This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 145

Number 6, 2013 June 1

Previous issue Next issue

144

, , , and

The observed photometric variability of Nereid over both short and long time scales has been known for some time and has remained a mystery. Schaefer et al. have documented some twenty years worth of observations that reveal that Nereid's light curve shows both short period intranight variations and long term active and inactive episodes. In this work, we report on a set of computational simulations of both the orbital and rotational motion of Nereid in an effort to understand Nereid's behavior. We model Nereid as an ellipsoid that is subject to torques from other bodies, and we calculate both its orbital and rotational motion. In addition, we only consider the case where Nereid is uniformly reflecting with no albedo variations on its surface. Thus, any brightness variations are caused solely by Nereid's changing orientation. We find for reasonable geometries, orientation, and spin rates that we can reproduce some of the features, but not all, of the observed light curve for Nereid. In particular, we show how active and inactive episodes can arise; however, our calculated light curve differs from observations in other aspects.

145

, , , , , , , , and

We present time-resolved spectroscopy and photometry of CSS 120422:111127+571239 (=SBS 1108+574), a recently discovered SU UMa-type dwarf nova whose 55 minute orbital period is well below the cataclysmic variable (CV) period minimum of ∼78 minutes. In contrast with most other known CVs, its spectrum features He i emission of comparable strength to the Balmer lines, implying a hydrogen abundance less than 0.1 of long-period CVs—but still at least 10 times higher than that in AM CVn stars. Together, the short orbital period and remarkable helium-to-hydrogen ratio suggest that mass transfer in CSS 120422 began near the end of the donor star's main-sequence lifetime, meaning that this CV is a strong candidate progenitor of an AM CVn system as described by Podsiadlowski et al. Moreover, a Doppler tomogram of the Hα line reveals two distinct regions of enhanced emission. While one is the result of the stream–disk impact, the other is probably attributable to spiral disk structure generated when material in the outer disk achieves a 2:1 orbital resonance with respect to the donor.

146

This work presents an extended, neutral hydrogen emission map around Magellanic-type dwarf irregular galaxy (dIm) NGC 1569. In the spring of 2010, the Robert C. Byrd Green Bank Telescope was used to map a 9° × 2° region in H i line emission that includes NGC 1569 and IC 342 as well as two other dwarf galaxies. The primary objective for these observations was to search for structures potentially connecting NGC 1569 with IC 342 group members in order to trace previous interactions and thus, provide an explanation for the starburst and peculiar kinematics prevalent in NGC 1569. A large, half-degree diameter H i cloud was detected that shares the same position and velocity as NGC 1569. Also, two long structures were discovered that are reminiscent of intergalactic filaments extending out in a V-shaped manner from NGC 1569 toward UGCA 92, a nearby dwarf galaxy. These filamentary structures extend for about 1fdg5, which is 77 kpc at NGC 1569. There is a continuous velocity succession with the 0fdg5 H i cloud, filaments, and main body of the galaxy. The 0fdg5 H i cloud and filamentary structures may be foreground Milky Way, but are suggestive as possible remnants of an interaction between NGC 1569 and UGCA 92. The data also show two tidal tails extending from UGCA 86 and IC 342, respectively. These structures may be part of a continuous H i bridge but more data are needed to determine if this is the case.

147

, , , , , and

High-precision astrometric space very long baseline interferometry (S-VLBI) at the low end of the conventional frequency range, i.e., 20 cm, is a requirement for a number of high-priority science goals. These are headlined by obtaining trigonometric parallax distances to pulsars in pulsar–black hole pairs and OH masers anywhere in the Milky Way and the Magellanic Clouds. We propose a solution for the most difficult technical problems in S-VLBI by the MultiView approach where multiple sources, separated by several degrees on the sky, are observed simultaneously. We simulated a number of challenging S-VLBI configurations, with orbit errors up to 8 m in size and with ionospheric atmospheres consistent with poor conditions. In these simulations we performed MultiView analysis to achieve the required science goals. This approach removes the need for beam switching requiring a Control Moment Gyro, and the space and ground infrastructure required for high-quality orbit reconstruction of a space-based radio telescope. This will dramatically reduce the complexity of S-VLBI missions which implement the phase-referencing technique.

