This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

038

, and

Black hole formation may occur if the spectrum of the curvature perturbation ζ increases strongly as the scale decreases. As no such increase is observed on cosmological scales, black hole formation requires strongly positive running n' of the spectral index n, though the running might only kick in below the 'cosmological scales' probed by the cosmic microwave background anisotropy and galaxy surveys. A concrete and well-motivated way of producing this running is through the running mass model of slow-roll inflation. We obtain a new observational bound n'<0.026 on the running provided by this model, improving an earlier result by a factor 2. We also discuss black hole production in more general scenarios. We show that the usual conditions and are enough to derive the spectrum , the introduction of higher order parameters ξ2 etc being optional.

037

, and

We propose an extension of the standard model with a BL global symmetry that is broken softly at the TeV scale. The neutrinos acquire masses through a type-II seesaw while the lepton (L) asymmetry arises in the singlet sector but without BL-number violation. The model has the virtue that the scale of L-number violation (Λ) giving rise to neutrino masses is independent of the scale of leptogenesis (Λ'). As a result the model can explain neutrino masses, singlet scalar dark matter and leptogenesis at the TeV scale. The stability of the dark matter is ensured by a surviving Z2 symmetry, which could be lifted at the Planck scale, thereby allowing Planck scale suppressed decay of singlet scalar dark matter particles of mass ≈3 MeV to e+e pairs in the Galactic halo. The model also predicts a few hundred GeV doubly charged scalar and a long-lived charged fermion, whose decay can be studied at the Large Hadron Collider (LHC) and International Linear Collider (ILC).

036

, and

We study preheating in theories where the inflaton couples derivatively to scalar and gauge fields. Such couplings may dominate in, for example, models of natural inflation, in which the flatness of the inflaton potential is related to an approximate shift symmetry of the inflaton. We compare our results with previously studied models with non-derivative couplings. For sufficiently heavy scalar matter, parametric resonance is ineffective in reheating the universe, because the couplings of the inflaton to matter are very weak. If scalar matter fields are light, derivative couplings lead to long-wavelength instabilities that drive matter fields to non-zero expectation values. In this case however, long-wavelength fluctuations of the light scalar are produced during inflation, leading to a host of cosmological problems. In contrast, axion-like couplings of the inflaton to a gauge field do not lead to production of long-wavelength fluctuations during inflation. However, again because of the weakness of the couplings to the inflaton, parametric resonance is not effective in producing gauge field quanta.

035

and

We investigate the cosmological evolution of the system of a Dirac–Born–Infeld field plus a perfect fluid. We analyze the existence and stability of scaling solutions for the anti-de Sitter throat and the quadratic potential. We find that the scaling solutions exist when the equation of state of the perfect fluid is negative and in the ultra-relativistic limit.

034

, and

We analyze the cosmological signatures visible to an observer in a Coleman–de Luccia bubble when another such bubble collides with it. We use a gluing procedure to generalize the results of Freivogel, Horowitz and Shenker to the case of a general cosmological constant in each bubble and study the resulting spacetimes. The collision breaks the isotropy and homogeneity of the bubble universe and provides a cosmological 'axis of evil' which can affect the cosmic microwave background in several unique and potentially detectable ways. Unlike more conventional perturbations to the inflationary initial state, these signatures can survive even relatively long periods of inflation. In addition, we find that for a given collision the observers in the bubble with smaller cosmological constant are safest from collisions with domain walls, possibly providing another anthropic selection principle for small positive vacuum energy.

033

, and

We discuss the conditions for a non-vanishing Dirac phase δ and mixing angle θ13, sources of CP violation in neutrino oscillations, to be uniquely responsible for the observed matter–antimatter asymmetry of the Universe through leptogenesis. We show that this scenario, that we call δ-leptogenesis, is viable when the degenerate limit for the heavy right-handed (RH) neutrino spectrum is considered. We derive an interesting joint condition on sinθ13 and the absolute neutrino mass scale that can be tested in future neutrino oscillation experiments. In the limit of the hierarchical heavy RH neutrino spectrum, we strengthen the previous result that δ-leptogenesis is only very marginally allowed, even when the production from the two heavier RH neutrinos is taken into account. An improved experimental upper bound on sinθ13 and/or an account of quantum kinetic effects could completely rule out this option in the future. Therefore, δ-leptogenesis can be also regarded as motivation for models with degenerate heavy neutrino spectrum.

