with an aperture 0.5 m and a spherical focal surface. Relations between the expected limiting magnitude, survey speed, and exposure time allow one to choose the system that is best suited for the objectives of specific observations. In particular, a single wide-field telescope with an aperture of approximately 1 m can detect objects brighter than 22.5m over the entire hemisphere within one night. Since the optical layouts are of practical interest, their complete descriptions are given.

122

, , and

We present an analysis of surveying the inner solar system for objects that may pose some threat to Earth. Most of the analysis is based on understanding the capability provided by Sentinel, a concept for an infrared space-based telescope placed in a heliocentric orbit near the distance of Venus. From this analysis, we show that (1) the size range being targeted can affect the survey design, (2) the orbit distribution of the target sample can affect the survey design, (3) minimum observational arc length during the survey is an important metric of survey performance, and (4) surveys must consider objects as small as $D=15\mbox{--}30$ m to meet the goal of identifying objects that have the potential to cause damage on Earth in the next 100 yr. Sentinel will be able to find 50% of all impactors larger than 40 m in a 6.5 yr survey. The Sentinel mission concept is shown to be as effective as any survey in finding objects bigger than D = 140 m but is more effective when applied to finding smaller objects on Earth-impacting orbits. Sentinel is also more effective at finding objects of interest for human exploration that benefit from lower propulsion requirements. To explore the interaction between space and ground search programs, we also study a case where Sentinel is combined with the Large Synoptic Survey Telescope (LSST) and show the benefit of placing a space-based observatory in an orbit that reduces the overlap in search regions with a ground-based telescope. In this case, Sentinel+LSST can find more than 70% of the impactors larger than 40 m assuming a 6.5 yr lifetime for Sentinel and 10 yr for LSST.

123

, , , , , , , , and

We present a simultaneous, multi-wavelength campaign targeting the nearby (7.2 pc) L8/L9 (optical/near-infrared) dwarf WISEP J060738.65+242953.4 in the mid-infrared, radio, and optical. Spitzer Space Telescope observations show no variability at the 0.2% level over 10 hr each in the 3.6 and 4.5 μm bands. Kepler K2 monitoring over 36 days in Campaign 0 rules out stable periodic signals in the optical with amplitudes greater than 1.5% and periods between 1.5 hr and 2 days. Non-simultaneous Gemini optical spectroscopy detects lithium, constraining this L dwarf to be less than ∼2 Gyr old, but no Balmer emission is observed. The low measured projected rotation velocity (v sin i < 6 km s−1) and lack of variability are very unusual compared to other brown dwarfs, and we argue that this substellar object is likely viewed pole-on. We detect quiescent (non-bursting) radio emission with the Very Large Array. Among radio-detected L and T dwarfs, it has the lowest observed Lν and the lowest v sin i. We discuss the implications of a pole-on detection for various proposed radio emission scenarios.

124

, , and

Many deep wideband wide-field radio interferometric surveys are being designed to accurately measure intensities, spectral indices, and polarization properties of faint source populations. In this paper, we compare various wideband imaging methods to evaluate the accuracy to which intensities and spectral indices of sources close to the confusion limit can be reconstructed. We simulated a wideband single-pointing (C-array, L-Band (1–2 GHz)) and 46-pointing mosaic (D-array, C-Band (4–8 GHz)) JVLA observation using a realistic brightness distribution ranging from 1 μJy to 100 mJy and time-, frequency-, polarization-, and direction-dependent instrumental effects. The main results from these comparisons are (a) errors in the reconstructed intensities and spectral indices are larger for weaker sources even in the absence of simulated noise, (b) errors are systematically lower for joint reconstruction methods (such as Multi-Term Multi-Frequency-Synthesis (MT-MFS)) along with A-Projection for accurate primary beam correction, and (c) use of MT-MFS for image reconstruction eliminates Clean-bias (which is present otherwise). Auxiliary tests include solutions for deficiencies of data partitioning methods (e.g., the use of masks to remove clean bias and hybrid methods to remove sidelobes from sources left un-deconvolved), the effect of sources not at pixel centers, and the consequences of various other numerical approximations within software implementations. This paper also demonstrates the level of detail at which such simulations must be done in order to reflect reality, enable one to systematically identify specific reasons for every trend that is observed, and to estimate scientifically defensible imaging performance metrics and the associated computational complexity of the algorithms/analysis procedures.