148

and

The Kepler Eclipsing Binary Catalog (KEBC) describes 2165 eclipsing binaries identified in the 115 deg2 Kepler Field based on observations from Kepler quarters Q0, Q1, and Q2. The periods in the KEBC are given in units of days out to six decimal places but no period errors are provided. We present the PEC (Period Error Calculator) algorithm, which can be used to estimate the period errors of strictly periodic variables observed by the Kepler Mission. The PEC algorithm is based on propagation of error theory and assumes that observation of every light curve peak/minimum in a long time-series observation can be unambiguously identified. The PEC algorithm can be efficiently programmed using just a few lines of C computer language code. The PEC algorithm was used to develop a simple model that provides period error estimates for eclipsing binaries in the KEBC with periods less than 62.5 days: log σP ≈ − 5.8908 + 1.4425(1 + log P), where P is the period of an eclipsing binary in the KEBC in units of days. KEBC systems with periods ⩾62.5 days have KEBC period errors of ∼0.0144 days. Periods and period errors of seven eclipsing binary systems in the KEBC were measured using the NASA Exoplanet Archive Periodogram Service and compared to period errors estimated using the PEC algorithm.

149

, , , , , , , , , et al

We present results from ground-based optical imaging of a low-mass dwarf galaxy discovered by the ALFALFA 21 cm H i survey. Broadband (BVR) data obtained with the WIYN 3.5 m telescope at Kitt Peak National Observatory (KPNO) are used to construct color–magnitude diagrams of the galaxy's stellar population down to Vo ∼ 25. We also use narrowband Hα imaging from the KPNO 2.1 m telescope to identify a H ii region in the galaxy. We use these data to constrain the distance to the galaxy to be between 1.5 and 2.0 Mpc. This places Leo P within the Local Volume but beyond the Local Group. Its properties are extreme: it is the lowest-mass system known that contains significant amounts of gas and is currently forming stars.

150

, , , , , and

We present new Very Large Array H i spectral line, archival Sloan Digital Sky Survey, and archival Spitzer Space Telescope imaging of eight star-forming blue compact dwarf galaxies that were selected to be optically compact (optical radii <1 kpc). These systems have faint blue absolute magnitudes (MB ≳ −17), ongoing star formation (based on emission-line selection by the Hα or [O iii] lines), and are nearby (mean velocity = 3315 km s−1 ≃ 45 Mpc). One galaxy in the sample, ADBS 113845+2008, is found to have an H i halo that extends 58 r-band scale lengths from its stellar body. In contrast, the rest of the sample galaxies have H i radii to optical-scale-length ratios ranging from 9.3 to 26. The size of the H i disk in the "giant disk" dwarf galaxy ADBS 113845+2008 appears to be unusual as compared with similarly compact stellar populations.

151

, , , , , , , , , et al

We present new planet candidates identified in NASA Kepler Quarter 2 public release data by volunteers engaged in the Planet Hunters citizen science project. The two candidates presented here survive checks for false positives, including examination of the pixel offset to constrain the possibility of a background eclipsing binary. The orbital periods of the planet candidates are 97.46 days (KIC 4552729) and 284.03 (KIC 10005758) days and the modeled planet radii are 5.3 and 3.8 R. The latter star has an additional known planet candidate with a radius of 5.05 R and a period of 134.49 days, which was detected by the Kepler pipeline. The discovery of these candidates illustrates the value of massively distributed volunteer review of the Kepler database to recover candidates which were otherwise uncataloged.

152

and

The size distribution of the asteroid belt is examined with 16956 main belt asteroids detected in data taken from the Canada–France–Hawaii Telescope Legacy Survey in two filters (g' and r'). The cumulative H (absolute magnitude) distribution is examined in both filters, and both match well to simple power laws down to H = 17, with slopes in rough agreement with those reported the literature. This implies that disruptive collisions between asteroids are gravitationally dominated down to at least this size, and probably sub-kilometer scales. The slopes of these distributions appear shallower in the outer belt than the inner belt, and the g' distributions appear slightly steeper than the r'. The slope shallowing in the outer belt may reflect a real compositional difference: the inner asteroid belt has been suggested to consist mostly of stony and/or metallic S-type asteroids, whereas carbonaceous C-types are thought to be more prevalent further from the Sun. No waves are seen in the size distribution above H = 15. Since waves are expected to be produced at the transition from gravitationally-dominated to internal strength-dominated collisions, their absence here may imply that the transition occurs at sub-kilometer scales, much smaller than the H = 17 (diameter ∼ 1.6 km) cutoff of this study.

