This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 23

Number 9, September 2014

Previous issue Next issue

Focus Issue: Active materials and structures for origami engineering

Editorial

Focus Issue Papers

094001

, , and

Origami, the ancient art of paper folding, has inspired the design of engineering devices and structures for decades. The underlying principles of origami are very general, which has led to applications ranging from cardboard containers to deployable space structures. More recently, researchers have become interested in the use of active materials (i.e., those that convert various forms of energy into mechanical work) to effect the desired folding behavior. When used in a suitable geometry, active materials allow engineers to create self-folding structures. Such structures are capable of performing folding and/or unfolding operations without being kinematically manipulated by external forces or moments. This is advantageous for many applications including space systems, underwater robotics, small scale devices, and self-assembling systems. This article is a survey and analysis of prior work on active self-folding structures as well as methods and tools available for the design of folding structures in general and self-folding structures in particular. The goal is to provide researchers and practitioners with a systematic view of the state-of-the-art in this important and evolving area. Unifying structural principles for active self-folding structures are identified and used as a basis for a quantitative and qualitative comparison of numerous classes of active materials. Design considerations specific to folded structures are examined, including the issues of crease pattern identification and fold kinematics. Although few tools have been created with active materials in mind, many of them are useful in the overall design process for active self-folding structures. Finally, the article concludes with a discussion of open questions for the field of origami-inspired engineering.

094002

, , and

The field of active origami explores the incorporation of active materials into origami-inspired structures in order to serve as a means of actuation. Active origami-inspired structures capable of folding into complex three-dimensional (3D) shapes have the potential to be lightweight and versatile compared to traditional methods of actuation. This paper details the finite element analysis and experimental validation of unimorph actuators. Actuators are fabricated by adhering layers of electroded dielectric elastomer (3M VHB F9473PC) onto a passive substrate layer (3M Magic Scotch Tape). Finite element analysis of the actuators simulates the electromechanical coupling of the dielectric elastomer under an applied voltage by applying pressures to the surfaces of the dielectric elastomer where the compliant electrode (conductive carbon grease) is present. 3D finite element analysis of the bending actuators shows that applying contact boundary conditions to the electroded region of the active and passive layers provides better agreement to experimental data compared to modeling the entire actuator as continuous. To improve the applicability of dielectric elastomer-based actuators for active origami-inspired structures, folding actuators are developed by taking advantage of localized deformation caused by a passive layer with non-uniform thickness. Two-dimensional analysis of the folding actuators shows that agreement to experimental data diminishes as localized deformation increases. Limitations of using pressures to approximate the electromechanical coupling of the dielectric elastomer under an applied electric field and additional modeling considerations are also discussed.

094003

, and

Origami engineering aims to combine origami principles with advanced materials to yield active origami shapes, which fold and unfold in response to external stimuli. This paper explores the potential and limitations of dielectric elastomers (DEs) as the enabling material in active origami engineering. DEs are compliant materials in which the coupled electro-mechanical actuation takes advantage of their low modulus and high breakdown strength. Until recently, prestraining of relatively thick DE materials was necessary in order to achieve the high electric fields needed to trigger electrostatic actuation without inducing a dielectric breakdown. Although prestrain improves the breakdown strength of the DE films and reduces the voltage required for actuation, the need for a solid frame to retain the prestrain state is a limitation for the practical implementation of DEs, especially for active origami structures. However, the recent availability of thinner DE materials (50 μm, 130 μm, 260 μm) has made DEs a likely medium for active origami. In this work, the folding and unfolding of DE multilayered structures, along with the realization of origami-inspired 3D shapes, are explored. In addition, an exhaustive study on the fundamentals of DE actuation is done by directly investigating the thickness actuation mechanism and comparing their performance using different electrode types. Finally, changes in dielectric permittivity as a function of strain, electrode type and applied electric field are assessed and analyzed. These fundamental studies are key to obtaining more dramatic folding and to realizing active origami structures using DE materials.

094004

, , and

This work seeks to provide a framework for the numerical simulation of magneto-active elastomer (MAE) composite structures for use in origami engineering applications. The emerging field of origami engineering employs folding techniques, an array of crease patterns traditionally on a single flat sheet of paper, to produce structures and devices that perform useful engineering operations. Effective means of numerical simulation offer an efficient way to optimize the crease patterns while coupling to the performance and behavior of the active material. The MAE materials used herein are comprised of nominally 30% v/v, 325 mesh barium hexafarrite particles embedded in Dow HS II silicone elastomer compound. These particulate composites are cured in a magnetic field to produce magneto-elastic solids with anisotropic magnetization, e.g. they have a preferred magnetic axis parallel to the curing axis. The deformed shape and/or blocked force characteristics of these MAEs are examined in three geometries: a monolithic cantilever as well as two- and four-segment composite accordion structures. In the accordion structures, patches of MAE material are bonded to a Gelest OE41 unfilled silicone elastomer substrate. Two methods of simulation, one using the Maxwell stress tensor applied as a traction boundary condition and another employing a minimum energy kinematic (MEK) model, are investigated. Both methods capture actuation due to magnetic torque mechanisms that dominate MAE behavior. Comparison with experimental data show good agreement with only a single adjustable parameter, either an effective constant magnetization of the MAE material in the finite element models (at small and moderate deformations) or an effective modulus in the minimum energy model. The four-segment finite element model was prone to numerical locking at large deformation. The effective magnetization and modulus values required are a fraction of the actual experimentally measured values which suggests a reduction in the amount of magnetic torque transferred from the particles to the matrix.

094005

, , , and

Printing functional materials represents a considerable impact on the access to manufacturing technology. In this paper we present a methodology and validation of print-and-self-fold miniature electric devices. Polyvinyl chloride laminated sheets based on metalized polyester film show reliable self-folding processes under a heat application, and it configures 3D electric devices. We exemplify this technique by fabricating fundamental electric devices, namely a resistor, capacitor, and inductor. Namely, we show the development of a self-folded stretchable resistor, variable resistor, capacitive strain sensor, and an actuation mechanism consisting of a folded contractible solenoid coil. Because of their pre-defined kinematic design, these devices feature elasticity, making them suitable as sensors and actuators in flexible circuits. Finally, an RLC circuit obtained from the integration of developed devices is demonstrated, in which the coil based actuator is controlled by reading a capacitive strain sensor.

094006

, , , , and

Self-folding is an approach used frequently in nature for the efficient fabrication of structures, but is seldom used in engineered systems. Here, self-folding origami are presented, which consist of shape memory composites that are activated with uniform heating in an oven. These composites are rapidly fabricated using inexpensive materials and tools. The folding mechanism based on the in-plane contraction of a sheet of shape memory polymer is modeled, and parameters for the design of composites that self-fold into target shapes are characterized. Four self-folding shapes are demonstrated: a cube, an icosahedron, a flower, and a Miura pattern; each of which is activated in an oven in less than 4 min. Self-sealing is also investigated using hot melt adhesive, and the resulting structures are found to bear up to twice the load of unsealed structures.

094007

, , and

Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand.