125

, , , , and

We present the analysis of the first circumbinary planet microlensing event, OGLE-2007-BLG-349. This event has a strong planetary signal that is best fit with a mass ratio of q ≈ 3.4 × 10−4, but there is an additional signal due to an additional lens mass, either another planet or another star. We find acceptable light-curve fits with two classes of models: two-planet models (with a single host star) and circumbinary planet models. The light curve also reveals a significant microlensing parallax effect, which constrains the mass of the lens system to be ML ≈ 0.7 ${M}_{\odot }$. Hubble Space Telescope (HST) images resolve the lens and source stars from their neighbors and indicate excess flux due to the star(s) in the lens system. This is consistent with the predicted flux from the circumbinary models, where the lens mass is shared between two stars, but there is not enough flux to be consistent with the two-planet, one-star models. So, only the circumbinary models are consistent with the HST data. They indicate a planet of mass mc = 80 ± 13 ${M}_{\oplus }$, orbiting a pair of M dwarfs with masses of MA = 0.41 ± 0.07 and MB = 0.30 ± 0.07, which makes this the lowest-mass circumbinary planet system known. The ratio of the separation between the planet and the center of mass to the separation of the two stars is ∼40, so unlike most of the circumbinary planets found by Kepler, the planet does not orbit near the stability limit.

126

, , and

The six-degree obliquity of the Sun suggests that either an asymmetry was present in the solar system's formation environment, or an external torque has misaligned the angular momentum vectors of the Sun and the planets. However, the exact origin of this obliquity remains an open question. Batygin & Brown have recently shown that the physical alignment of distant Kuiper Belt orbits can be explained by a $5\mbox{--}20\,{m}_{\oplus }$ planet on a distant, eccentric, and inclined orbit, with an approximate perihelion distance of ∼250 au. Using an analytic model for secular interactions between Planet Nine and the remaining giant planets, here, we show that a planet with similar parameters can naturally generate the observed obliquity as well as the specific pole position of the Sun's spin axis, from a nearly aligned initial state. Thus, Planet Nine offers a testable explanation for the otherwise mysterious spin–orbit misalignment of the solar system.

127

, , , , , , , , , et al

We report the discovery by the HATSouth network of HATS-18b: a $1.980\pm 0.077$${M}_{{\rm{J}}}$, ${1.337}_{-0.049}^{+0.102}$${R}_{{\rm{J}}}$ planet in a $0.8378$ day orbit, around a solar analog star (mass $1.037\pm 0.047$${M}_{\odot }$ and radius ${1.020}_{-0.031}^{+0.057}$${R}_{\odot }$) with $V=14.067\pm 0.040$ mag. The high planet mass, combined with its short orbital period, implies strong tidal coupling between the planetary orbit and the star. In fact, given its inferred age, HATS-18 shows evidence of significant tidal spin up, which together with WASP-19 (a very similar system) allows us to constrain the tidal quality factor for Sun-like stars to be in the range of $6.5\lesssim {\mathrm{log}}_{10}({Q}^{* }/{k}_{2})\lesssim 7$ even after allowing for extremely pessimistic model uncertainties. In addition, the HATS-18 system is among the best systems (and often the best system) for testing a multitude of star–planet interactions, be they gravitational, magnetic, or radiative, as well as planet formation and migration theories.

128

, , , , , , , , , et al

We present H-band near-infrared polarimetric imaging observations of the F5V star HD 157587 obtained with the Gemini Planet Imager (GPI) that reveal the debris disk as a bright ring structure at a separation of ∼80–100 au. The new GPI data complement recent Hubble Space Telescope/STIS observations that show the disk extending out to over 500 au. The GPI image displays a strong asymmetry along the projected minor axis as well as a fainter asymmetry along the projected major axis. We associate the minor and major axis asymmetries with polarized forward scattering and a possible stellocentric offset, respectively. To constrain the disk geometry, we fit two separate disk models to the polarized image, each using a different scattering phase function. Both models favor a disk inclination of ∼70° and a 1.5 ± 0.6 au stellar offset in the plane of the sky along the projected major axis of the disk. We find that the stellar offset in the disk plane, perpendicular to the projected major axis is degenerate with the form of the scattering phase function and remains poorly constrained. The disk is not recovered in total intensity due in part to strong adaptive optics residuals, but we recover three point sources. Considering the system's proximity to the galactic plane and the point sources' positions relative to the disk, we consider it likely that they are background objects and unrelated to the disk's offset from the star.