153

, , , , , , , and

We present an observation of overlying coronal loop contraction and rotating motion of the sigmoid filament during its eruption on 2012 May 22 observed by the Solar Dynamics Observatory (SDO). Our results show that the twist can be transported into the filament from the lower atmosphere to the higher atmosphere. The successive contraction of the coronal loops was due to a suddenly reduced magnetic pressure underneath the filament, which was caused by the rising of the filament. Before the sigmoid filament eruption, there was a counterclockwise flow in the photosphere at the right feet of the filament and the contraction loops and a convergence flow at the left foot of the filament. The hot and cool materials have inverse motion along the filament before the filament eruption. Moreover, two coronal loops overlying the filament first experienced brightening, expansion, and contraction successively. At the beginning of the rising and rotation of the left part of the filament, the second coronal loop exhibited rapid contraction. The top of the second coronal loop also showed counterclockwise rotation during the contraction process. After the contraction of the second loop, the left part of the filament rotated counterclockwise and expanded toward the right of NOAA AR 11485. During the filament expansion, the right part of the filament also exhibited counterclockwise rotation like a tornado.

154

and

We present a study of planet-crossing asteroid (3200) Phaethon at three successive perihelia in 2009, 2010, and 2012, using the NASA STEREO spacecraft. Phaethon is clearly detected in 2009 and 2012, but not in 2010. In both former years, Phaethon brightened unexpectedly by ∼1 mag at large phase angles, inconsistent with the ∼1 mag of steady fading expected from a discrete, macroscopic body over the same phase angle range. With a perihelion distance of 0.14 AU and surface temperatures up to ∼1000 K, a thermal origin of this anomalous brightening is strongly suspected. However, simple thermal emission from Phaethon is too weak, by a factor >103, to explain the brightening. Nor can ice survive on this body, ruling out comet-like sublimation. Our preferred explanation is that brightening occurs as a result of dust produced and ejected from Phaethon, perhaps by thermal fracture and/or thermal decomposition of surface minerals when near perihelion. A contribution from prompt emission by oxygen released by desiccation of surface minerals cannot be excluded. We infer an ejected mass of order 4 × 108amm kg per outburst, where amm is the mean dust radius in millimeters. For plausible dust radii, this mass is small compared to the estimated mass of Phaethon (∼2 × 1014 kg) and to the mass of the Geminid stream (1012–1013 kg) with which Phaethon is dynamically associated. Perihelion mass-loss events like those observed in 2009 and 2012 contribute to, but do not necessarily account for the Geminids stream mass.

155

, , , , , , , , , et al

We describe the discovery of a likely brown dwarf (BD) companion with a minimum mass of 31.7 ± 2.0 MJup to GSC 03546-01452 from the MARVELS radial velocity survey, which we designate as MARVELS-6b. For reasonable priors, our analysis gives a probability of 72% that MARVELS-6b has a mass below the hydrogen-burning limit of 0.072 M, and thus it is a high-confidence BD companion. It has a moderately long orbital period of $47.8929^{+0.0063}_{-0.0062}$ days with a low eccentricity of $0.1442^{+0.0078}_{-0.0073}$, and a semi-amplitude of $1644^{+12}_{-13}$ m s−1. Moderate resolution spectroscopy of the host star has determined the following parameters: Teff = 5598 ± 63, log g = 4.44 ± 0.17, and [Fe/H] = +0.40 ± 0.09. Based upon these measurements, GSC 03546-01452 has a probable mass and radius of M* = 1.11 ± 0.11 M and R* = 1.06 ± 0.23 R with an age consistent with less than ∼6 Gyr at a distance of 219 ± 21 pc from the Sun. Although MARVELS-6b is not observed to transit, we cannot definitively rule out a transiting configuration based on our observations. There is a visual companion detected with Lucky Imaging at 7farcs7 from the host star, but our analysis shows that it is not bound to this system. The minimum mass of MARVELS-6b exists at the minimum of the mass functions for both stars and planets, making this a rare object even compared to other BDs. It also exists in an underdense region in both period/eccentricity and metallicity/eccentricity space.