032

, and

In cyclic cosmology based on phantom dark energy the requirement that our universe satisfy a CBE condition (comes back empty) imposes a lower bound on the number Ncp of causal patches which separate just prior to turnaround. This bound depends on the dark energy equation of state w = p/ρ = −1−ϕ with ϕ>0. More accurate measurement of ϕ will constrain Ncp. The critical density ρc in the model has a lower bound ρc≥(109 GeV)4 or ρc≥(1018 GeV)4 when the smallest bound state has size 10−15 m, or 10−35 m, respectively.

031

We study the motion of a (space filling) D3-brane at the tip of a warped deformed conifold, looking for inflationary trajectories. In our set-up no anti-D3-brane is present and the inflaton potential is induced by threshold corrections to the superpotential. First we study the slow roll regime and find that, allowing for fine tuning, hilltop inflation compatible with CMB data can take place. Then we consider the DBI regime and formulate a necessary condition for a phenomenologically viable inflationary stage. In passing, we propose a mechanism to cancel the large inflaton mass in the standard radial D3–anti-D3-brane inflation.

030

and

It is well known that the correlation functions of a scalar field in a quasi-de Sitter space exhibit at the loop level cumulative infrared effects proportional to the total number of e-foldings of inflation. Using the in–in formalism, we explore the behavior of these infrared effects in the large N limit of an O(N)-invariant scalar field theory with quartic self-interactions. By resumming all higher-order loop diagrams non-perturbatively, we show that the connected four-point correlation function, which is a signal of non-Gaussianity, is non-perturbatively enhanced with respect to its tree-level value.

029

, , and

As suggested by some extensions of the standard model of particle physics, dark matter may be a super-weakly-interacting lightest stable particle, while the next-to-lightest particle (NLP) is charged and metastable. One could test such a possibility with neutrino telescopes, by detecting the charged NLPs produced in high-energy neutrino collisions with Earth matter. We study the production of charged NLPs by both atmospheric and astrophysical neutrinos; only the latter, which is largely uncertain and has not been detected yet, was the focus of previous studies. We compute the resulting fluxes of the charged NLPs, compare those of different origins and analyze the dependence on the underlying particle physics set-up. We point out that, even if the astrophysical neutrino flux is very small, atmospheric neutrinos, especially those from the prompt decay of charmed mesons, may provide a detectable flux of NLP pairs at neutrino telescopes such as IceCube. We also comment on the flux of charged NLPs expected from proton–nucleon collisions and show that, for theoretically motivated and phenomenologically viable models, it is typically subdominant and below detectable rates.

028

and

Stochastic inflation describes the global structure of the inflationary universe by modeling the super-Hubble dynamics as a system of matter fields coupled to gravity where the sub-Hubble field fluctuations induce a stochastic force into the equations of motion. The super-Hubble dynamics are ultralocal, allowing us to neglect spatial derivatives and treat each Hubble patch as a separate universe. This provides a natural framework in which to discuss probabilities on the space of solutions and initial conditions. In this paper we derive an evolution equation for this probability for an arbitrary class of matter systems, including DBI and k-inflationary models, and discover equilibrium solutions that satisfy detailed balance. Our results are more general than those derived assuming slow roll or a quasi-de Sitter geometry, and so are directly applicable to models that do not satisfy the usual slow-roll conditions. We discuss in general terms the conditions for eternal inflation to set in, and we give explicit numerical solutions of highly stochastic, quasi-stationary trajectories in the relativistic DBI regime. Finally, we show that the probability for stochastic/thermal tunneling can be significantly enhanced relative to the Hawking–Moss instanton result due to relativistic DBI effects.