129

, , , , , , , , , et al

We used the newly commissioned 50 cm Binocular Network telescope at Qinghai Station of Purple Mountain Observatory (Chinese Academy of Sciences) to observe the old open cluster NGC 188 in V and R as part of a search for variable objects. Our time-series data span a total of 36 days. Radial velocity and proper-motion selection resulted in a sample of 532 genuine cluster members. Isochrone fitting was applied to the cleaned cluster sequence, yielding a distance modulus of $(m-M{)}_{V}^{0}\,=\,11.35\pm 0.10\,{\rm{mag}}$ and a total foreground reddening of E(VR) = 0.062 ± 0.002 mag. Light-curve solutions were obtained for eight W Ursae Majoris eclipsing binary systems (W UMas), and their orbital parameters were estimated. Using the latter parameters, we estimate a distance to the W UMas that is independent of the host cluster's physical properties. Based on combined fits to six of the W UMas (EP Cep, EQ Cep, ES Cep, V369 Cep, and—for the first time—V370 Cep and V782 Cep), we obtain an average distance modulus of $(m-M{)}_{V}^{0}\,=\,11.31\pm 0.08\,{\rm{mag}}$, which is comparable to that resulting from our isochrone fits. These six W UMas exhibit an obvious period–luminosity relation. We derive more accurate physical parameters for the W UMa systems and discuss their initial masses and ages. The former show that these W UMa systems have likely undergone angular momentum evolution within a convective envelope (W-type evolution). The ages of the W UMa systems agree well with the cluster's age.

130

, , , , , , , , , et al

The Wide Angle Camera of the OSIRIS instrument on board the Rosetta spacecraft is equipped with several narrow-band filters that are centered on the emission lines and bands of various fragment species. These are used to determine the evolution of the production and spatial distribution of the gas in the inner coma of comet 67P with time and heliocentric distance, here between 2.6 and 1.3 au pre-perihelion. Our observations indicate that the emission observed in the OH, O i, CN, NH, and NH2 filters is mostly produced by dissociative electron impact excitation of different parent species. We conclude that CO2 rather than H2O is a significant source of the [O i] 630 nm emission. A strong plume-like feature observed in the CN and O i filters is present throughout our observations. This plume is not present in OH emission and indicates a local enhancement of the CO2/H2O ratio by as much as a factor of 3. We observed a sudden decrease in intensity levels after 2015 March, which we attribute to decreased electron temperatures in the first few kilometers above the surface of the nucleus.

131

, , and

In order to improve the denoising effect of the pulsar signal, a new denoising method is proposed in the no-subsampling wavelet packet domain based on the local Laplace prior model. First, we count the true noise-free pulsar signal's wavelet packet coefficient distribution characteristics and construct the true signal wavelet packet coefficients' Laplace probability density function model. Then, we estimate the denosied wavelet packet coefficients by using the noisy pulsar wavelet coefficients based on maximum a posteriori criteria. Finally, we obtain the denoisied pulsar signal through no-subsampling wavelet packet reconstruction of the estimated coefficients. The experimental results show that the proposed method performs better when calculating the pulsar time of arrival than the translation-invariant wavelet denoising method.

132

, , , , , , , , , et al

We report the discovery of K2-31b, the first confirmed transiting hot Jupiter detected by the K2 space mission. We combined K2 photometry with FastCam lucky imaging and FIES and HARPS high-resolution spectroscopy to confirm the planetary nature of the transiting object and derived the system parameters. K2-31b is a 1.8-Jupiter-mass planet on a 1.26-day orbit around a G7 V star (${M}_{\star }=0.91$M, ${R}_{\star }=0.78$R). The planetary radius is poorly constrained (0.7 < Rp < 1.4 RJup),15  owing to the grazing transit and the low sampling rate of the K2 photometry.16