094008

, , , , and

We describe a photolithographic approach to create functional stimuli responsive, self-folding, microscale hydrogel devices using thin, gradient cross-linked hinges and thick, fully cross-linked panels. The hydrogels are composed of poly (N-isopropylacrylamide-co-acrylic acid) (pNIPAM-AAc) with reversible stimuli responsive properties just below physiological temperatures. We show that a variety of three-dimensional structures can be formed and reversibly actuated by temperature or pH. We experimentally characterized the swelling and mechanical properties of pNIPAM-AAc and developed a finite element model to rationalize self-folding and its variation with hinge thickness and swelling ratio. Finally, we highlight applications of this approach in the creation of functional devices such as self-folding polymeric micro-capsules, untethered micro-grippers and thermally steered micro-mirror systems.

094009

, , , and

The origami waterbomb base is a single-vertex bistable origami mechanism that has unique properties which may prove useful in a variety of applications. It also shows promise as a test bed for smart materials and actuation because of its straightforward geometry and multiple phases of motion, ranging from simple to more complex. This study develops a quantitative understanding of the symmetric waterbomb baseʼs kinetic behavior. This is done by completing kinematic and potential energy analyses to understand and predict bistable behavior. A physical prototype is constructed and tested to validate the results of the analyses. Finite element and virtual work analyses based on the prototype are used to explore the locations of the stable equilibrium positions and the force–deflection response. The model results are verified through comparisons to measurements on a physical prototype. The resulting models describe waterbomb base behavior and provide an engineering tool for application development.

094010

, , and

Elastic absorption of kinetic energy and distribution of impact forces are required in many applications. Recent attention to the potential for using origami in engineering may provide new methods for energy absorption and force distribution. A three-stage strategy is presented for selecting materials for such origami-inspired designs that can deform to achieve a desired motion without yielding, absorb elastic strain energy, and be lightweight or cost effective. Two material indices are derived to meet these requirements based on compliant mechanism theory. Finite element analysis is used to investigate the effects of the material stiffness in the Miura-ori tessellation on its energy absorption and force distribution characteristics compared with a triangular wave corrugation. An example is presented of how the method can be used to select a material for a general energy absorption application of the Miura-ori. Whereas the focus of this study is the Miura-ori tessellation, the methods developed can be applied to other tessellated patterns used in energy absorbing or force distribution applications.

094011

, and

The morphology of a foldable kirigami structure with modified Miura-ori patterns, which displays curvature during motion, was investigated in this paper. The principle of spherical trigonometry was used to obtain the radius, span, rise, and longitudinal length of the foldable structure during motion. The results show that the radius of curvatures decreases and that the span initially increases and then decreases during the deployment process. Furthermore, there is little change in the span over the greater part of the deployment range. Changing the values for the length, a, and the vertex angle, β, demonstrates that the deployment angle at the end of the motion, the span, and the maximal rise increase with the increase in the length a. However, changing these values has no effect on the longitudinal length. At the same time, the effect of the vertex angle β on the geometry of the foldable kirigami is not significant.

094012

, , and

A novel origami cellular material based on a deployable cellular origami structure is described. The structure is bi-directionally flat-foldable in two orthogonal (x and y) directions and is relatively stiff in the third orthogonal (z) direction. While such mechanical orthotropicity is well known in cellular materials with extruded two dimensional geometry, the interleaved tube geometry presented here consists of two orthogonal axes of interleaved tubes with high interfacial surface area and relative volume that changes with fold-state. In addition, the foldability still allows for fabrication by a flat lamination process, similar to methods used for conventional expanded two dimensional cellular materials. This article presents the geometric characteristics of the structure together with corresponding kinematic and mechanical modeling, explaining the orthotropic elastic behavior of the structure with classical dimensional scaling analysis.

094013

, , and

Spurred by advances in manufacturing technologies developed around layered manufacturing technologies such as PC-MEMS, SCM, and printable robotics, we propose a new analytic framework for capturing the geometry of folded composite laminate devices and the mechanical processes used to manufacture them. These processes can be represented by combining a small set of geometric operations which are general enough to encompass many different manufacturing paradigms. Furthermore, such a formulation permits one to construct a variety of geometric tools which can be used to analyze common manufacturability concepts, such as tool access, part removability, and device support. In order to increase the speed of development, reduce the occurrence of manufacturing problems inherent with current design methods, and reduce the level of expertise required to develop new devices, the framework has been implemented in a new design tool called popupCAD, which is suited for the design and development of complex folded laminate devices. We conclude with a demonstration of utility of the tools by creating a folded leg mechanism.

Fast Track Communication

092001

, and

Piezoelectricity is one of the most popular electromechanical transduction mechanisms for constructing kinetic energy harvesting systems. When a standard energy harvesting (SEH) interface circuit, i.e., bridge rectifier plus filter capacitor, is utilized for collecting piezoelectric power, the previous literature showed that the power conversion can be well predicted without much consideration for the effect of dielectric loss. Yet, as the conversion power gets higher by adopting power-boosting interface circuits, such as synchronized switch harvesting on inductor (SSHI), the neglect of dielectric loss might give rise to deviation in harvested power estimation. Given the continuous progress on power-boosting interface circuits, the role of dielectric loss in practical piezoelectric energy harvesting (PEH) systems should receive attention with better evaluation. Based on the integrated equivalent impedance network model, this fast track communication provides a comprehensive study on the susceptibility of harvested power in PEH systems under different conditions. It shows that, dielectric loss always counteracts piezoelectric power harvesting by causing charge leakage across piezoelectric capacitance. In particular, taking corresponding ideal lossless cases as references, the counteractive effect might be aggravated under one of the five conditions: larger dielectric loss tangent, lower vibration frequency, further away from resonance, weaker electromechanical coupling, or using power-boosting interface circuit. These relationships are valuable for the study of PEH systems, as they not only help explain the role of dielectric loss in piezoelectric power harvesting, but also add complementary insights for material, structure, excitation, and circuit considerations towards holistic evaluation and design for practical PEH systems.

Papers

095001

, , and

A nonlinear electromagnetic energy harvester directly powering a load resistance is considered in this manuscript. The nonlinearity includes the cubic stiffness and the unavoidable Coulomb friction, and the base excitation is confined to Gaussian white noise. Directly starting from the coupled equations, a novel procedure to evaluate the random responses and the mean output power is developed through the generalized harmonic transformation and the equivalent non-linearization technique. The dependence of the optimal ratio of the load resistance to the internal resistance and the associated optimal mean output power on the internal resistance of the coil is established. The principle of impedance matching is correct only when the internal resistance is infinity, and the optimal mean output power approaches an upper limit as the internal resistance is close to zero. The influence of the Coulomb friction on the optimal resistance ratio and the optimal mean output power is also investigated. It is proved that the Coulomb friction almost does not change the optimal resistance ratio although it prominently reduces the optimal mean output power.

095002

and

Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.

095003
The following article is Free article

, , and

Based on the research results of conventional rigid support nonlinear energy harvesters, in this paper we conceive a kind of structure with an elastic support external magnet with the intent to keep the system in the state of bistable oscillation, even under low-intensity excitation conditions. It has been proved that elastic support systems have better power output performance than rigid support systems when excited at low-intensity vibrations. In addition, elastic support nonlinear energy harvesters do not need real-time adjustment of the magnet interval towards the variable-intensity random excitation source, consequently achieving maximum power output and sufficient electromechanical energy conversion of the system.