156

and

High-quality three-color light curves of the binary FG Gem were measured and analyzed. A new method based on extensive searching of isochrones was used to investigate possible parameters for the binary. FG Gem is found to be an Algol-type semi-detached binary system with a primary star temperature of 8200 K and a mass ratio of 0.41(1). The correctness and reliability of our result requires the verification of precision spectroscopy or standard star observations. We investigate a new possible cause for the orbital period variations based on times of minimum light data. It is suggested from the quantitative analysis that variations in the orbital period can be explained by intermittent mass transfer and angular momentum loss from stellar winds leaving the system on rotating magnetic fields.

157

, , , , , , , , , and

A fraction of the heavily reddened quasars require a reddening curve that is even steeper than that of the Small Magellanic Cloud. In this paper, we thoroughly characterize the anomalously steep reddening law in quasars via an exceptional example observed in IRAS 14026+4341. By comparing the observed spectrum to the quasar composite spectrum, we derive a reddening curve in the rest-frame wavelength range of 1200–10000 Å. It has a steep rise at wavelengths shorter than 3000 Å, but no significant reddening at longer wavelengths. The absence of dust reddening in the optical continuum is confirmed by the normal broad-line Balmer decrement (the Hα/Hβ ratio) in IRAS 14026+4341. The anomalous reddening curve can be satisfactorily reproduced with a dust model containing silicate grains in a power-law size distribution, dn(a)/daa−1.4, truncated at a maximum size of amax = 70 nm. The unusual size distribution may be caused by the destruction of large "stardust" grains by quasar activities or a different dust formation mechanism (i.e., the in situ formation of dust grains in quasar outflows). It is also possible that the analogies of the dust grains observed near the Galactic center are responsible for the steep reddening curve. In addition, we find that IRAS 14026+4341 is a weak emission-line quasar (i.e., PHL 1811 analogies) with heavy dust reddening and blueshifted broad absorption lines.

158

, , , and

We present multi-epoch photometric and spectroscopic near-infrared observations of the Be star X Persei in the JHK bands covering the wavelength range 1.08–2.35 μm. Combining results from our earlier studies with the present observations, it is shown that the equivalent widths and line fluxes of the prominent H i and He i lines anti-correlate with the strength of the adjacent continuum. That is, during the span of the observations, the JHK broadband fluxes increase while the emission equivalent width values of the H i and He i lines decrease (the lines under consideration being the Paschen and Brackett lines of hydrogen and the 1.7002 μm and 2.058 μm lines of helium). Such an anti-correlation effect is not commonly observed in Be stars in the optical; in the infrared, this may possibly be the first reported case of such behavior. We examine different mechanisms that could possibly cause it and suggest that it could originate due to a radiatively warped, precessing circumstellar disk. It is also shown that during the course of our studies, X Per evolved to an unprecedented state of high near-IR brightness with J, H, K magnitudes of 5.20, 5.05, and 4.84, respectively.

159

, , , , , , , , , et al

We present new quasars discovered in the vicinity of the Andromeda and Triangulum galaxies with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope, also named the Guoshoujing Telescope, during the 2010 and 2011 observational seasons. Quasar candidates are selected based on the available Sloan Digital Sky Survey, Kitt Peak National Observatory 4 m telescope, Xuyi Schmidt Telescope Photometric Survey optical, and Wide-field Infrared Survey Explorer near-infrared photometric data. We present 509 new quasars discovered in a stripe of ∼135 deg2 from M31 to M33 along the Giant Stellar Stream in the 2011 pilot survey data sets, and also 17 new quasars discovered in an area of ∼100 deg2 that covers the central region and the southeastern halo of M31 in the 2010 commissioning data sets. These 526 new quasars have i magnitudes ranging from 15.5 to 20.0, redshifts from 0.1 to 3.2. They represent a significant increase of the number of identified quasars in the vicinity of M31 and M33. There are now 26, 62, and 139 known quasars in this region of the sky with i magnitudes brighter than 17.0, 17.5, and 18.0, respectively, of which 5, 20, and 75 are newly discovered. These bright quasars provide an invaluable collection with which to probe the kinematics and chemistry of the interstellar/intergalactic medium in the Local Group of galaxies. A total of 93 quasars are now known with locations within 2fdg5 of M31, of which 73 are newly discovered. Tens of quasars are now known to be located behind the Giant Stellar Stream, and hundreds are behind the extended halo and its associated substructures of M31. The much enlarged sample of known quasars in the vicinity of M31 and M33 can potentially be utilized to construct a perfect astrometric reference frame to measure the minute proper motions (PMs) of M31 and M33, along with the PMs of substructures associated with the Local Group of galaxies. Those PMs are some of the most fundamental properties of the Local Group.