133

and

Recently, Sheppard et al. presented the discovery of seven new trans-Neptunian objects with moderate eccentricities, perihelia beyond 40 au, and semimajor axes beyond 50 au. Like the few previously known objects on similar orbits, these objects' semimajor axes are just beyond the Kuiper Belt edge and clustered around Neptunian mean motion resonances (MMRs). These objects likely obtained their observed orbits while trapped within MMRs, when the Kozai–Lidov mechanism raised their perihelia and weakened Neptune's dynamical influence. Using numerical simulations that model the production of this population, we find that high-perihelion objects near Neptunian MMRs can constrain the nature and timescale of Neptune's past orbital migration. In particular, the population near the 3:1 MMR (near 62 au) is especially useful due to its large population and short dynamical evolution timescale. If Neptune finishes migrating within ∼100 Myr or less, we predict that over 90% of high-perihelion objects near the 3:1 MMR will have semimajor axes within 1 au of each other, very near the modern resonance's center. On the other hand, if Neptune's migration takes ∼300 Myr, we expect ∼50% of this population to reside in dynamically fossilized orbits over ∼1 au closer to the Sun than the modern resonance. We highlight 2015 KH162 as a likely member of this fossilized 3:1 population. Under any plausible migration scenario, nearly all high-perihelion objects in resonances beyond the 4:1 MMR (near 76 au) reach their orbits well after Neptune stops migrating and compose a recently generated, dynamically active population.

134

, , and

We investigate turbulent gas motions in spiral galaxies and their importance to star formation in far outer disks, where the column density is typically far below the critical value for spontaneous gravitational collapse. Following the methods of Burkhart et al. on the Small Magellanic Cloud, we use the third and fourth statistical moments, as indicators of structures caused by turbulence, to examine the neutral hydrogen (H i) column density of a sample of spiral galaxies selected from The H i Nearby Galaxy Survey. We apply the statistical moments in three different methods—the galaxy as a whole, divided into a function of radii and then into grids. We create individual grid maps of kurtosis for each galaxy. To investigate the relation between these moments and star formation, we compare these maps with their far-ultraviolet images taken by the Galaxy Evolution Explorer satellite.We find that the moments are largely uniform across the galaxies, in which the variation does not appear to trace any star-forming regions. This may, however, be due to the spatial resolution of our analysis, which could potentially limit the scale of turbulent motions that we are sensitive to greater than ∼700 pc. From comparison between the moments themselves, we find that the gas motions in our sampled galaxies are largely supersonic. This analysis also shows that the Burkhart et al. methods may be applied not just to dwarf galaxies but also to normal spiral galaxies.

135

, , , , and

This paper reports the laboratory measurements of extreme ultraviolet spectra of highly charged copper ions. In this work, 82 lines from Cu xv to Cu xxiii in the 160–360 Å wavelength range are identified as the transitions of the 2p23p–2p23d, 2p43s–2p43p, 2p43p–2p43d, 2p53s–2p53p, 2p53s–2p53p, 3s3p–3p2, 3s23p3-3s3p4, 3s23p–3s3p2, 3s23p3–3s3p4, and 2p4 (3P)3s–2p4 (3P) 3p, in which 40 spectral lines have been newly and accurately measured. Their identification is based on comparisons with available experimental and theoretical values and the calculations with Cowan codes.

136

, , , , , , , , , et al

We present the discovery of a hot Jupiter transiting the V = 9.23 mag main-sequence A-star KELT-17 (BD+14 1881). KELT-17b is a ${1.31}_{-0.29}^{+0.28}\,{M}_{{\rm{J}}}$, ${1.525}_{-0.060}^{+0.065}\,{R}_{{\rm{J}}}$ hot-Jupiter in a 3.08-day period orbit misaligned at −115fdg9 ± 4fdg1 to the rotation axis of the star. The planet is confirmed via both the detection of the radial velocity orbit, and the Doppler tomographic detection of the shadow of the planet during two transits. The nature of the spin–orbit misaligned transit geometry allows us to place a constraint on the level of differential rotation in the host star; we find that KELT-17 is consistent with both rigid-body rotation and solar differential rotation rates ($\alpha \lt 0.30$ at $2\sigma $ significance). KELT-17 is only the fourth A-star with a confirmed transiting planet, and with a mass of ${1.635}_{-0.061}^{+0.066}\,{M}_{\odot }$, an effective temperature of 7454 ± 49 K, and a projected rotational velocity of $v\sin {I}_{* }={44.2}_{-1.3}^{+1.5}\,\mathrm{km}\,{{\rm{s}}}^{-1};$ it is among the most massive, hottest, and most rapidly rotating of known planet hosts.