095004

and

A microstructure-dependent piezoelectric beam model was developed using a variational formulation, which is based on the modified strain gradient theory and the Timoshenko beam theory. The new model contains three material length scale parameters and can capture the size effect, unlike the classical beam theory. To illustrate the new piezoelectric beam model, the static bending and the free vibration problems of a simply supported beam are numerically solved. These results may be useful in the analysis and design of smart structures that are constructed from piezoelectric materials.

095005

, , and

The modeling of vibration of piezoelectric cantilevers has often been based on passive cantilevers of a homogeneous material. Although piezoelectric cantilevers and passive cantilevers share certain characteristics, this method has caused confusion in incorporating the piezoelectric moment into the differential equation of motion. The extended Hamilton's principle is a fundamental approach to modeling flexural vibration of multilayer piezoelectric cantilevers. Previous works demonstrated derivation of the differential equation of motion using this approach; however, proper analytical solutions were not reported. This was partly due to the fact that the differential equation derived by the extended Hamilton's principle is a boundary-value problem with nonhomogeneous boundary conditions which cannot be solved by modal analysis. In the present study, an analytical solution to the boundary-value problem was obtained by transforming it into a new problem with homogeneous boundary conditions. After the transformation, modal analysis was used to solve the new boundary-value problem. The analytical solutions for unimorphs and bimorphs were verified with three-dimensional finite element analysis (FEA). Deflection profiles and frequency response functions under voltage, uniform pressure and tip force were compared. Discrepancies between the analytical results and FEA results were within 3.5%. Following model validation, parametric studies were conducted to investigate the effects of thickness of electrodes and piezoelectric layers, and the piezoelectric coupling coefficient d31 on the performance of piezoelectric cantilever actuators.

095006

and

This paper deals with static and dynamic analysis of thin-walled structures with integrated piezoelectric layers as sensors and actuators in the geometrically nonlinear range of deformations. A variational formulation is derived by using the Reissner–Mindlin first-order shear deformation (FOSD) hypothesis and full geometrically nonlinear strain-displacement relations accounting for finite rotations. The finite rotations are treated by Rodriguez parameterization. In order to enhance the accuracy of a four-node shell element, a combination of an assumed natural strain (ANS) method for the shear strains, an enhanced assumed strain (EAS) method for the membrane strains and an enhanced assumed gradient (EAG) method for the electric field are employed. The present shell element has five mechanical degrees of freedom (DOFs) and three electrical DOFs per node. The Newton–Raphson method for static analysis and the Newmark method for dynamic analysis are used to perform linear and nonlinear simulations. In comparison to the results obtained by simplified nonlinear models reported in the existing literature, the finite-element simulations performed in this paper show the importance of the present model, precisely for structures undergoing finite deformations and rotations.

095007

, , , , , and

This paper describes a multi-fingered haptic palpation method using stiffness feedback actuators for simulating tissue palpation procedures in traditional and in robot-assisted minimally invasive surgery. Soft tissue stiffness is simulated by changing the stiffness property of the actuator during palpation. For the first time, granular jamming and pneumatic air actuation are combined to realize stiffness modulation. The stiffness feedback actuator is validated by stiffness measurements in indentation tests and through stiffness discrimination based on a user study. According to the indentation test results, the introduction of a pneumatic chamber to granular jamming can amplify the stiffness variation range and reduce hysteresis of the actuator. The advantage of multi-fingered palpation using the proposed actuators is proven by the comparison of the results of the stiffness discrimination performance using two-fingered (sensitivity: 82.2%, specificity: 88.9%, positive predicative value: 80.0%, accuracy: 85.4%, time: 4.84 s) and single-fingered (sensitivity: 76.4%, specificity: 85.7%, positive predicative value: 75.3%, accuracy: 81.8%, time: 7.48 s) stiffness feedback.

095008

, and

A multi-layer resistance based compliant tactile sensor was fabricated using direct-print (DP) and soft molding processes. The sensor consists of two layers of embedded stretchable sensing elements sandwiched by three layers of a polyurethane rubber material. The sensing elements were created by the DP process using a photopolymer filled with multi-wall carbon nanotubes, which exhibit the property of piezoresistivity. The printed sensing elements were fully cured using ultraviolet light. The sensing elements within each layer of the sensor structure change in electrical resistance when external forces are applied. By processing the measured sensor signals, the fabricated sensor was able to detect the position of contact forces with a 3 mm spatial resolution, as well as their two-dimensional translation directions and speeds. Based on the results, it is concluded that the fabricated sensors are promising in robotic applications and the developed process and material can be a reliable and robust way to build highly stretchable tactile sensors.

095009

, and

Shape memory polymer composites (SMPCs) have become an important way to leverage improvements in the development of applications featuring shape memory polymers (SMPs). In this study, an amorphous SMP matrix has been filled with different types of reinforcements. An experimental set of results is presented and then compared to three-dimensional (3D) finite-element simulations. Thermomechanical shape memory cycles were performed in uniaxial tension. The fillers effect was studied in stress-free and constrained-strain recoveries. Experimental observations indicate complete shape recovery and put in evidence the increased sensitivity of constrained length stress recoveries to the heating ramp on the tested composites. The simulations reproduced a simplified periodic reinforced composite and used a model for the matrix material that has been previously tested on regular SMPs. The latter combines viscoelasticity at finite strain and time-temperature superposition. The simulations easily allow representation of the recovery properties of a reinforced SMP.

095010

, , , and

Laminating a thin layer of elastomeric grating on the surface of a prestretched dielectric elastomer (DE) membrane forms a basic design of electrically tunable transmission grating. We analyze the inhomogeneous deformation of a circular multiple-region configuration. Variation of the geometric and material parameters, as well as of the critical condition determined by loss of tension instability, is probed to aid the design of a DE-based deformable grating. The predicted changes in the grating period agree substantially with the experimental results reported by Aschwanden et al (Aschwanden et al 2007 IEEE Photon. Technol. Lett. 19 1090).

095011

, , and

New kinds of entangled materials with an auxetic effect were investigated in terms of fabrication, structural characterization, the measurement of their negative Poisson's ratio and the auxetic mechanism. The maximum negative Poisson's ratio of −1.5 was obtained at about 5% of the engineering strain for the entangled materials with 45% porosity. The auxetic behavior originated from the rotation of the 'slanted coil-springs' structure. A model to formulate the negative Poisson's ratio was proposed based on the slanted coil-spring structure. The initial slanted angle affected the auxetic behavior significantly. As the slanted angle decreased, the negative Poisson's ratio increased. Entangled materials with such an auxetic effect have potential for engineering applications.

095012
The following article is Free article

and

In this paper, a novel bi-directional piezoelectric energy harvester which can harvest vibration energy bi-directionally is introduced and investigated theoretically and experimentally. The proposed harvester is composed of two sub-systems: a main beam to generate electricity and a spring–mass oscillator to trigger the vibration of the main beam from an additional direction by using magnets to couple the two sub-systems. The theoretical model is built on the basis of the Euler–Bernoulli beam theory and the magnetic charge model. A prototype is fabricated to test the performance of the harvester experimentally. Linear upward and downward frequency sweeps are used to obtain the frequency responses. The experimental results show good agreement with the theoretical model under frequency sweeps. A comparison with a beam–beam bi-directional piezoelectric energy harvester is also performed experimentally. Although both bi-directional piezoelectric energy harvesters exhibit the capability of harvesting vibration energy in two orthogonal directions, the beam–spring energy harvester shows a more consistent performance in both directions as regards the bandwidth and amplitude of the frequency responses.

