This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 10

Number 1, February 2008

Previous issue Next issue

PAPERS

BASIC PLASMA PHENOMENA

1

, and

In a quasi-two-dimensional model, the scattering of incident ordinary electromagnetic waves by a dipole-electrostatic drift vortex is studied with first-order Born approximation. The distribution of the scattering cross-section and total cross-section are evaluated analytically in different approximate conditions, and the physical interpretations are discussed. When the wavelength of incident wave is much longer than the vortex radius (kia ≪ 1), it is found that the angle at which the scattering cross-section reaches its maxim depends significantly on the approximation of the parameters of the vortex used. It is also found that the total scattering cross-section has an affinitive relation with the parameters of the plasma, while it is irrelevant to the frequency of the incident wave in a wide range of parameters of the vortex. In a totally different range of parameters when incident wave is in the radar-frequency range (then kia ≪ 1, the wavelength of incident wave is much shorter than the vortex radius), the numerical procedure is conducted with computer in order to obtain the distribution and the total expression of the scattering cross-section. Then it is found that the total scattering cross-section in the low frequency range is much larger than that in high frequency range, so the scattering is more effective in the low frequency range than in high frequency range.

MAGNETICALLY CONFINED PLASMA

8

, , and

An 1.5D equilibrium evolution code was used to model the time evolution of the first ohmic discharges in the EAST experiment. Good agreement between the simulation and the experimental results was obtained in the plasma current, major radius, electron temperature, loop voltage and poloidal field (PF) current for the entire duration of the discharge, which indicates that the code is highly reliable and will allow to further study the EAST discharge. At the same time, the code also simulates some important plasma parameters without experimental measured data yet, such as the plasma minor radius, central and edge safety factors, elongation and triangilarity, which are important in the analysis of EAST data.

13

, , , and

A multipulse Nd:YAG (Neodym-yttrium aluminium garnet) laser Thomson scattering diagnostic system developed was recently applied on HT-7 tokamak to obtain more accurate electron temperatures. A CAMAC-based real-time computer system for laser control, data acquisition, analysis and calibration was investigated in detail. Furthermore, the reliability and accuracy of this diagnostic system were demonstrated by comparing the results with those of a soft-X ray diagnostic system.

INERTIALLY CONFINED PLASMA

18

, , , , and

We have developed a three dimensional (3D) PIC (particle-in-cell)-MC (Monte Carlo) code in order to simulate an electron beam transported into the dense matter based on our previous two dimensional code. The relativistic motion of fast electrons is treated by the particle-in-cell method under the influence of both a self-generated transverse magnetic field and an axial electric field, as well as collisions. The electric field generated by return current is expressed by Ohm's law and the magnetic field is calculated from Faraday's law. The slowing down of monoenergy electrons in DT plasma is calculated and discussed.

22

and

A Fokker-Planck code is developed based upon Epperlein's scheme to investigate laser-produced plasmas in relevance to inertial confinement fusion. The equations are integrated implicitly by time-splitting method. Three test problems are simulated to show the versatility of the code. The results are in good agreement with the existing simulations.

ASTROPHYSICS AND SPACE PLASMA

27

, , , and

The quasi-pure pitch-angle scattering of energetic electrons driven by field-aligned propagating whistler mode waves during the 9∼15 October 1990 magnetic storm at L ≈ 3 ∼ 4 is studied, and numerical calculations for energetic electrons in gyroresonance with a band of frequency of whistler mode waves distributed over a standard Gaussian spectrum is performed. It is found that the whistler mode waves can efficiently drive energetic electrons from the larger pitch-angles into the loss cone, and lead to a flat-top distribution during the main phase of geomagnetic storms. This result perhaps presents a feasible interpretation for observation of time evolution of the quasi-isotropic pitch-angle distribution by Combined Release and Radiation Effects Satellite (CRRES) spacecraft at L ≈ 3 ∼ 4.

LOW TEMPERATURE PLASMA

30

, , , , , , and

Contact glow discharge electrolysis is a non-Faradaic electrochemical process with an abnormal relationship between the current and voltage. Hydroxyl radicals, hydrogen radicals and hydrogen peroxide can be produced under the glow discharge, which are often used to degrade organic contaminants in aqueous solution. In this study, with 4-nitrophenol taken as an example of contaminants and tert-butanol as a scavenger of hydroxyl radicals, the role of energetic species in degrading organic compounds was examined in detail. Moreover, the effects of the applied voltage, solution conductivity and pH on the formation of three energetic species were also observed. The formation rate constants of the three energetic species were calculated based on the experimental data.