027

and

We study how the determination of the Hubble constant from cosmological distance measures is affected by models of dark energy and vice versa. For this purpose, constraints on the Hubble constant and dark energy are investigated using the cosmological observations of cosmic microwave background, baryon acoustic oscillations and type Ia supernovae. When one investigates dark energy, the Hubble constant is often a nuisance parameter; thus it is usually marginalized over. On the other hand, when one focuses on the Hubble constant, simple dark energy models such as a cosmological constant and a constant equation of state are usually assumed. Since we do not know the nature of dark energy yet, it is interesting to investigate the Hubble constant assuming some types of dark energy and see to what extent the constraint on the Hubble constant is affected by the assumption concerning dark energy. We show that the constraint on the Hubble constant is not affected much by the assumption for dark energy. We furthermore show that this holds true even if we remove the assumption that the universe is flat. We also discuss how the prior on the Hubble constant affects the constraints on dark energy and/or the curvature of the universe.

026

We evaluate the average expansion rate of a universe which contains a realistic evolving ensemble of non-linear structures. We use the peak model of structure formation to obtain the number density of structures, and take the individual structures to be spherical. The expansion rate increases relative to the Friedmann–Robertson–Walker value on a timescale of 10–100 billion years, because the universe becomes dominated by fast expanding voids. However, the increase is not rapid enough to correspond to acceleration. We discuss how to improve our treatment. We also consider various qualitative issues related to backreaction.

025

, , and

We discuss the infrared divergences that appear to plague cosmological perturbation theory. We show that, within the stochastic framework, they are regulated by eternal inflation so that the theory predicts finite fluctuations. Using the ΔN formalism to one loop, we demonstrate that the infrared modes can be absorbed into additive constants and the coefficients of the diagrammatic expansion for the connected parts of two-and three-point functions of the curvature perturbation. As a result, the use of any infrared cutoff below the scale of eternal inflation is permitted, provided that the background fields are appropriately redefined. The natural choice for the infrared cutoff would, of course, be the present horizon; other choices manifest themselves in the running of the correlators. We also demonstrate that it is possible to define observables that are renormalization-group-invariant. As an example, we derive a non-perturbative, infrared finite and renormalization point-independent relation between the two-point correlators of the curvature perturbation for the case of the free single field.

024

and

We study inflation and late-time acceleration in the expansion of the universe in non-minimal electromagnetism, in which the electromagnetic field couples to the scalar curvature function. It is shown that power-law inflation can be realized due to the non-minimal gravitational coupling of the electromagnetic field, and that large-scale magnetic fields can be generated due to the breaking of the conformal invariance of the electromagnetic field through its non-minimal gravitational coupling. Furthermore, it is demonstrated that both inflation and the late-time acceleration of the universe can be realized in a modified Maxwell-F(R) gravity which is consistent with solar-system tests and cosmological bounds and free of instabilities. At small curvature typical for the current universe the standard Maxwell theory is recovered. We also consider the classically equivalent form of non-minimal Maxwell-F(R) gravity, and propose the origin of the non-minimal gravitational coupling function based on renormalization-group considerations.

023

We investigated the effects of a tachyonic field as a source of gravity in a Bianchi type-I metric. A tachyonic potential is constructed in the anisotropic metric and it is observed that a tachyonic field can be a possible candidate to drive the anisotropically expanding universe. The asymptotic nature of the potential is also discussed.

022

and

Inflation and moduli stabilization mechanisms work well independently, and many string-motivated supergravity models have been proposed for them. However, a complete theory will contain both, and there will be (gravitational) interactions between the two sectors. These give corrections to the inflaton potential, which generically ruin inflation. This holds true even for fine-tuned moduli stabilization schemes. Following a suggestion by Achúcarro and Sousa (2007 Preprint 0712.3460), we show that a viable combined model can be obtained if it is the Kähler functions (G = K+ln|W|2) of the two sectors that are added, rather than the superpotentials (as is usually done). Interaction between the two sectors does still impose some restrictions on the moduli stabilization mechanism, which are derived. Significantly, we find that the (post-inflation) moduli stabilization scale no longer needs to be above the inflationary energy scale.