095013

and

This paper concerns the active vibration reduction of a flexible structure with discrete piezoelectric sensors and actuators in collocated pairs bonded to its surface. In this study, a new fitness and objective function is proposed to determine the optimal number of actuators, based on variations in the average closed loop dB gain margin reduction for all of the optimal piezoelectric pairs and on the modes that are required to be attenuated using the optimal linear quadratic control scheme. The aim of this study is to find the minimum number of optimally located sensor/actuator pairs, which can achieve the same vibration reduction as a greater number, in order to reduce the cost, complexity and power requirement of the control system. This optimization was done using a genetic algorithm. The technique may be applied to any lightly damped structure, and is demonstrated here by attenuating the first six vibration modes of a flat cantilever plate. It is shown that two sensor/actuator pairs, located and controlled optimally, give almost the same vibration reduction as ten pairs. These results are validated by comparing the open and closed loop time responses and actuator feedback voltages for various numbers of piezoelectric pairs using the ANSYS finite element package and a proportional differential control scheme.

095014

, , and

This study presents a time domain dynamic model of an antagonistic pneumatic artificial muscle (PAM) driven trailing edge flap (TEF) system for next generation active helicopter rotors. Active rotor concepts are currently being widely researched in the rotorcraft community as a means to provide a significant leap forward in performance through primary aircraft control, vibration mitigation and noise reduction. Recent work has shown PAMs to be a promising candidate for active rotor actuation due to their combination of high force, large stroke, light weight, and suitable bandwidth. When arranged into biologically inspired agonist/antagonist muscle pairs they can produce bidirectional torques for effectively driving a TEF. However, there are no analytical dynamic models in the literature that can accurately capture the behavior of such systems across the broad range of frequencies required for this demanding application. This work combines mechanical, pneumatic, and aerodynamic component models into a global flap system model developed for the Bell 407 rotor system. This model can accurately predict pressure, force, and flap angle response to pneumatic control valve inputs over a range of operating frequencies from 7 to 35 Hz (1/rev to 5/rev for the Bell 407) and operating pressures from 30 to 90 psi.

095015

, , , , and

In the current investigation, an innovative time-domain damage index is introduced for the first time which is based on local statistical features of the waveform. This damage index is called the 'normalized correlation moment' (NCM) and is composed of the nth moment of the cross-correlation of the baseline and comparison waves. The performance of this novel damage index is compared for some synthetic signals with that of an existing damage index based on the Pearson correlation coefficient (signal difference coefficient, SDC). The proposed damage index is shown to have significant advantages over the SDC, including sensitivity to the attenuation of the signal and lower sensitivity to the signal's noise level. Numerical simulations using Abaqus finite element (FE) software show that this novel damage index is not only capable of detecting the delamination type of damage, but also exhibits a good ability in the assessment of this type of damage in laminated composite structures. The NCM damage index is also validated using experimental data for identification of delamination in composites.

095016

, , and

The effect of grain boundary conductivity on the poling process and the nonlinear electromechanical behaviors of ferroelectric polycrystals are investigated through the use of a phase field model. The grain boundary is modeled as a semiconductor in the phase field model via Maxwell's equations, which consider the drift of free charges under an electric field. The simulation results show that the poling electric field of the ferroelectric polycrystal with the semiconducting grain boundary is much larger than that of an insulating grain boundary, which is due to the screening of polarization-induced charges at the grain boundaries. The P-E hysteresis loop becomes narrow, and the ferroelectric property degrades in the presence of a semiconducting grain boundary; this indicates that the grain boundary conductivity has a significant influence on the nonlinear behavior of the ferroelectric polycrystals. On the other hand, the grain boundary conductivity, however, has less effect on the response of the ferroelectric polycrystals to a mechanical load. The present work provides an insight into the effect of the charge leakage, which is induced by the material defects, e.g., the grain boundary, on the electromechanical properties of piezoelectric ceramics.

095017

, and

The embedment of adhesive-filled hollow glass fibres (HGF) has been reported as a way of combating micro-crack development in fibre-reinforced polymer (FRP) structures. However, hollow fibres can critically undermine the effectiveness of self-healing systems and have been reported to be a potential impediment to the healing agent flow path. On the other hand, attempting to use non-hollow vascular systems in higher dimensions has largely been restricted to bulk polymers that lack reinforcing fibres. This paper investigates an alternative technique where a simple two-dimensional (2D) network of hollow channels is created within a glass-fibre-reinforced polyester-composite structure. The network is created using a fugitive preforming material at the ply level of interest, similar to a direct ink writing procedure. The temporary structure is extracted as a part of the curing and post-curing processes. The channels formed are used to deliver cyanoacrylate adhesive (CA) to areas that have been damaged under a flexural three-point bending test. Subsequent post-repair mechanical testing, under the same mode, evaluates the success of the repair process. The results show good recovery of the stiffness, a paramount mechanical property, and indicate how the grade of the repairing agent used influences the recovered loading strength of the FRP samples.

095018

, and

This paper presents an investigation on the numerical simulation of Lamb wave propagation problems in plate-like structures. Based on the simple plate theory with six variables and extended Chebyshev nodes, a novel formulation of two-dimensional spectral finite elements (2D SFEs) with and without a lead zirconate titanate (PZT) layer is proposed. A simple technique is used in the formulations to avoid inherent thickness locking, which exists in the simple plate theory. Contrary to the existing methods, only one voltage degree of freedom is introduced for each PZT element. Formulations have been worked out in detail, and analysis of the base plates with and without PZTs has been carried out. The accuracy of the proposed 2D SFE is verified by comparing the simulations to data obtained by the finite element method-base commercial software ANSYS with very fine meshes and with existing experimental data. Numerical results indicate that the proposed method is efficient in simulating Lamb wave propagation in plate-like structures.

095019

, and

This paper presents a wireless ultrasonic wavefield imaging (WUWI) technique for detecting hidden damage inside a steel box girder bridge. The proposed technique allows (1) complete wireless excitation of piezoelectric transducers and noncontact sensing of the corresponding responses using laser beams, (2) autonomous damage visualization without comparing against baseline data previously accumulated from the pristine condition of a target structure and (3) robust damage diagnosis even for real structures with complex structural geometries. First, a new WUWI hardware system was developed by integrating optoelectronic-based signal transmitting and receiving devices and a scanning laser Doppler vibrometer. Next, a damage visualization algorithm, self-referencing f-k filter (SRF), was introduced to isolate and visualize only crack-induced ultrasonic modes from measured ultrasonic wavefield images. Finally, the performance of the proposed technique was validated through hidden crack visualization at a decommissioned Ramp-G Bridge in South Korea. The experimental results reveal that the proposed technique instantaneously detects and successfully visualizes hidden cracks even in the complex structure of a real bridge.