39

, , , , and

The electron swarm parameters of SF6/N2 are calculated in the present study using an improved Monte Carlo collision simulation method (MCS). And some improved sampling techniques are also adopted. The simulation results show that the improved simulation method can provide more accurate results.

43

, and

Isothermal and cyclic oxidation behaviours of pure and yttrium-implanted nickel were studied at 1000°C in air. Scanning electronic microscopy (SEM) and transmission electronic microscopy (TEM) were used to examine the micro-morphology and structure of oxide scales formed on the nickel substrate. It was found that Y-implantation significantly improved the anti-oxidation ability of nickel in both isothermal and cyclic oxidizing experiments. Laser Raman microscopy was also used to study the stress status of oxide scales formed on nickel with and without yttrium. The main reason for the improvement in anti-oxidation of nickel was that Y-implantation greatly reduced the growing speed and grain size of NiO. This fine-grained NiO oxide film might have better high temperature plasticity and could relieve parts of compressive stress by means of creeping, and maintained a ridge character and a relatively low internal stress level. Hence yttrium ion-implantation remarkably enhanced the adhesion of protective NiO oxide scale formed on the nickel substrate.

46

, , , and

A three-dimensional particle simulation of ion thruster optics with charge-exchange collision was developed in this study. The simulation code was based on tracking ions using the particle-in-cell method, and the Monte Carlo technique was used to model the charge-exchange collision. Simulations were performed for a 20 cm ion thruster optics. The results were compared with the corresponding experimental data from a test of the ion thruster optics for a duration of 800 hours. The Depth-From-Focus (DFF) method was used to measure the erosion depth of the downstream surface of the accelerator grid. The predicted erosion depth of the accelerator grid was consistent reasonably with the corresponding experimental data. The simulation results showed that the accelerator grid would be burned through after 1333 hours.

53

, , and

The non-thermal plasma as one of the most promising technologies for removing NOx and SO2 has attracted much attention. In this study, a new plasma reactor combined with catalyst and additive was developed to effectively oxidize and remove NOx and SO2 in the flue gas. The experimental results showed that TiO2 could improve the oxidation efficiency of SO2 in the case of applying plasma while having a negative effect on the oxidation process of NO and NOx. With the addition of NH3, the oxidation rates of NOx, NO and SO2 were slightly increased. However, the effect of adding NH3 on NOx oxidation was negative when the temperature was above 200°C.

57

, , and

A one-dimensional fluid model is proposed to simulate the dual-frequency capacitively coupled plasma for Ar discharges. The influences of the low frequency on the plasma density, electron temperature, sheath voltage drop, and ion energy distribution at the powered electrode are investigated. The decoupling effect of the two radio-frequency sources on the plasma parameters, especially in the sheath region, is discussed in detail.

61

and

The sterilizing effect of the non-equilibrium atmospheric pressure plasma jet by applying it to the Bacillus subtilis spores is invesigated. A stable glow discharge in argon or helium gas fed with active gas (oxygen), was generated in the coaxial cylindrical reactor powered by the radio-frequency power supply at atmospheric pressure. The experimental results indicated that the efficiency of killing spores by making use of an Ar/O2 plasma jet was much better than with a He/O2 plasma jet. The decimal reduction value of Ar/O2 and He/O2 plasma jets under the same experimental conditions was 4.5 seconds and 125 seconds, respectively. It was found that there exists an optimum oxygen concentration for a certain input power, at which the sterilization efficiency reaches a maximum value. It is believed that the oxygen radicals are generated most efficiently under this optimum condition.

65

, and

Non-thermal plasma at atmosphere was generated through glidarc discharge driven by magnetic field and observed by using a high speed charge coupled device (CCD) and photo multiplier tube (PMT). The arc diameter projecting in the direction of arc motion (front-viewed diameter) and the diameter projecting in the perpendicular direction of arc motion (side-viewed diameter) were measured. The effect of both the arc current and the magnetic field was analysed. The front-viewed diameter was compared with the side-viewed one. Simultaneously the electric-field intensity was measured directly and analysed by considering the effect of the external magnetic field and arc current.

70

, , , , and

An investigation was made into the nitrogen-trimethylgallium mixed electron cyclotron resonance (ECR) plasma by optical emission spectroscopy (OES). The ECR plasma enhanced metalorganic chemical vapour deposition technology was adopted to grow GaN film on an α-Al2O3 substrate. X-ray diffraction (XRD) analyses showed that the peak of GaN (0002) was at 2θ = 34.48°, being sharper and more intense with the increase in the N2: trimethylgallium(TMG) flow ratio. The results demonstrate that the electron cyclotron resonance-plasma enchanced metalorganic chemical vapor deposition (ECR-MOPECVD) technology is evidently advantageous for the deposition of GaN film at a low growth temperature.