021

The classical radiometer equation is commonly used to calculate the detectability of the 21 cm emission by diffuse cosmic hydrogen at high redshifts. However, the classical description is only valid in the regime where the occupation number of the photons in phase space is much larger than unity and they collectively behave as a classical electromagnetic field. At redshifts , the spin temperature of the intergalactic gas is dictated by the radiation from galaxies and the brightness temperature of the emitting gas is in the range of mK, independently from the existence of the cosmic microwave background. In regions where the observed brightness temperature of the 21 cm signal is smaller than the observed photon energy, hν = 68(1+z)−1 mK, the occupation number of the signal photons is smaller than unity. Nevertheless, the radiometer equation can still be used in this regime because the weak signal is accompanied by a flood of foreground photons with a high occupation number (involving the synchrotron galactic emission and the cosmic microwave background). As the signal photons are not individually distinguishable, the combined signal+foreground population of photons has a high occupation number, thus justifying the use of the radiometer equation.

020

We apply the bulk holographic dark energy in general 5D two-brane models. We extract the Friedmann equation on the physical brane and we show that in the general moving-brane case the effective 4D holographic dark energy behaves as a quintom for a large parameter-space area of a simple solution subclass. We find that wΛ was larger than −1 in the past while its present value is wΛ0≈−1.05, and the phantom bound wΛ = −1 was crossed at zp≈0.41, a result in agreement with observations. Such a behavior arises naturally, without the inclusion of special fields or potential terms, but a fine-tuning between the 4D Planck mass and the brane tension has to be imposed.

019

, , and

We update our previous constraints on two-component hot dark matter (axions and neutrinos), including the recent WMAP five-year data release. Marginalizing over provides ma<1.02 eV (95% C.L.) for the axion mass. In the absence of axions we find  eV (95% C.L.).

018

, , and

The new ekpyrotic scenario attempts to solve the singularity problem by involving violation of the null energy condition in a model which combines the ekpyrotic/cyclic scenario with the ghost condensate theory and the curvaton mechanism of production of adiabatic perturbations of the metric. The Lagrangian of this theory, as well as of the ghost condensate model, contains a term with higher derivatives, which was added to the theory to stabilize its vacuum state. We found that this term may affect the dynamics of the cosmological evolution. Moreover, after a proper quantization, this term results in the existence of a new ghost field with negative energy, which leads to a catastrophic vacuum instability. We explain why one cannot treat this dangerous term as a correction valid only at small energies and momenta below some UV cutoff, and demonstrate the problems arising when one attempts to construct a UV completion of this theory.

017

and

We study the linear perturbations of multi-field inflationary models governed by a Lagrangian which is a general function of the scalar fields and of a global kinetic term combining their spacetime gradients with an arbitrary field space metric. Our analysis includes k-inflation, Dirac–Born–Infeld inflation and its multi-field extensions which have been recently studied. For this general class of models, we calculate the action to second order in the linear perturbations. We decompose the perturbations into an adiabatic mode, parallel to the background trajectory, and entropy modes. We show that all the entropy modes propagate with the speed of light whereas the adiabatic mode propagates with an effective speed of sound. We also identify the specific combination of entropy modes which sources the curvature perturbation on large scales. We then study in some detail the case of two scalar fields: we write explicitly the equations of motion for the adiabatic and entropy modes in a compact form and discuss their quantum fluctuations and primordial power spectra.

016

, and

We update constraints on the Hubble function H(ϕ) during inflation, using the most recent cosmic microwave background (CMB) and large scale structure (LSS) data. Our main focus is on a comparison between various commonly used methods of calculating the primordial power spectrum via analytical approximations and the results obtained by integrating the exact equations numerically. In each case, we impose naive, minimally restrictive priors on the duration of inflation. We find that the choice of priors has an impact on the results: the bounds on inflationary parameters can vary by up to a factor of two. Nevertheless, it should be noted that, within the region allowed by the minimal prior of the exact method, the accuracy of the approximations is sufficient for current data. We caution, however, that a careless minimal implementation of the approximative methods allows models for which the assumptions behind the analytical approximations fail, and recommend using the exact numerical method for a self-consistent analysis of cosmological data.