095020

, and

Responsive micropatterned surfaces are fabricated using a facile, one-step method that allows for the separate control of topography and surface chemistry. Temperature responsive poly(N-isopropylacrylamide) (pNIPAAm), and amphiphilic poly(hydroxyethyl methacrylate-co-perfluorodecylacrylate) (p(HEMA-co-PFA)) polymer thin films are deposited on prestrained polydimethylsiloxane (PDMS) substrates using the initiated chemical vapor deposition (iCVD) technique. Subsequent release of the strain results in the formation of periodic wrinkle structures on the surface of polymer thin films. The iCVD technique allows control of the chemical composition while preserving the functional groups of the polymers intact. Surface topography is controlled separately by tuning elastic modulus of the polymer coatings and substrates. Highly ordered, well-defined wrinkle structures are obtained on pNIPAAm surfaces whereas wrinkles on the amphiphilic surfaces are less ordered due to the difference in elastic moduli of the polymers. Furthermore, process temperature is observed to have detrimental effects on the ordering of the wrinkles.

095021
The following article is Open access

, , and

The underlying theory of a new actuator concept based on hydrogel core flexible matrix composites (H-FMC) is presented. The key principle that underlines the H-FMC actuator operation is that the three-dimensional swelling of a hydrogel is partially constrained in order to improve the amount of useful work done. The partial constraint is applied to the hydrogel by a flexible matrix composite (FMC) that minimizes the hydrogelʼs volume expansion while swelling. This constraint serves to maximize the fixed charge density and resulting osmotic pressure, the driving force behind actuation. In addition, for certain FMC fibre orientations the Poissonʼs ratio of the anisotropic FMC laminate converts previously unused hydrogel swelling in the radial and circumferential directions into useful axial strains. The potential benefit of the H-FMC concept to hydrogel actuator performance is shown through comparison of force–stroke curves and evaluation of improvements in useful actuation work. The model used to achieve this couples chemical and electrical components, represented with the Nernst–Plank and Poisson equations, as well as a linear elastic mechanical material model, encompassing limited geometric nonlinearities. It is found that improvements in useful actuation work in the order of 1500% over bare hydrogel performance are achieved by the H-FMC concept. A parametric study is also undertaken to determine the effect of various FMC design parameters on actuator free strain and blocking stress. A comparison to other actuator concepts is also included.

095022

, , and

Recently fiber-optic sensing technologies have been applied for performance monitoring of geotechnical structures such as slopes, foundations, and retaining walls. However, the validity of measured data from soil-embedded optical fibers is strongly influenced by the properties of the interface between the sensing fiber and the soil mass. This paper presents a study of the interfacial properties of an optical fiber embedded in soil with an emphasis on the effect of overburden pressure. Laboratory pullout tests were conducted to investigate the load-deformation characteristics of a 0.9 mm tight-buffered optical fiber embedded in soil. Based on a tri-linear interfacial shear stress-displacement relationship, an analytical model was derived to describe the progressive pullout behavior of an optical fiber from soil matrix. A comparison between the experimental and predicted results verified the effectiveness of the proposed pullout model. The test results are further interpreted and discussed. It is found that the interfacial bond between an optical fiber and soil is prominently enhanced under high overburden pressures. The apparent coefficients of friction of the optical fiber/soil interface decrease as the overburden pressure increases, due to the restrained soil dilation around the optical fiber. Furthermore, to facilitate the analysis of strain measurement, three working states of a soil-embedded sensing fiber were defined in terms of two characteristic displacements.

095023

, , and

In this paper, a magneto-rheological (MR) damper was applied to the secondary suspension to reduce the vibration of a car body. The control performance of the MR damper was verified by numerical analysis with a 1/5 scale railway vehicle model in accordance with the similarity law. The analysis results were then validated in tests. In particular, the objective of the study was to understand how the control performance affected the dynamic characteristics of a railway vehicle and to systematically analyze the relationship between control performance and dynamic characteristics depending on various running speeds. To achieve this, experimental results for the dynamic characteristics of the scaled MR damper designed for the 1/5 scale railway vehicle model were applied to the railway vehicle model. The H control method was applied to the controller. The means of designing the railway vehicle body vibration controller and the effectiveness of its results were studied.

095024

, , , , , , , , and

The effects of the PWM excitation signal parameters, such as frequency and magnitude, on the Nafion-based ionic polymer metal composite (IPMC) actuator response were found out. The first set of experiments was designed to observe the actuator response when the actuators were biased with constant DC voltages. These experimental results were exploited to build an experimental data based dynamic model. The model and these results were also used as references to evaluate the experimental results in the proceeding experiments. The second set of experiments was designed to observe the actuator response when the DC square wave signals at different frequencies (0 to 1000 Hz) were applied. The third set of experiments was designed to observe the actuator response when the PWM signals at different magnitudes (6, 8 and 10 V) were applied. It is observed that back relaxation reduces with increasing frequency, but after a certain frequency value, it remains approximately constant. It is seen that the input output relationship of the actuators are linear only for a range of PWM signal magnitudes. The observations in both the PWM frequency and the magnitude experiments indicated that the performance of the Nafion-based IPMC actuator could be improved by selecting a magnitude of PWM signals between 6–8 Volts and by selecting a frequency between 400–1000 Hz.

095025

and

This paper presents the effect of three uncertain parameters on a recent model of conjugated polymer actuators and implements a robust controller based on the model developed for this actuator. These uncertain parameters are the diffusion coefficient (D), the charge capacitance (Cd) and the charge-to-strain ratio (α), which are difficult to measure directly. The parameter estimation method used in this article is based on a Bayesian cost function, and gives us an insight on how much the estimation can be trusted, which is useful information for the design of controllers. Results indicate that the charge capacitance is the best known parameter and should therefore be designed for with greater confidence in its value, while the controller should be much more robust with respect to the diffusion coefficient and the charge-to-strain ratio. Based on this finding, a robust controller based on the quantitative feedback theory is implemented and compared with a conventional PID controller. This results in an improvement of the control performance.

095026

, and

In this paper, a new 1D constitutive model for shape memory alloy using strain and temperature as control variables is presented. The new formulation is restricted to the 1D stress case and takes into account the martensite reorientation and the asymmetry of the SMA behavior in tension and compression. Numerical implementation of the new model in a finite element code was conducted. The numerical results for superelastic behavior in tension and compression tests are presented and were compared to experimental data taken from the literature. Other numerical tests are presented, showing the model's ability to reproduce the main aspects of SMA behavior such as the shape memory effect and the martensite reorientation under cyclic loading. Finally, to demonstrate the utility of the new constitutive model, a dynamic test of a bi-clamped SMA bending beam under forced oscillation is described.

095027

, , , , and

In the past few years, fiber optic sensing technologies have played an increasingly important role in the health monitoring of civil infrastructures. These innovative sensing technologies have recently been successfully applied to the performance monitoring of a series of geotechnical structures. Fiber optic sensors have shown many unique advantages in comparison with conventional sensors, including immunity to electrical noise, higher precision and improved durability and embedding capabilities; fiber optic sensors are also smaller in size and lighter in weight. In order to explore the mechanism of seepage-induced slope instability, a small-scale 1 g model test of the soil slope has been performed in the laboratory. During the model's construction, specially fabricated sensing fibers containing nine fiber Bragg grating (FBG) strain sensors connected in a series were horizontally and vertically embedded into the soil mass. The surcharge load was applied on the slope crest, and the groundwater level inside of the slope was subsequently varied using two water chambers installed besides the slope model. The fiber optic sensing data of the vertical and horizontal strains within the slope model were automatically recorded by an FBG interrogator and a computer during the test. The test results are presented and interpreted in detail. It is found that the gradually accumulated deformation of the slope model subjected to seepage can be accurately captured by the quasi-distributed FBG strain sensors. The test results also demonstrate that the slope stability is significantly affected by ground water seepage, which fits well with the results that were calculated using finite element and limit equilibrium methods. The relationship between the strain measurements and the safety factors is further analyzed, together with a discussion on the residual strains. The performance evaluation of a soil slope using fiber optic strain sensors is proved to be a potentially effective approach.