137

and

The discovery of binary and triple asteroids in addition to the execution of space missions to minor celestial bodies in the past several years have focused increasing attention on periodic orbits around irregular-shaped celestial bodies. In the present work, we adopt a polyhedron shape model for providing an accurate representation of irregular-shaped bodies and employ the model to calculate their corresponding gravitational and effective potentials. We also investigate the characteristics of periodic orbit families and the continuation of periodic orbits. We prove a fact, which provides a conserved quantity that permits restricting the number of periodic orbits in a fixed energy curved surface about an irregular-shaped body. The collisions of Floquet multipliers are maintained during the continuation of periodic orbits around the comet 1P/Halley. Multiple bifurcations in the periodic orbit families about irregular-shaped bodies are also discussed. Three bifurcations in the periodic orbit family have been found around the asteroid 216 Kleopatra, which include two real saddle bifurcations and one period-doubling bifurcation.

138

The orbits of 55 visual binary stars are computed using recent speckle interferometry data from the SOAR telescope: 33 first-time orbits and 22 revisions of previous orbit calculations. The orbital periods range from 1.4–370 years, and the quality of the orbits ranges from definitive to preliminary and tentative. Most binaries consist of low-mass dwarfs and have short periods (median period 31 years). The dynamical parallaxes and masses are evaluated and compared to the Hipparcos parallaxes. Using differential speckle photometry, binary components are placed on the color–magnitude diagram.

139

, , and

Gravitational perturbations in multi-planet systems caused by an accompanying star are the subject of this investigation. Our dynamical model is based on the binary star HD 41004 AB where a giant planet orbits HD 41004 A. We modify the orbital parameters of this system and analyze the motion of a hypothetical test planet surrounding HD 41004 A on an interior orbit to the detected giant planet. Our numerical computations indicate perturbations due to mean motion and secular resonances (SRs). The locations of these resonances are usually connected to high eccentricity and highly inclined motion depending strongly on the binary-planet architecture. As the positions of mean motion resonances can easily be determined, the main purpose of this study is to present a new semi-analytical method to determine the location of an SR without huge computational effort.

140

, , and

We present the analysis of the planetary microlensing event OGLE-2014-BLG-1760, which shows a strong light-curve signal due to the presence of a Jupiter mass ratio planet. One unusual feature of this event is that the source star is quite blue, with $V-I=1.48\pm 0.08$. This is marginally consistent with a source star in the Galactic bulge, but it could possibly indicate a young source star on the far side of the disk. Assuming a bulge source, we perform a Bayesian analysis assuming a standard Galactic model, and this indicates that the planetary system resides in or near the Galactic bulge at ${D}_{L}=6.9\pm 1.1\,\mathrm{kpc}$. It also indicates a host-star mass of ${M}_{* }={0.51}_{-0.28}^{+0.44}{M}_{\odot }$, a planet mass of ${m}_{{\rm{p}}}={0.56}_{-0.26}^{+0.34}{M}_{J}$, and a projected star–planet separation of ${a}_{\perp }={1.75}_{-0.33}^{+0.34}$ au. The lens–source relative proper motion is ${\mu }_{\mathrm{rel}}=6.5\pm 1.1$ mas yr−1. The lens (and stellar host star) is estimated to be very faint compared to the source star, so it is most likely that it can be detected only when the lens and source stars start to separate. Due to the relatively high relative proper motion, the lens and source will be resolved to about ∼46 mas in 6–8 yr after the peak magnification. So, by 2020–2022, we can hope to detect the lens star with deep, high-resolution images.

141

, , , , , , , , , et al

We present a mass–luminosity relation (MLR) for red dwarfs spanning a range of masses from 0.62 ${{ \mathcal M }}_{\odot }$ to the end of the stellar main sequence at 0.08 ${{ \mathcal M }}_{\odot }$. The relation is based on 47 stars for which dynamical masses have been determined, primarily using astrometric data from Fine Guidance Sensors (FGS) 3 and 1r, white-light interferometers on the Hubble Space Telescope (HST), and radial velocity data from McDonald Observatory. For our HST/FGS sample of 15 binaries, component mass errors range from 0.4% to 4.0% with a median error of 1.8%. With these and masses from other sources, we construct a V-band MLR for the lower main sequence with 47 stars and a K-band MLR with 45 stars with fit residuals half of those of the band. We use GJ 831 AB as an example, obtaining an absolute trigonometric parallax, πabs = 125.3 ± 0.3 mas, with orbital elements yielding ${{ \mathcal M }}_{{\rm{A}}}=0.270\pm 0.004\,{{ \mathcal M }}_{\odot }$ and ${{ \mathcal M }}_{{\rm{B}}}=0.145\pm 0.002\,{{ \mathcal M }}_{\odot }$. The mass precision rivals that derived for eclipsing binaries. A remaining major task is the interpretation of the intrinsic cosmic scatter in the observed MLR for low-mass stars in terms of physical effects. In the meantime, useful mass values can be estimated from the MLR for the ubiquitous red dwarfs that account for 75% of all stars, with applications ranging from the characterization of exoplanet host stars to the contribution of red dwarfs to the mass of the universe.