015

, and

Line discontinuities in cosmic microwave background anisotropy maps are a distinctive prediction of models with cosmic strings. These signatures are visible in anisotropy maps with good angular resolution and should be identifiable using edge-detection algorithms. One such algorithm is the Canny algorithm. We study the potential of this algorithm to pick out the line discontinuities generated by cosmic strings. By applying the algorithm to small-scale microwave anisotropy maps generated from theoretical models with and without cosmic strings, we find that, given an angular resolution of several minutes of arc, cosmic strings can be detected down to a limit of the mass per unit length of the string which is one order of magnitude lower than the current upper bounds.

014

, , and

The detection of primordial non-Gaussianity could provide a powerful means to test various inflationary scenarios. Although scale-invariant non-Gaussianity (often described by the fNL formalism) is currently best constrained by the CMB, single-field models with changing sound speed can have strongly scale-dependent non-Gaussianity. Such models could evade the CMB constraints but still have important effects at scales responsible for the formation of cosmological objects such as clusters and galaxies. We compute the effect of scale-dependent primordial non-Gaussianity on cluster number counts as a function of redshift, using a simple ansatz to model scale-dependent features. We forecast constraints on these models achievable with forthcoming datasets. We also examine consequences for the galaxy bispectrum. Our results are relevant for the Dirac–Born–Infeld model of brane inflation, where the scale dependence of the non-Gaussianity is directly related to the geometry of the extra dimensions.

013

, and

We introduce a convenient parameterization of dark energy models that is general enough to include several modified gravity models and generalized forms of dark energy. In particular we take into account the linear perturbation growth factor, the anisotropic stress and the modified Poisson equation. We discuss the sensitivity of large-scale weak lensing surveys like the proposed DUNE satellite to these parameters (assuming systematic errors can be controlled). We find that a large-scale weak lensing tomographic survey is able to easily distinguish the Dvali–Gabadadze–Porrati model from ΛCDM and to determine the perturbation growth index to an absolute error of 0.02–0.04.

012

, and

We consider a magnetic Bianchi I braneworld, embedded in between two Schwarzschild–AdS spacetimes, boosted equal amounts in opposite directions and compare them to the analogous solution in four-dimensional general relativity. The efficient dissipation of anisotropy on the brane is explicitly demonstrated, a process we dub braneworld isotropization. From the bulk point of view, we attribute this to anisotropic energy being carried into the bulk by hot gravitons leaving the brane. From the brane point of view this can be interpreted in terms of the production of particles in the dual CFT. We explain how this result enables us to gain a better understanding of the behaviour of anisotropic branes already studied in the literature. We also show how there is evidence of particles being over-produced, and comment on how this may ultimately provide a possible observational signature of braneworlds.

011

and

We study a de Sitter model in the framework of a deformed special relativity (DSR) inspired structure. The effects of this framework appear as the existence of a fundamental length which influences the behavior of the scale factor. We show that such a deformation can be used either to control the unbounded growth of the scale factor in the present accelerating phase or to account for the inflationary era in the early evolution of the universe.

010

, and

Inflation driven by a single, minimally coupled, slowly rolling field generically yields a negligible primordial non-Gaussianity. We discuss two distinct mechanisms by which a non-trivial potential can generate large non-Gaussianities. Firstly, if the inflaton traverses a feature in the potential, or if the inflationary phase is short enough so that initial transient contributions to the background dynamics have not been erased, modes near horizon crossing can acquire significant non-Gaussianities. Secondly, potentials with small-scale structure may induce significant non-Gaussianities while the relevant modes are deep inside the horizon. The first case includes the 'step' potential we previously analyzed while the second 'resonance' case is novel. We derive analytic approximations for the three-point terms generated by both mechanisms written as products of functions of the three individual momenta, permitting the use of efficient analysis algorithms. Finally, we present a significantly improved approach to regularizing and numerically evaluating the integrals that contribute to the three-point function.