095028

, , , , and

A packaged current sensor consisting of a SmFe2/PZT/SmFe2 self-biased magnetoelectric (ME) laminate and a Fe73.5Cu1Nb3Si13.5B9 nanocrystalline flux concentrator for weak-current detection at the power-line frequency is fabricated and characterized. The giant magnetostrictive material of the SmFe2 plate with its large anisotropic constant provides a huge internal anisotropic field to bias the ME transducer in a closed magnetic loop. Consequently, the additional magnetomotive force induced by the internal field and the corresponding increased effective permeability contribute to an improvement in sensitivity. Experimental results demonstrate that the presented sensor has a higher sensitivity of 152 mV A−1 at 50 Hz with a slight nonlinearity of ∼0.01% FS and matches well with the predicted value. This current-sensing device exhibits approximately 2.3 times higher sensitivity than does conventional ME composite with PZT and Terfenol-D plates serving as the key sensitive component. In addition, the packaged sensor is evaluated for a long period of 72 h to determine stability over time, and the results are analyzed by means of a mathematical statistics method; favorable stability with an uncertainty of 0.5 μV is obtained in continuous 1 h testing. These results represent a significant advancement in the development of promising applications of tri-layer self-biased ME laminate for monitoring power-line electric cords.

095029

and

Piezoceramic actuators (PCAs) are desired devices in many micro/nano-positioning applications. The performance of PCA-based applications is severely limited by the presence of hysteresis nonlinearity. To remedy the hysteresis nonlinearity in such systems, feedforward hysteresis compensation is the most common technique. In the literature, many different feedforward hysteresis compensation approaches have been developed, but there are no comparative studies of these approaches. Focusing on the modified Prandtl-Ishlinskii model (MPIM) for asymmetric hysteresis description of piezoceramic actuators, three feedforward hysteresis compensation approaches—inverse hysteresis compensation (IHC), without inverse hysteresis compensation (WIHC), and direct inverse hysteresis compensation (DIHC)—are developed and compared in this paper. Extensive comparative experiments were conducted on a PCA-actuated stage to verify the effectiveness of the three different feedforward control approaches to hysteresis compensation. The experimental results show that the performances among the three approaches are rather similar, and the main differences among them are due to the specific implementation of each approach.

095030

, and

This paper presents a passive shock recorder to record shock events for tens of Gs with wireless reading and wireless resetting capabilities through the integration of LC circuits and two MEMS devices. With a micro mechanical-latch shock switch electrically connected to the sensing LC circuit, the shock event that leads to different latching states can be recorded and wirelessly read through the LC resonant frequency. With a micro electro-thermal actuator electrically connected to a wirelessly powered actuating LC circuit, the energy can be wirelessly sent to the micro actuator to provide the necessary unlatched force. By integrating the mechanical-latch shock switch and actuator with LC circuits, the latching state can be reset through the wireless actuation. Therefore, the shock recorder can be used repeatedly. Here, the mechanical-latch shock switch is designed to have a two-level shock recording capability. The fabrication of the shock switch and actuator are achieved by a Ni-based surface micromachining process. When the acceleration reaches 28.06 G, the latching state changes from the original state to the first latching state. The resonant frequency of sensing for the LC circuit is found to switch from 10.14 MHz to 9.16 MHz, correspondingly. By further applying acceleration up to 37.10 G, the latching state changes from the first latching state to the second state, and the resonant frequency shifts to 7.83 MHz. Then, with a current of 2.07 AAC wirelessly induced in the actuating LC circuit, the micro electro-thermal actuator is shown to provide sufficient displacement to reset the shock switch from a latched state back to the original unlatched state, and the resonant frequency is switched back to 10.14 MHz. The fabricated shock recorder is repeatedly tested five times. The wireless reading, resetting and shock recording capabilities are successfully verified.

095031

, and

The compositional dependence of the electro-mechanical properties of [001]C cut and poled relaxor ferroelectric lead indium niobate—lead magnesium niobate—lead titanate, xPb(In1/2Nb1/2)O3-(1–xy)Pb(Mg1/3Nb2/3)O3-yPbTiO3 (PIN–PMN–PT) single crystals was characterized under combined stress and electric field loading. Increasing the PIN and PT concentrations in compositions near the morphotropic phase boundary affected the piezoelectric, dielectric, and compliance coefficients, and the ferroelectric, pyroelectric, and thermal expansion coefficients, as well as the ferroelectric rhombohedral to ferroelectric orthorhombic phase transformation thresholds. The combinations of stress and electric field that induced the phase transformations were determined as a function of temperature. The results indicate that the linear response regime can be increased by modifying the composition, but this reduces the piezoelectric, dielectric, and compliance coefficients. This may be a desirable trade off in device design where linearity and low loss are important to the application.

095032

, and

This paper presents the design and control performance of a novel type of 4-degrees-of-freedom (4-DOF) haptic master in cyberspace for a robot-assisted minimally invasive surgery (RMIS) application. By using a controllable magnetorheological (MR) fluid, the proposed haptic master can have a feedback function for a surgical robot. Due to the difficulty in utilizing real human organs in the experiment, the cyberspace that features the virtual object is constructed to evaluate the performance of the haptic master. In order to realize the cyberspace, a volumetric deformable object is represented by a shape-retaining chain-linked (S-chain) model, which is a fast volumetric model and is suitable for real-time applications. In the haptic architecture for an RMIS application, the desired torque and position induced from the virtual object of the cyberspace and the haptic master of real space are transferred to each other. In order to validate the superiority of the proposed master and volumetric model, a tracking control experiment is implemented with a nonhomogenous volumetric cubic object to demonstrate that the proposed model can be utilized in real-time haptic rendering architecture. A proportional-integral-derivative (PID) controller is then designed and empirically implemented to accomplish the desired torque trajectories. It has been verified from the experiment that tracking the control performance for torque trajectories from a virtual slave can be successfully achieved.

095033

The semi-active vibration absorber (SVA) based on controlled semi-active damper is formulated to realize the behaviour of the passive undamped vibration absorber tuned to the actual harmonic disturbing frequency. It is shown that the controlled stiffness force, which is emulated by the semi-active damper to realize the precise real-time frequency tuning of the SVA, is unpreventably combined with the generation of undesirable damping in the semi-active damper whereby the SVA does not behave as targeted. The semi-active stiffness force is therefore optimized for minimum primary structure response. The results point out that the optimal semi-active stiffness force reduces the undesirable energy dissipation in the SVA at the expenses of slight imprecise frequency tuning. Based on these findings, a real-time applicable suboptimal SVA is formulated that also takes the relative motion constraint of real mass dampers into account. The results demonstrate that the performance of the suboptimal SVA is closer to that of the active solution than that of the passive mass damper.