142

, , , , , , , , , et al

We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 μm. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 μm and 0.6 mag at 4.5 μm. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 μm) and W2 (4.6 μm) from the Wide-feld Infrared Survey Explorer (WISE)/NEOWISE archive at six epochs in 2010–2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler/K2 in the visible (amplitude ∼0.02 mag) or at 845 nm with the Hubble Space Telescope (HST) in 2015 and at 763 nm in 2016 (amplitude ∼0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune's atmosphere than for K2. Methane gas is the dominant opacity source in Neptune's atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 μm filters.

143

, , , , , , , , , et al

We report on the discovery and characterization of the transiting planet K2-39b (EPIC 206247743b). With an orbital period of 4.6 days, it is the shortest-period planet orbiting a subgiant star known to date. Such planets are rare, with only a handful of known cases. The reason for this is poorly understood but may reflect differences in planet occurrence around the relatively high-mass stars that have been surveyed, or may be the result of tidal destruction of such planets. K2-39 (EPIC 206247743) is an evolved star with a spectroscopically derived stellar radius and mass of ${3.88}_{-0.42}^{+0.48}\,{R}_{\odot }$ and ${1.53}_{-0.12}^{+0.13}\,{M}_{\odot }$, respectively, and a very close-in transiting planet, with $a/{R}_{\star }=3.4$. Radial velocity (RV) follow-up using the HARPS, FIES, and PFS instruments leads to a planetary mass of ${50.3}_{-9.4}^{+9.7}\,{M}_{\oplus }$. In combination with a radius measurement of $8.3\pm 1.1\,{R}_{\oplus }$, this results in a mean planetary density of ${0.50}_{-0.17}^{+0.29}$ g cm−3. We furthermore discover a long-term RV trend, which may be caused by a long-period planet or stellar companion. Because K2-39b has a short orbital period, its existence makes it seem unlikely that tidal destruction is wholly responsible for the differences in planet populations around subgiant and main-sequence stars. Future monitoring of the transits of this system may enable the detection of period decay and constrain the tidal dissipation rates of subgiant stars.

144

, , , , and

M104 (NGC 4594; the Sombrero galaxy) is a nearby, well-studied elliptical galaxy included in scores of surveys focused on understanding the details of galaxy evolution. Despite the importance of observations of M104, a consensus distance has not yet been established. Here, we use newly obtained Hubble Space Telescope optical imaging to measure the distance to M104 based on the tip of the red giant branch (TRGB) method. Our measurement yields the distance to M104 to be 9.55 ± 0.13 ± 0.31 Mpc equivalent to a distance modulus of 29.90 ± 0.03 ± 0.07 mag. Our distance is an improvement over previous results as we use a well-calibrated, stable distance indicator, precision photometry in a optimally selected field of view, and a Bayesian maximum likelihood technique that reduces measurement uncertainties. The most discrepant previous results are due to Tully–Fisher method distances, which are likely inappropriate for M104 given its peculiar morphology and structure. Our results are part of a larger program to measure accurate distances to a sample of well-known spiral galaxies (including M51, M74, and M63) using the TRGB method.

145

and

The icy materials present in comets provide clues to the origin and evolution of our solar system and planetary systems. High-resolution optical spectroscopic observations of comet C/2014 Q2 (Lovejoy) were performed on 2015 January 11 (at 1.321 au pre-perihelion) with the High Dispersion Spectrograph mounted on the Subaru Telescope on Maunakea, Hawaii. We derive the 14N/15N ratio of NH2 (126 ± 25), as well as the ortho-to-para abundance ratios (OPRs) of the H2O+ ion (2.77 ± 0.24) and NH2 (3.38 ± 0.07), which correspond to nuclear spin temperatures of >24 K (3σ lower limit) and 27 ± 2 K, respectively. We also derive the intensity ratio of the green-to-red doublet of forbidden oxygen lines (0.107 ± 0.007). The ammonia in the comet must have formed under low-temperature conditions at ∼10 K or less to reproduce the observed 14N/15N ratio in this molecule if it is assumed that the 15N-fractionation of ammonia occurred via ion–molecule chemical reactions. However, this temperature is inconsistent with the nuclear spin temperatures of water and ammonia estimated from the OPRs. The interpretation of the nuclear spin temperature as the temperature at molecular formation may therefore be incorrect. An isotope-selective photodissociation of molecular nitrogen by protosolar ultraviolet radiation might play an important role in the 15N-fractionation observed in cometary volatiles.