009

, , and

We study the implications of recent indications from the Wilkinson Microwave Anisotropy Probe (WMAP) and other cosmological data for a red spectrum of primordial density perturbations for the detection of inflationary gravitational waves (IGWs) with forthcoming cosmic microwave background experiments. We consider a variety of single-field power-law, chaotic, spontaneous symmetry-breaking and Coleman–Weinberg inflationary potentials which are expected to provide a sizable tensor component and quantify the expected tensor-to-scalar ratio given existing constraints from WMAP on the tensor-to-scalar ratio and the power spectrum tilt. We discuss the ability of the near-future Planck satellite to detect the IGW background in the framework of those models. We find that the proposed satellite missions of the Cosmic Vision and Inflation Probe programs will be able to detect IGWs from all the models we have surveyed at better than 5σ confidence level. We also provide an example of what is required if the IGW background is to remain undetected even by these latter experiments.

008

, and

We consider the effect on the propagation of light of inhomogeneities with sizes of order 10 Mpc or larger. The Universe is approximated through a variation of the Swiss-cheese model. The spherical inhomogeneities are void-like, with central underdensities surrounded by compensating overdense shells. We study the propagation of light in this background, assuming that the source and the observer occupy random positions, so that each beam travels through several inhomogeneities at random angles. The distribution of luminosity distances for sources with the same redshift is asymmetric, with a peak at a value larger than the average one. The width of the distribution and the location of the maximum increase with increasing redshift and length scale of the inhomogeneities. We compute the induced dispersion and bias of cosmological parameters derived from the supernova data. They are too small to explain the perceived acceleration without dark energy, even when the length scale of the inhomogeneities is comparable to the horizon distance. Moreover, the dispersion and bias induced by gravitational lensing at the scales of galaxies or clusters of galaxies are larger by at least an order of magnitude.

007

and

Upcoming weak lensing (WL) surveys can be used to constrain dark energy (DE) properties, namely if tomographic techniques are used to improve their sensitivity. In this work, we use a Fisher matrix technique to compare the power of CMB anisotropy and polarization data with tomographic WL data, in constraining DE parameters. Adding WL data to available CMB data improves the detection of all cosmological parameters, but the impact is really strong when DE–DM coupling is considered, as WL tomography can then succeed to reduce the errors on some parameters by factors >10.

006

and

We establish an indirect link between relic neutrinos and the dark energy sector which originates from the vacuum energy contributions of the neutrino quantum fields. Via renormalization group effects they induce a running of the cosmological constant with time which dynamically influences the evolution of the cosmic neutrino background. We demonstrate that the resulting reduction of the relic neutrino abundance allows us to largely evade current cosmological neutrino mass bounds and discuss how the scenario might be probed with the help of future large scale structure surveys and Planck data.

005

, and

We investigate early time inflationary scenarios in a Universe filled with a dilute noncommutative bosonic gas at high temperature. A noncommutative bosonic gas is a gas composed of a bosonic scalar field with noncommutative field space on a commutative spacetime. Such noncommutative field theories were recently introduced as a generalization of quantum mechanics on a noncommutative spacetime. Key features of these theories are Lorentz invariance violation and CPT violation. In the present study we use a noncommutative bosonic field theory that, besides the noncommutative parameter θ, shows up a further parameter σ. This parameter σ controls the range of the noncommutativity and acts as a regulator for the theory. Both parameters play a key role in the modified dispersion relations of the noncommutative bosonic field, leading to possible striking consequences for phenomenology. In this work we obtain an equation of state p = ω(σ,θ;β)ρ for the noncommutative bosonic gas relating pressure p and energy density ρ, in the limit of high temperature. We analyse possible behaviours for these gas parameters σ, θ and β, so that −1≤ω<−1/3, which is the region where the Universe enters an accelerated phase.

004

, and

This paper investigates the predictions of an inflationary phase starting from a homogeneous and anisotropic universe of the Bianchi I type. After discussing the evolution of the background spacetime, focusing on the number of e-folds and the isotropization, we solve the perturbation equations and predict the power spectra of the curvature perturbations and gravity waves at the end of inflation.