74

, , , , and

Plasma polymerized fluorocarbon (FC) films have been deposited on silicon substrates from dielectric barrier discharge (DBD) plasma of C4F8 at room temperature under a pressure of 25∼125 Pa. The effects of the discharge pressure and frequency of power supply on the films have been systematically investigated. FC films with a less cross linked structure may be formed at a relatively high pressure. Increase in the frequency of power supply leads to a significant increase in the deposition rate. Static contact angle measurements show that deposited FC films have a stable, hydrophobic surface property. All deposited films show smooth surfaces with an atomic surface roughness. The relationship between plasma parameters and the properties of the deposited FC films are discussed.

78

, , , , , , and

An investigation was made into polystyrene (PS) grafted onto nanometre silicon carbide (SiC) particles. In our experiment, the grafting polymerization reaction was induced by a radio frequency (RF) inductively coupled plasma (ICP) treatment of the nanometre powder. FTIR (Fourier transform infrared spectrum) and XPS (X-ray photoelectron spectroscopy) results reveal that PS is grafted onto the surface of silicon carbide powder. An analysis is presented on the effectiveness of this approach as a function of plasma operating variables including the plasma treating power, treating time, and grafting reaction temperature and time.

83

, , , , and

An atmospheric pressure microwave plasma source (APMPS) that can generate a large volume of plasma at an atmospheric pressure has been developed at Tsinghua University. This paper presents the design of this APMPS, the theoretical consideration of microwave plasma ignition and the simulation results, including the distributions of the electric field and power density inside the cavity as well as the accuracy of the simulation results. In addition, a method of producing an atmospheric pressure microwave plasma and some relevant observations of the plasma are also provided. It is expected that this research would be useful for further developing atmospheric pressure microwave plasma sources and expanding the scope of their applications.

PLASMA TECHNOLOGY

89

, , and

Decomposition of toluene was experimentally investigated with various dielectric barrier discharge (DBD) reactors, such as wire-cylinder, wire-plate and plate-to-plate, combined with multi-metal oxides catalyst (Mn-Ni-Co-Cu-Ox/Al2O3) loaded on the cordierite honeycomb and nickel foam, respectively. The effects of some factors including the residence time, reactor configuration and catalyst, upon the toluene destruction were studied. Results revealed that the use of in-plasma catalysis was more helpful to enhancing the DRE (destruction and removal efficiency) and reducing the O3 formation than that of either post-plasma catalysis or plasma alone. It was demonstrated that the wire-plate reactor was favorable for the oxidation reaction of toluene and the nickel foam-supported catalysts exhibited good activity.

94

, , , and

In this study, the improvement in the removal of chlorobenzene (C6H5Cl) in the air was investigated by combining dielectric barrier discharge (DBD) driven by bipolar pulse-power with catalysts. Molecular sieve 4A (MS-4A) and MnO2/γ-Al2O3 (MnO2/ALP) as two kinds of catalysts were tested at different positions in a DBD reactor. Catalysts were located either in the discharging area between two electrodes, or just behind the discharging area (in the afterglow area) closed to the outlet. The results indicated that DBD reactor with a bipolar pulse power-supply produced strong instant discharge and energetic particles, which can effectively activate catalysts of MS-4A and MnO2/ALP located in the afterglow area to achieve the synergistic effects on effective fission of chemical bonds of chlorobenzene. It was considered that the gas-chlorobenzene and the chlorobenzene adsorbed on the catalysts were decomposed simultaneously.

100

, and

The physicochemical processes of dielectric barrier discharge (DBD) such as in-situ formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.

106

, , , and

In this study, lime-hydrate (Ca(OH)2) desulfurizer was treated by plasma with strong ionization discharge of a dielectric barrier. The removal of SO2 from simulated flue gas was investigated. The principles of SO2 removal are discussed. Several factors affecting the efficiency of SO2 removal were studied. They included the ratio of calcium to sulfur (Ca/S), desulfurizer granularity, residence time of the flue gas, voltage applied to the discharge electrode in the plasma generator, and energy consumption. Experimental results indicate that the increase in Ca/S ratio, the applied voltage and discharge power, the residence time, and the reduction in the desulfurizer granularity all can raise the SO2 removal efficiency. The SO2 removal efficiency was up to 91.3% under the following conditions, namely a primary concentration of SO2 of 2262 × 10−6 (v/v) in the emission gas, 21%(v/v) of oxygen, 1.8% (v/v) of water, a Ca/S ratio of 1.48, a residence time of 2.8 s, a 3.4 kV voltage and a 10 kHz frequency power applied to the discharge electrodes in the plasma generator, and a flow rate of 100 m3/h for emission gas.