146

, , , , , and

We present a multiwavelength investigation of star formation activity toward the southern H ii regions associated with IRAS 17160–3707, located at a distance of 6.2 kpc with a bolometric luminosity of 8.3 × 105L. The ionized gas distribution and dust clumps in the parental molecular cloud are examined in detail using measurements at infrared, submillimeter and radio wavelengths. The radio continuum images at 1280 and 610 MHz obtained using the Giant Metrewave Radio Telescope reveal the presence of multiple compact sources as well as nebulous emission. At submillimeter wavelengths, we identify seven dust clumps and estimate their physical properties such as temperature: 24–30 K, mass: 300–4800 M and luminosity: 9–317 × 102L using modified blackbody fits to the spectral energy distributions (SEDs) between 70 and 870 μm. We find 24 young stellar objects (YSOs) in the mid-infrared, with a few of them coincident with the compact radio sources. The SEDs of the YSOs have been fitted by the Robitaille models and the results indicate that those having radio compact sources as counterparts host massive objects in early evolutionary stages with best fit age ≤0.2 Myr. We compare the relative evolutionary stages of clumps using various signposts such as masers, ionized gas, presence of YSOs and infrared nebulosity, and find six massive star-forming clumps and one quiescent clump. Of the former, five are in a relatively advanced stage and one in an earlier stage.

147

, , , , , , , , , et al

In this work, we report the detection of seven Neptune Trojans (NTs) in the Pan-STARRS 1 (PS1) survey. Five of these are new discoveries, consisting of four L4 Trojans and one L5 Trojan. Our orbital simulations show that the L5 Trojan stably librates for only several million years. This suggests that the L5 Trojan must be of recent capture origin. On the other hand, all four new L4 Trojans stably occupy the 1:1 resonance with Neptune for more than 1 Gyr. They can, therefore, be of primordial origin. Our survey simulation results show that the inclination width of the NT population should be between 7° and 27° at >95% confidence, and most likely ∼11°. In this paper, we describe the PS1 survey, the Outer Solar System pipeline, the confirming observations, and the orbital/physical properties of the new NTs.

148

, , , , and

Estimator algorithms are immensely versatile and powerful tools that can be applied to any problem where a dynamic system can be modeled by a set of equations and where observations are available. A well designed estimator enables system states to be optimally predicted and errors to be rigorously quantified. Unscented Kalman filters (UKFs) and interactive multiple models can be found in methods from satellite tracking to self-driving cars. The luminous trajectory of the Bunburra Rockhole fireball was observed by the Desert Fireball Network in mid-2007. The recorded data set is used in this paper to examine the application of these two techniques as a viable approach to characterizing fireball dynamics. The nonlinear, single-body system of equations, used to model meteoroid entry through the atmosphere, is challenged by gross fragmentation events that may occur. The incorporation of the UKF within an interactive multiple model smoother provides a likely solution for when fragmentation events may occur as well as providing a statistical analysis of the state uncertainties. In addition to these benefits, another advantage of this approach is its automatability for use within an image processing pipeline to facilitate large fireball data analyses and meteorite recoveries.

149

, , , , , , , and

An important aspect of searching for exoplanets is understanding the binarity of the host stars. It is particularly important, because nearly half of the solar-like stars within our own Milky Way are part of binary or multiple systems. Moreover, the presence of two or more stars within a system can place further constraints on planetary formation, evolution, and orbital dynamics. As part of our survey of almost a hundred host stars, we obtained images at 692 and 880 nm bands using the Differential Speckle Survey Instrument (DSSI) at the Gemini-North Observatory. From our survey, we detect stellar companions to HD 2638 and HD 164509. The stellar companion to HD 2638 has been previously detected, but the companion to HD 164509 is a newly discovered companion. The angular separation for HD 2638 is 0.512 ± 0farcs002 and for HD 164509 is $0.697\pm 0\buildrel{\prime\prime}\over{.} 002$. This corresponds to a projected separation of 25.6 ± 1.9 au and 36.5 ± 1.9 au, respectively. By employing stellar isochrone models, we estimate the mass of the stellar companions of HD 2638 and HD 164509 to be 0.483 ± 0.007 M and $0.416\pm 0.007\,{M}_{\odot }$, respectively, and their effective temperatures to be 3570 ± 8 K and 3450 ± 7 K, respectively. These results are consistent with the detected companions being late-type M dwarfs.