095034

, and

Piezoelectric energy harvesting (PEH) from ambient energy sources, particularly vibrations, has attracted considerable interest throughout the last decade. Since fluid flow has a high energy density, it is one of the best candidates for PEH. Indeed, a piezoelectric energy harvesting process from the fluid flow takes the form of natural three-way coupling of the turbulent fluid flow, the electromechanical effect of the piezoelectric material and the electrical circuit. There are some experimental and numerical studies about piezoelectric energy harvesting from fluid flow in literatures. Nevertheless, accurate modeling for predicting characteristics of this three-way coupling has not yet been developed. In the present study, accurate modeling for this triple coupling is developed and validated by experimental results. A new code based on this modeling in an openFOAM platform is developed.

095035

, , and

This paper presents the investigation of a directional magnetostrictive patch transducer (MPT) composed of a highly textured Galfenol (Fe–Ga alloy) patch in the use of ultrasonic guided Lamb wave (GLW) inspection techniques for isotropic planar structures. Recently, the actuation and sensing performance of an MPT using a disc patch made of polycrystalline nickel was reported, based on GLW testing in thin aluminum plates. The nickel-based MPT appeared to have omnidirectional GLW sensitivity in the metallic plate because of the isotropic magnetostrictive nature of polycrystalline nickel with random orientation. In this work, we investigated two viable methods to control and improve MPT's directional sensitivity for detecting GLWs in metallic plate structures. First, we proposed a circular MPT (CMPT) using the highly textured Galfenol patch with a large magnetostriction of ∼270 ppm along a <100> preferred orientation parallel to the patch's rolling direction. The CMPT exhibited outstanding sensitivity to incoming GLWs along the <100> direction of the patch in a thin aluminum plate. This was mainly due to the unique anisotropic magnetostriction effect of the textured Galfenol patch. In addition to the use of the Galfenol material, we developed a novel cruciform MPT (XMPT) containing four solenoid sensing coils that possessed individual directional sensing preferences, corresponding to the orientations of the sensing coils. The directional sensing performance of the XMPT was initially validated by using the polycrystalline nickel patch with the isotropic magnetostrictive characteristic, exhibiting the remarkable directionality attributes of the individual sensing elements. Of particular interest was that the XMPT combined with the highly textured Galfenol patch demonstrated excellent directional sensitivity corresponding to the Galfenol's preferred orientation. And the directional sensing feature was noticeably enhanced by incorporating the textured Galfenol patch into the proposed XMPT system.

095036

, , , , , and

Magnetoelastic (ME) materials have many advantages for use as sensors and actuators due to their wireless, passive nature. This paper describes the application of ME materials as biodegradable implants with controllable degradation rates. Experiments have been conducted to show that degradation rates of ME materials are dependent on the material compositions. In addition, it was shown that the degradation rates of the ME materials can be controlled remotely by applying a magnetic field, which causes the ME materials to generate low-magnitude vibrations that hasten their degradation rates. Another concern of ME materials for medical applications is biocompatibility. Indirect cytotoxicity analyses were performed on two types of ME materials: Metglas™ 2826 MB (FeNiMoB) and iron–gallium alloy. While results indicate Metglas is not biocompatible, the degradation products of iron–gallium materials have shown no adverse effects on cell viability. Overall, these results present the possibility of using ME materials as biodegradable, magnetically-controlled active implants.

095037
The following article is Free article

and

A new electromechanical finite element modelling of a vibration power harvester and its validation with experimental studies are presented in this paper. The new contributions for modelling the electromechanical finite element piezoelectric unimorph beam with tip mass offset under base excitation encompass five major solution techniques. These include the electromechanical discretization, kinematic equations, coupled field equations, Lagrangian electromechanical dynamic equations and orthonormalized global matrix and scalar forms of electromechanical finite element dynamic equations. Such techniques have not been rigorously modelled previously by other researchers. There are also benefits to presenting the numerical techniques proposed in this paper. First, the proposed numerical techniques can be used for applications in many different geometrical models, including micro-electro-mechanical system power harvesting devices. Second, applying tip mass offset located after the end of the piezoelectric beam length can result in a very practical design, which avoids direct contact with piezoelectric material because of its brittle nature. Since the surfaces of actual piezoelectric material are covered evenly with thin conducting electrodes for generating single voltage, we introduce the new electromechanical discretization, consisting of the mechanical and electrical discretized elements. Moreover, the reduced electromechanical finite element dynamic equations can be further formulated to obtain the series form of new multimode electromechanical frequency response functions of the displacement, velocity, voltage, current and power, including optimal power harvesting. The normalized numerical strain node and eigenmode shapes are also further formulated using numerical discretization. Finally, the parametric numerical case studies of the piezoelectric unimorph beam under a resistive shunt circuit show good agreement with the experimental studies.

095038

, , , and

Identification of early damage in polymer composites is of great importance. We have incorporated cyclobutane-containing cross-linked polymers into an epoxy matrix, studied the effect on thermal and mechanical properties, and, more importantly, demonstrated early damage detection through mechanically induced fluorescence generation. Two cinnamate derivatives, 1,1,1-tris(cinnamoyloxymethyl) ethane (TCE) and poly(vinyl cinnamate) (PVCi), were photoirradiated to produce cyclobutane-containing polymer. The effects on the thermal and mechanical properties with the addition of cyclobutane-containing polymer into epoxy matrix were investigated. The emergence of cracks was detected by fluorescence at a strain level just beyond the yield point of the polymer blends, and the fluorescence intensified with accumulation of strain. Overall, the results show that damage can be detected through fluorescence generation along crack propagation.

095039

, , and

Flow sensing is an essential technique required for a wide range of application environments ranging from liquid dispensing to utility monitoring. A number of different methodologies and deployment strategies have been devised to cover the diverse range of potential application areas. The ability to easily create new bespoke sensors for new applications is therefore of natural interest. Fused deposition modelling is a 3D printing technology based upon the fabrication of 3D structures in a layer-by-layer fashion using extruded strands of molten thermoplastic. The technology was developed in the late 1980s but has only recently come to more wide-scale attention outside of specialist applications and rapid prototyping due to the advent of low-cost 3D printing platforms such as the RepRap. Due to the relatively low-cost of the printers and feedstock materials, these printers are ideal candidates for wide-scale installation as localized manufacturing platforms to quickly produce replacement parts when components fail. One of the current limitations with the technology is the availability of functional printing materials to facilitate production of complex functional 3D objects and devices beyond mere concept prototypes. This paper presents the formulation of a simple magnetite nanoparticle-loaded thermoplastic composite and its incorporation into a 3D printed flow-sensor in order to mimic the function of a commercially available flow-sensing device. Using the multi-material printing capability of the 3D printer allows a much smaller amount of functional material to be used in comparison to the commercial flow sensor by only placing the material where it is specifically required. Analysis of the printed sensor also revealed a much more linear response to increasing flow rate of water showing that 3D printed devices have the potential to at least perform as well as a conventionally produced sensor.

095040

and

Recent developments in semi-active control technology have led to its application in civil infrastructures as an efficient strategy to protect susceptible structures against seismic and wind induced vibration. The reliable and robust performance of semi-active systems depends on the level of uncertainties in the structural parameters as well as on the sensors' measurement and on smart mechanical dampers. A common source of uncertainties in semi-active control devices is related to the inherent nonlinear nature of these devices, thermal variation, or their malfunctioning. This study deals with the robust H control problem and aims to model different sources of uncertainty. The uncertainty of the structural model and damper force are assumed to be norm bounded random variables. By using linear fractional transformation (LFT), the uncertain part of the system is decoupled from the nominal parameters of the system. The robust H controller is designed to achieve consistent performance in structures including nominal and perturbed dynamics. Additionally, to reduce the uncertainty of the damper force, an inverse model of the magnetorheological (MR) damper is developed based on an adaptive neuro-fuzzy inference system (ANFIS). The robustness of the proposed algorithm is validated by numerical simulations.