160

, , , , , , , , , et al

This is the third in a series of papers studying the variable stars in old globular clusters in the Large Magellanic Cloud. The primary goal of this series is to look at how the characteristics and behavior of RR Lyrae stars in Oosterhoff-intermediate systems compare to those of their counterparts in Oosterhoff-I/II systems. In this paper we present the results of our new time-series BVI photometric study of the globular cluster Reticulum. We found a total of 32 variables stars (22 RRab, 4 RRc, and 6 RRd stars) in our field of view. We present photometric parameters and light curves for these stars. We also present physical properties, derived from Fourier analysis of light curves, for some of the RR Lyrae stars. We discuss the Oosterhoff classification of Reticulum and use our results to re-derive the distance modulus and age of the cluster.

161

, , and

We present an analysis of the orbit of Saturn's F ring using images recorded by the Imaging Science Subsystem of the Cassini spacecraft. A total of 9805 observations have been made from 10 image sequences obtained between 2006 November 23 and 2009 July 28. Each sequence of up to 240 images spans a single orbit of the F ring, allowing 10 independent high-precision estimates of the ring orbit to be made over this ∼3 year period. The ring has been modeled as an inclined uniformly precessing ellipse. The results show a variability in the orbital elements with, for example, the semi-major axis scattered between 140211.2 ± 0.1 km and 140232.9 ± 0.4 km and the fitted periapses locked to the value obtained from a combined fit using the entire three-year span of observations. We show that the observed scatter between the individual estimates of the ring orbit reflect the differing past histories of the particular segments of ring being fitted and that the values are scattered within the limits expected from a single gravitational encounter with the nearby moon, Prometheus. In the combined fit, the scatter averages out to reveal a small systematic bias with respect to the results of Bosh et al. and Albers et al. We believe this is a consequence of the proximity of Prometheus to the ring in the image sequences chosen for this analysis. Finally, we note a close empirical commensurability between the apsidal precession rate, $\dot{\varpi }$, of the F ring and the synodic period between Prometheus and the F ring, such that nPromnFring ≈ 2$\dot{\varpi }_{\rm Fring}$, where nProm and nFring are the mean motions, and discuss its implications.

162

, , , , and

RX J0513.1+0851 and RX J0539.9+0956 were previously identified as young, low-mass, single-lined spectroscopic binary systems and classified as weak-lined T Tauri stars at visible wavelengths. Here we present radial velocities, spectral types, vsin i values, and flux ratios for the components in these systems resulting from two-dimensional cross-correlation analysis. These results are based on high-resolution, near-infrared spectroscopy taken with the Keck II telescope to provide a first characterization of these systems as double-lined rather than single-lined. It applies the power of infrared spectroscopy to the detection of cool secondaries; the flux scales as a less steep function of mass in the infrared than in the visible, thus enabling an identification of low-mass secondaries. We found that the RX J0513.1+0851 and RX J0539.9+0956 primary stars are fast rotators, 60 km s−1 and 80 km s−1, respectively; this introduces extra difficulty in the detection of the secondary component as a result of the quite broad absorption lines. To date, these are the highest rotational velocities measured for a pre-main sequence spectroscopic binary. The orbital parameters and mass ratios were determined by combining new visible light spectroscopy with our infrared data for both systems. For RX J0513.1+0851, we derived a period of ∼4 days and a mass ratio of q = 0.46 ± 0.01 and for RX J0539.9+0956, a period of ∼1117 days and a mass ratio of q = 0.66 ± 0.01. Based on our derived properties for the stellar components, we estimate the luminosities and hence distances to these binaries at 220 pc and 90 pc. They appear to be significantly closer than previously estimated.