The main features of the early anisotropic phase is (1) a dependence of the spectra on the direction of the modes, (2) a coupling between curvature perturbations and gravity waves and (3) the fact that the two gravity wave polarizations do not share the same spectrum on large scales. All these effects are significant only on large scales and die out on small scales where isotropy is recovered. They depend on a characteristic scale that can, but a priori must not, be tuned to some observable scale.

To fix the initial conditions, we propose a procedure that generalizes the one standardly used in inflation but that takes into account the fact that the WKB regime is violated at early times when the shear dominates. We stress that there exist modes that do not satisfy the WKB condition during the shear-dominated regime and for which the amplitude at the end of inflation depends on unknown initial conditions. On such scales, inflation loses its predictability.

This study paves the way for the determination of the cosmological signature of a primordial shear, whatever the Bianchi I spacetime. It thus stresses the importance of the WKB regime to draw inflationary predictions and demonstrates that, when the number of e-folds is large enough, the predictions converge toward those of inflation in a Friedmann–Lemaître spacetime but that they are less robust in the case of an inflationary era with a small number of e-folds.

003

and

The possibility that we live in a special place in the universe, close to the centre of a large void, seems an appealing alternative to the prevailing interpretation of the acceleration of the universe in terms of a ΛCDM model with a dominant dark energy component. In this paper we confront the asymptotically flat Lemaitre–Tolman–Bondi (LTB) models with a series of observations, from type Ia supernovae to cosmic microwave background and baryon acoustic oscillations data. We propose two concrete LTB models describing a local void in which the only arbitrary functions are the radial dependence of the matter density ΩM and the Hubble expansion rate H. We find that all observations can be accommodated within 1 sigma, for our models with four or five independent parameters. The best fit models have a χ2 very close to that of the ΛCDM model. A general Fortran program for comparing LTB models with cosmological observations, that has been used to make the parameter scan in this paper, has been made public, and can be downloaded at http://www.phys.au.dk/∼haugboel/software.shtml together with IDL routines for creating the likelihood plots. We perform a simple Bayesian analysis and show that one cannot exclude the hypothesis that we live within a large local void of an otherwise Einstein–de Sitter model.

002

Dirac–Born–Infeld scalar field theories which appear in the context of inflation in string theory in general have a field-dependent speed of sound. It is, however, possible to write down DBI models which possess exact solutions characterized by a constant speed of sound different from unity. This requires that the potential and the effective D-brane tension appearing in a DBI action have to be related in a specific way. This paper describes such models in general and presents some examples with a constant speed of sound cs<1 for which the spectrum of scalar perturbations can be found analytically without resorting to the slow-roll approximation.

001

, and

The Wilkinson Microwave Anisotropy Probe (WMAP) constraints on string inspired 'brane inflation' are investigated. Here, the inflaton field is interpreted as the distance between two branes placed in a flux-enriched background geometry and has a Dirac–Born–Infeld (DBI) kinetic term. Our method relies on an exact numerical integration of the inflationary power spectra coupled to a Markov chain Monte Carlo exploration of the parameter space. This analysis is valid for any perturbative value of the string coupling constant and of the string length, and includes a phenomenological modelling of the reheating era to describe the post-inflationary evolution. It is found that the data favour a scenario where inflation stops by violation of the slow-roll conditions well before brane annihilation, rather than by tachyonic instability. As regards the background geometry, it is established that logv>−10 at 95% confidence level (CL), where v is the dimensionless ratio of the five-dimensional sub-manifold at the base of the six-dimensional warped conifold geometry to the volume of the unit 5-sphere. The reheating energy scale remains poorly constrained, Treh>20 GeV at 95% CL, for an extreme equation of state () only. Assuming that the string length is known, the favoured values of the string coupling and of the Ramond–Ramond total background charge appear to be correlated. Finally, the stochastic regime (without and with volume effects) is studied using a perturbative treatment of the Langevin equation. The validity of such an approximate scheme is discussed and shown to be too limited for a full characterization of the quantum effects.