095041

and

The piezoelectric impedance-based method for damage detection is a promising approach in structural health monitoring by virtue of its potential to detect small-sized damages with a low-cost measurement circuit that enables remote monitoring. The amount of available impedance data, however, is generally far less than the number of required system parameters, which results in a highly underdetermined inverse problem for identifying the location and severity of the damage. This numerical ill-conditioning undermines the accuracy and reliability of damage prediction, particularly in practical implementations in which measurement noise and baseline modeling error are unavoidable. In this research paper, we propose a new concept to enrich the impedance measurement by incorporating an adaptive piezoelectric circuitry in the structure. This circuitry alters the dynamics of the integrated system, and by systematically tuning the inductance value, one can significantly increase the number of measurement sets. Thus, the previous seriously underdetermined inverse problem can be notably improved. As a result, the new method yields significantly more accurate damage location and severity identification. A numerical example of the damage prediction of a fixed-fixed beam using the spectral element method demonstrates the effectiveness of the proposed approach. The concept is also verified via experimental investigations.

095042

, , , , , , and

Implementing energy harvesters and wireless sensors in jet engines will simplify development and decrease costs by reducing the need for cables. Such a device could include a small thermoelectric generator placed in the cooling channels of the jet engine where the temperature is between 500–900 °C. This paper covers the synthesis of suitable thermoelectric materials, design of module and proof of concept tests of a thermoelectric module. The materials and other design variables were chosen based on an analytic model and numerical analysis. The module was optimized for 600–800 °C with the thermoelectric materials n-type Ba8Ga16Ge30 and p-type La-doped Yb14MnSb11, both with among the highest reported figure-of-merit values, zT, for bulk materials in this region. The materials were synthesized and their structures confirmed by x-ray diffraction. Proof of concept modules containing only two thermoelectric legs were built and tested at high temperatures and under high temperature gradients. The modules were designed to survive an ambient temperature gradient of up to 200 °C. The first measurements at low temperature showed that the thermoelectric legs could withstand a temperature gradient of 123 °C and still be functional. The high temperature measurement with 800 °C on the hot side showed that the module remained functional at this temperature.

095043

, , and

In order to achieve a large displacement output from a piezoelectric actuator, we realized the piezoelectric stack actuator (PSA) by mechanically layering/stacking multi-chip piezoelectric wafers in a series and electrically connecting the electrodes in parallel. In this paper, in order to accurately model the hysteresis and the dynamic characteristics of a PSA, the transfer matrix method for multibody systems (MSTMM) was adopted to describe the dynamic characteristics, and the Bouc-Wen hysteresis operator was used to represent the hysteresis. The vibration characteristics of a PSA and a piezo-actuated positioning mechanism (PPM) are derived and analyzed by the MSTMM; then, the dynamic responses of the PSA and the PPM are calculated. The experimental results show that the new method can accurately portray the hysteresis and the dynamic characteristics of a PSA and a PPM. On one hand, if we use this method to model the dynamic response of the PSA and the PPM, the PSA can be considered as a flexible body, as opposed to a mass-spring-damper system, which is in better agreement with the actual condition. On the other hand, the global dynamics equation is not needed for the study of system dynamics, and the dynamics equation has a small-sized matrix and a higher computational speed. Therefore, this method gives a broad range of possibilities for model-based controller design.

095044

and

This paper presents a new additive manufacturing (AM) process to directly and continuously print piezoelectric devices from polyvinylidene fluoride (PVDF) polymeric filament rods under a strong electric field. This process, called 'electric poling-assisted additive manufacturing or EPAM, combines AM and electric poling processes and is able to fabricate free-form shape piezoelectric devices continuously. In this process, the PVDF polymer dipoles remain well-aligned and uniform over a large area in a single design, production and fabrication step. During EPAM process, molten PVDF polymer is simultaneously mechanically stresses in-situ by the leading nozzle and electrically poled by applying high electric field under high temperature. The EPAM system was constructed to directly print piezoelectric structures from PVDF polymeric filament while applying high electric field between nozzle tip and printing bed in AM machine. Piezoelectric devices were successfully fabricated using the EPAM process. The crystalline phase transitions that occurred from the process were identified by using the Fourier transform infrared spectroscope. The results indicate that devices printed under a strong electric field become piezoelectric during the EPAM process and that stronger electric fields result in greater piezoelectricity as marked by the electrical response and the formation of sharper peaks at the polar β crystalline wavenumber of the PVDF polymer. Performing this process in the absence of an electric field does not result in dipole alignment of PVDF polymer. The EPAM process is expected to lead to the widespread use of AM to fabricate a variety of piezoelectric PVDF polymer-based devices for sensing, actuation and energy harvesting applications with simple, low cost, single processing and fabrication step.

095045

, and

This paper presents modeling and experimental validation of a new type of vibrational energy harvester that passively switches between two dynamical modes of operation to expand the range of driving frequencies and accelerations over which the harvester effectively extracts power. In both modes, a driving beam with a low resonant frequency couples into ambient vibrations and transfers their energy to a generating beam that has a higher resonant frequency. The generating beam converts the mechanical power into electrical power. In coupled-motion mode, the driving beam bounces off the generating beam. In plucked mode, the driving beam deflects the generating beam until the driving beam passes from above the generating beam to below it or vice versa. Analytical system models are implemented numerically in the time domain for driving frequencies of 3 Hz to 27 Hz and accelerations from 0.1 g to 2.6 g, and both system dynamics and output power are predicted. A corresponding switched-dynamics harvester is tested experimentally, and its voltage, power, and dynamics are recorded. In both models and experiments, coupled-motion harvesting is observed at lower accelerations, whereas plucked harvesting and/or mixed mode harvesting are observed at higher accelerations. As expected, plucked harvesting outputs greater power than coupled-motion harvesting in both simulations and experiments. The predicted (1.8 mW) and measured (1.56 mW) maximum average power levels are similar under measured conditions at 0.5 g. When the system switches to dynamics that are characteristic of higher frequencies, the difference between predicted and measured power levels is more pronounced due to non-ideal mechanical interaction between the beams' tips. Despite the beams' non-ideal interactions, switched-dynamics operation increases the harvester's operating range.

095046

and

An analytical model based on an equivalent layered approach using iso-field assumptions is proposed to find the effect of bonding layers on the effective properties of macro-fiber composites (MFCs). To account for the interdigitated electrode pattern and geometric (shape and position) properties, a finite element analysis is carried out using the representative volume element (RVE) method. The simulated results based on the proposed analytical and numerical models are compared and validated with the data available from the manufacturer and a mixing rules model available in the literature. Experiments are performed on MFCs under pure electrical loading to measure a few coupling constants and the results are compared with simulated results. A parametric study is conducted to investigate the variations of the overall material behavior of MFCs with respect to bonding layer thickness. The present study examines the influence of bonding the layer on the effective properties of MFCs.