FUSION ENGINEERING

111

, , , , and

As a new method to protect the spark gap from metal particle contamination, the effect of the metal inserted insulator on the controlling behavior of metal particles was investigated in a quasi-uniform electric field. Considering that the inserted metal electrodes can decrease the electric field around the insulator and divert the electrostatic force away from the insulator, the method can be used to prevent the particles from moving toward the insulator so as to reduce the possibility of a breakdown. The inserted metal electrodes can reverse the direction of the particles' horizontal motion. A study on the insulator shape indicates that the inserted metal electrodes can repulse the particle and improve the particle lifting voltage significantly near the vertical surface of the insulator or ribbed insulator. For the insulator with a tilting surface the inserted metal electrodes have little influence on the particle motion. In addition, the size of the inserted electrodes shows a significant effect on the control of particle motion.

117

, and

Excellent vacuum performance ensures a high beam transmission efficiency of the neutral beam injector (NBI). The vacuum performance is mainly determined by the cryoperformance of the cryopanel of the cryocondensation pumps which are the main vacuum pumps of NBI. In order to optimize the cryoperformance, the requirements for the temperature distribution and the heat load of the cryopanel are analysed and the factors that affect the cryopanel's temperature distribution are studied. The results indicate that the temperature difference of the cryopanel can be reduced by fabricating the cryopanel with high thermal conductivity material, increasing its thickness and cutting the distance between the two upward cooling pipes. The results may be applied to a cryopanel cooled by forced flow liquid helium.

121

, , and

A framework for target diagnostic centralized control system (TDCCS) in inertial confinement fusion (ICF) experiment has been developed. The developed framework is based on the common object request broker architecture (CORBA) standard and part of the concept from the ICFRoot (a framework based on ROOT for ICF experiments) framework design. This framework is of a component architecture, including a message bus, command executer, status processor, parser and proxy. To test the function of the framework, a simplified prototype of the TDCCS has been developed as well.

ION BEAM BIOENGINEERING

126

, , and

An identification of Phe dipeptide from L-phenylalanine monomers after keV nitrogen and argon ion implantation, by using the HPLC (high performance liquid chromatography) and LC-MS(liquid chromatography mass spectrometer) methods is reported. The results showed a similar yield behavior for both ion species, namely: 1) the yield of dipeptides under alkalescent conditions was distinctly higher than that under acidic or neutral conditions; 2) for different ion species, the dose-yield curves tracked a similar trend which was called a counter-saddle curve. The dipeptide formation may implicate a recombination repair mechanism of damaged biomolecules that energetic ions have left in their wake. Accordingly a physicochemical self-repair mechanism by radiation itself for the ion-beam radiobiological effects is proposed.

131

, , , , , and

The wild type strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion implantation (15 keV, 7.8 × 1014 ∼ 2.08 × 1015 ions/cm2) to find an industrial strain with a higher L(+)-lactic acid yield, and two mutants RE3303 and RF9052 were isolated. In order to discuss the mechanism primarily, Lactate Dehydrogenase of Rhizopus oryzae was studied. While the two mutants produced L(+)-lactic acid by 75% more than the wild strain did, their specific activity of Lactate Dehydrogenase was found to be higher than that in the wild strain. The optimum temperature of Lactate Dehydrogenase in Rhizopus oryzae RF9052 was higher. Compared to the wild strain, the Michaelis constant (Km) value of Lactate Dehydrogenase in the mutants was changed. All these changes show that L(+)-lactic acid production has a correlation with the specific activity of Lactate Dehydrogenase. The low-energy ions, implanted into the strain, may improve the specific activity of Lactate Dehydrogenase by influencing its gene structure and protein structure.

136

, , , , , and

Immobilized Rhizopus oryzae culturing may be a solution to the inhibited production of L(+)-lactic acid in submerged fermentation, which is caused by aggregated mycelia floc. In the present study, a R. oryzae mutant (RL6041) with a 90% conversion rate of glucose into L-lactic acid was obtained by N+ implantation under the optimized conditions of a beam energy of 15 keV and a dose of 2.6 × 1015 ions/cm2. Using polyurethane foam as the immobilization matrix, the optimal L-lactic acid production conditions were determined as 4 mm polyurethane foam, 150 r/min, 50 g/L ∼ 80 g/L of initial glucose, 38°C and pH 6.0. 15-cycle repeated productions of L-lactic acid by immobilized RL6041 were performed under the optimized culturing conditions and over 80% of the glucose was converted into L-lactic acid in 30 hours on average. The results show that immobilized RL6041 is a promising candidate for continuous L-lactic acid production.