163

, , , , , , , , and

We measure the spatial density of F turnoff stars in the Sagittarius dwarf tidal stream, from Sloan Digital Sky Survey data, using statistical photometric parallax. We find a set of continuous, consistent parameters that describe the leading Sgr stream's position, direction, and width for 15 stripes in the north Galactic cap, and three stripes in the south Galactic cap. We produce a catalog of stars that has the density characteristics of the dominant leading Sgr tidal stream that can be compared with simulations. We find that the width of the leading (north) tidal tail is consistent with recent triaxial and axisymmetric halo model simulations. The density along the stream is roughly consistent with common disruption models in the north, but possibly not in the south. We explore the possibility that one or more of the dominant Sgr streams has been misidentified, and that one or more of the "bifurcated" pieces is the real Sgr tidal tail, but we do not reach definite conclusions. If two dwarf progenitors are assumed, fits to the planes of the dominant and "bifurcated" tidal tails favor an association of the Sgr dwarf spheroidal galaxy with the dominant southern stream and the "bifurcated" stream in the north. In the north Galactic cap, the best fit Hernquist density profile for the smooth component of the stellar halo is oblate, with a flattening parameter q = 0.53, and a scale length of r0 = 6.73. The southern data for both the tidal debris and the smooth component of the stellar halo do not match the model fits to the north, although the stellar halo is still overwhelmingly oblate. Finally, we verify that we can reproduce the parameter fits on the asynchronous MilkyWay@home volunteer computing platform.

164

, , , , , and

We present the calibration of the spectroscopic Lick/IDS standard line-index system for measurements obtained with the Gemini Multi-Object Spectrographs known as GMOS-North and GMOS-South. We provide linear correction functions for each of the 25 standard Lick line indices for the B600 grism and two instrumental setups, one with 0farcs5 slit width and 1 × 1 CCD pixel binning (corresponding to ∼2.5 Å spectral resolution) and the other with 0farcs75 slit width and 2 × 2 binning (∼4 Å). We find small and well-defined correction terms for the set of Balmer indices Hβ, HγA, and HδA along with the metallicity sensitive indices Fe5015, Fe5270, Fe5335, Fe5406, Mg2, and Mgb that are widely used for stellar population diagnostics of distant stellar systems. We find other indices that sample molecular absorption bands, such as TiO1 and TiO2, with very wide wavelength coverage or indices that sample very weak molecular and atomic absorption features, such as Mg1, as well as indices with particularly narrow passband definitions, such as Fe4384, Ca4455, Fe4531, Ca4227, and Fe5782, which are less robustly calibrated. These indices should be used with caution.

165

, , and

We present high-quality BVRI photometric data in the field of globular cluster NGC 6496 obtained with the SOAR Telescope Adaptive Module (SAM). Our observations were collected as part of the ongoing SAM commissioning. The distance modulus and cluster color excess as found from the red clump are (mM)V = 15.71 ± 0.02 mag and E(VI) = 0.28 ± 0.02 mag. An age of 10.5 ± 0.5 Gyr is determined from the difference in magnitude between the red clump and the subgiant branch. These parameters are in excellent agreement with the values derived from isochrone fitting. From the color–magnitude diagram we find a metallicity of [Fe/H] = −0.65 dex and hence support a disk classification for NGC 6496. The complete BVRI data set for NGC 6469 is made available in the electronic edition of the Journal.

166

, , , , , , and

We present Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph observations of two occultations of the transiting exoplanet HAT-P-1b. By measuring the planet to star flux ratio near opposition, we constrain the geometric albedo of the planet, which is strongly linked to its atmospheric temperature gradient. An advantage of HAT-P-1 as a target is its binary companion ADS 16402 A, which provides an excellent photometric reference, simplifying the usual steps in removing instrumental artifacts from HST time-series photometry. We find that without this reference star, we would need to detrend the lightcurve with the time of the exposures as well as the first three powers of HST orbital phase, and this would introduce a strong bias in the results for the albedo. However, with this reference star, we only need to detrend the data with the time of the exposures to achieve the same per-point scatter, therefore we can avoid most of the bias associated with detrending. Our final result is a 2σ upper limit of 0.64 for the geometric albedo of HAT-P-1b between 577 and 947 nm.