150

, , and

We present a kinematic catalog for 21 M51-type galaxies. It consists of radial velocity distributions observed with long-slit spectroscopy along different position angles, for both the main and satellite components. We detect deviations from circular motion in most of the main galaxies of each pair, due to the gravitational perturbation produced by the satellite galaxy. However, some systems do not show significant distortions in their radial velocity curves. We found some differences between the directions of the photometric and kinematic major axes in the main galaxies with a bar subsystem. The Tully–Fisher relation in the B-band and Ks-band for the present sample of M51-type systems is flatter than in isolated galaxies. Using the radial velocity data set, we built a synthetic normalized radial velocity distribution, as a reference for future modeling of these peculiar systems. The synthetic rotation curve, representing the typical rotation curve of the main galaxy in an M51-type pair, is near to solid body-like inside 4 kpc, and then is nearly flat within the radial range 5–15 kpc. The relative position angles between the major axis of the main galaxy and the companion's location, as well as the amplitude of the velocity difference, indicate that the orbital motion of the satellite has a large projection on the equatorial plane of the main galaxy. In addition, the differences in radial velocity between the two galaxies indicate that the satellite's orbital motion is within the range of amplitudes of the rotation curve of the main galaxy, and all the M51-type systems studied here, except for one, are gravitationally bound.

151

, , , , , and

The CONT14 campaign with state-of-the-art very long baseline interferometry (VLBI) data has observed the source 0642+449 with about 1000 observables each day during a continuous observing period of 15 days, providing tens of thousands of closure delays—the sum of the delays around a closed loop of baselines. The closure delay is independent of the instrumental and propagation delays and provides valuable additional information about the source structure. We demonstrate the use of this new "observable" for the determination of the structure in the radio source 0642+449. This source, as one of the defining sources in the second realization of the International Celestial Reference Frame, is found to have two point-like components with a relative position offset of −426 microarcseconds (μas) in R.A. and −66 μas in decl. The two components are almost equally bright, with a flux-density ratio of 0.92. The standard deviation of closure delays for source 0642+449 was reduced from 139 to 90 ps by using this two-component model. Closure delays larger than 1 ns are found to be related to the source structure, demonstrating that structure effects for a source with this simple structure could be up to tens of nanoseconds. The method described in this paper does not rely on a priori source structure information, such as knowledge of source structure determined from direct (Fourier) imaging of the same observations or observations at other epochs. We anticipate our study to be a starting point for more effective determination of the structure effect in VLBI observations.

152

, , , , and

An investigation in radio and infrared wavelengths of two high-mass star-forming regions toward the southern Galactic bubble S10 is presented here. The two regions under study are associated with the broken bubble S10 and Extended Green Object, G345.99-0.02, respectively. Radio continuum emission mapped at 610 and 1280 MHz using the Giant Metrewave Radio Telescope, India, is detected toward both of the regions. These regions are estimated to be ionized by early-B- to late-O-type stars. Spitzer GLIMPSE mid-infrared data is used to identify young stellar objects (YSOs) associated with these regions. A Class-I/II-type source, with an estimated mass of 6.2 M, lies ∼7'' from the radio peak. Pixel-wise, modified blackbody fits to the thermal dust emission using Herschel far-infrared data is performed to construct dust temperature and column density maps. Eight clumps are detected in the two regions using the 250 μm image. The masses and linear diameter of these range between ∼300–1600 M and 0.2–1.1 pc, respectively, which qualifies them as high-mass star-forming clumps. Modeling of the spectral energy distribution of these clumps indicates the presence of high luminosity, high accretion rate, massive YSOs possibly in the accelerating accretion phase. Furthermore, based on the radio and MIR morphology, the occurrence of a possible bow wave toward the likely ionizing star is explored.