167

, , , , and

We present spectroscopic observations of LX Per carried out using the Korean Bohyunsan Observatory Echelle Spectrograph (BOES) with spectral resolving power R = 80, 000. The spectrograph was attached to the 1.8 m telescope. The fit of synthetic spectra to the observed spectrum of the system allowed us to find the component parameters and the abundances of chemical elements in the atmospheres of the components. The strong Ca ii H&K emissions are confirmed; we also found emission lines in the Ca ii reversals' triplet absorptions at the wavelengths of 8498, 8542, and 8662 Å in the spectrum of the cooler component of LX Per. A unique photometric solution using the distorted light curves of three different epochs was made. The spot model light curves were fitted to the 1981, 1982, and 1983 observations successfully by adjusting only spot parameters. We could infer that the variation of spot location and size was the main reason for the changing shape of light curves. The main feature of the abundance patterns of both components was the apparent deficiency of heavy (Z > 30) elements. Only elements with strong lines, namely Y and Ba, were detected. Correlations of relative abundances of chemical elements with condensation temperatures and second ionization potentials of these elements, which can be explained by the accretion of dust and gas, were found.

168

, , and

New optical spectra obtained with the SMARTS 1.5 m telescope and archival International Ultraviolet Explorer (IUE) far-ultraviolet (FUV) spectra of the nova-like variable KQ Mon are discussed. The optical spectra reveal Balmer lines in absorption as well as He i absorption superposed on a blue continuum. The 2011 optical spectrum is similar to the KPNO 2.1 m IIDS spectrum we obtained 33 years earlier except that the Balmer and He i absorption is stronger in 2011. Far-ultraviolet IUE spectra reveal deep absorption lines due to C ii, Si iii, Si iv, C iv, and He ii, but no P Cygni profiles indicative of wind outflow. We present the results of the first synthetic spectral analysis of the IUE archival spectra of KQ Mon with realistic optically thick, steady-state, viscous accretion-disk models with vertical structure and high-gravity photosphere models. We find that the photosphere of the white dwarf (WD) contributes very little FUV flux to the spectrum and is overwhelmed by the accretion light of a steady disk. Disk models corresponding to a WD mass of ∼0.6 M, with an accretion rate of order 10−9M yr−1 and disk inclinations between 60° and 75°, yield distances from the normalization in the range of 144–165 pc. KQ Mon is discussed with respect to other nova-like variables. Its spectroscopic similarity to the FUV spectra of three definite SW Sex stars suggests that it is likely a member of the SW Sex class and lends support to the possibility that the WD is magnetic.

169

, , , and

We present a spectroscopically identified catalog of 70 DA white dwarfs (WDs) from the LAMOST pilot survey. Thirty-five are found to be new identifications after cross-correlation with the Eisenstein et al. and Villanova catalogs. The effective temperature and gravity of these WDs are estimated by Balmer lines fitting. Most of them are hot WDs. The cooling times and masses of these WDs are estimated by interpolation in theoretical evolution tracks. The peak of the mass distribution is found to be ∼0.6 M, which is consistent with prior work in the literature. The distances of these WDs are estimated using the method of synthetic spectral distances. All of these WDs are found to be in the Galactic disk from our analysis of space motions. Our sample supports the expectation that WDs with high mass are concentrated near the plane of the Galactic disk.

170

, , , and

We have been able to compare with astrometric precision AstroDrizzle processed images of NGC 6720 (the Ring Nebula) made using two cameras on the Hubble Space Telescope. The time difference of the observations was 12.925 yr. This large time base allowed the determination of tangential velocities of features within this classic planetary nebula. Individual features were measured in [N ii] images as were the dark knots seen in silhouette against background nebular [O iii] emission. An image magnification and matching technique was also used to test the accuracy of the usual assumption of homologous expansion. We found that homologous expansion does apply, but the rate of expansion is greater along the major axis of the nebula, which is intrinsically larger than the minor axis. We find that the dark knots expand more slowly than the nebular gas, that the distance to the nebula is 720 pc ±30%, and that the dynamic age of the Ring Nebula is about 4000 yr. The dynamic age is in agreement with the position of the central star on theoretical curves for stars collapsing from the peak of the asymptotic giant branch to being white dwarfs.

171

, , , and

Stellar occultations observed by the Cassini Ultraviolet Imaging Spectrograph reveal the presence of transparent holes a few meters to a few tens of meters in radial extent in otherwise optically thick regions of the C ring and the Cassini Division. We attribute the holes to gravitational disturbances generated by a population of 10 m boulders in the rings that is intermediate in size between the background ring particle size distribution and the previously observed 100 m propeller moonlets in the A ring. The size distribution of these boulders is described by a shallower power-law than the one that describes the ring particle size distribution. The number and size distribution of these boulders could be explained by limited accretion processes deep within Saturn's Roche zone.