This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 22

Number 9, September 2013

Previous issue Next issue

Adaptive and active materials: selected papers from the ASME 2012 conference on smart materials, adaptive structures and intelligent systems (SMASIS 12) (Stone Mountain, GA, USA, 19–21 September 2012)

Fast Track Communication

092001

and

This study analyzes the feasibility of applying a semi-active magnetorheological (MR) damper to a naval hose–drogue based aerial refueling system to minimize undesirable hose–drogue vibrations. The semi-active smart aerial refueling probe system consists of a probe, a coil spring, and a MR damper. The dynamics of the smart refueling probe system were derived and incorporated into an analysis of the coupled hose–drogue dynamics, so as to evaluate the load reduction of the refueling hose at the drogue position effected by the MR damper. The simulated responses of the smart refueling probe system using a MR damper were conducted at different maximum closure velocities of 1.56 and 5 ft s−1 and different tanker flight speeds of 185 and 220 knots. The simulations demonstrate that the smart refueling probe system using a MR damper enables large reductions in probe-and-drogue motions, as well as preventing the onset of large and undesirable hose–drogue motions resulting from tension loads during engagement of the probe.

Topical Review

093001

, , , , , and

One-step dual-shape memory polymers (SMPs) recover their original (permanent) shape upon small variation of environmental conditions such as temperature, electric field, light, magnetic field, and solvent/chemicals. For advanced applications such as aerospace and medical devices, complicated, multiple-step, spatially controllable, and two-way shape memory effects (SMEs) are required. In the past decade, researchers have devoted great effort to improve the versatility of the SME of SMPs to meet the needs of advanced applications. This paper is intended to review the up-to-date research endeavors on advanced SMEs. The problems facing the various SMPs are discussed. The challenges and opportunities for future research are discussed.

Regular Papers

095001

, , , , and

We have developed piezoelectric microelectromechanical systems (MEMS) switches and applied them to ultra-low power wireless sensor nodes, to monitor the health condition of chickens. The piezoelectric switches have 'S'-shaped piezoelectric cantilevers with a proof mass. Since the resonant frequency of the piezoelectric switches is around 24 Hz, we have utilized their superharmonic resonance to detect chicken movements as low as 5–15 Hz. When the vibration frequency is 4, 6 and 12 Hz, the piezoelectric switches vibrate at 0.5 m s−2 and generate 3–5 mV output voltages with superharmonic resonance. In order to detect such small piezoelectric output voltages, we employ comparator circuits that can be driven at low voltages, which can set the threshold voltage (Vth) from 1 to 31 mV with a 1 mV increment. When we set Vth at 4 mV, the output voltages of the piezoelectric MEMS switches vibrate below 15 Hz with amplitudes above 0.3 m s−2 and turn on the comparator circuits. Similarly, by setting Vth at 5 mV, the output voltages turn on the comparator circuits with vibrations above 0.4 m s−2. Furthermore, setting Vth at 10 mV causes vibrations above 0.5 m s−2 that turn on the comparator circuits. These results suggest that we can select small or fast chicken movements to utilize piezoelectric MEMS switches with comparator circuits.

095002

and

Lamb waves are often used in smart structures with integrated, low-profile piezoceramic transducers for damage detection. However, it is well known that the method is prone to contamination from a variety of interference sources including environmental and operational conditions. The paper demonstrates how to remove the undesired temperature effect from Lamb wave data. The method is based on the concept of cointegration that is partially built on the analysis of the non-stationary behaviour of time series. Instead of directly using Lamb wave responses for damage detection, two approaches are proposed: (i) analysis of cointegrating residuals obtained from the cointegration process of Lamb wave responses, (ii) analysis of stationary characteristics of Lamb wave responses before and after cointegration. The method is tested on undamaged and damaged aluminium plates exposed to temperature variations. The experimental results show that the method can: isolate damage-sensitive features from temperature variations, detect the existence of damage and classify its severity.

095003

and

In this study, the recently developed analytical mode decomposition with Hilbert transform was extended to the decomposition of a non-stationary and nonlinear signal with two or more amplitude-decaying and frequency-changing components. The bisecting frequency in the analytical mode decomposition became time-varying, and could be selected between any two adjacent instantaneous frequencies estimated from a preliminary wavelet analysis. The mathematical foundation for this new extension was integration of the bisecting frequency over time so that the original time series is actually decomposed in the phase domain. Parametric studies indicated that the analytically derived components are insensitive to the selection of bisecting frequency and the presence of up to 20% noise, sufficiently accurate when the sampling rate meets the Nyquist–Shannon sampling criterion, and applicable to both narrowband and wideband frequency modulations even when the signal amplitude decays over time. The proposed analytical mode decomposition is superior to the empirical mode decomposition and wavelet analysis in the preservation of signal amplitude, frequency and phase relations. It can be directly applied for system identification of buildings with time-varying stiffness.

095004

, and

Dielectric electro-active polymer (DEAP) materials are attractive since they are low cost, lightweight and have a large deformation capability. They have no operating noise, very low electric power consumption and higher performance and efficiency than competing technologies. However, DEAP materials generally have strong hysteresis as well as uncertain and nonlinear characteristics. These disadvantages can limit the efficiency in the use of DEAP materials. To address these limitations, this research will present the combination of the Preisach model and the dynamic nonlinear autoregressive exogenous (NARX) fuzzy model-based adaptive particle swarm optimization (APSO) identification algorithm for modeling and identification of the nonlinear behavior of one typical type of DEAP actuator. Firstly, open loop input signals are applied to obtain nonlinear features and to investigate the responses of the DEAP actuator system. Then, a Preisach model can be combined with a dynamic NARX fuzzy structure to estimate the tip displacement of a DEAP actuator. To optimize all unknown parameters of the designed combination, an identification scheme based on a least squares method and an APSO algorithm is carried out. Finally, experimental validation research is carefully completed, and the effectiveness of the proposed model is evaluated by employing various input signals.

095005

, , , , and

The objective of this study was to increase the output current and power in a piezoelectric transformer (PT)-based DC/DC converter by using a cooling system. It is known that the output current of a PT is limited by temperature build-up because of losses, especially when driving at high vibration velocity. Although connecting different inductive circuits at the PT secondary terminal can increase the output current, the root cause of the temperature build-up problem has not yet been solved. This paper presents a study of a PT with cooling system in a DC/DC converter with a commonly used full-bridge rectifier and current-doubler rectifier. The advantages and disadvantages of the proposed technique were investigated. A theoretical–phenomenological model was developed to explain the relationship between the losses and the temperature rise. It will be shown that the vibration velocity as well as heat generation increases the losses. In our design, the maximum output current capacity can increase by 100% when the temperature of operation of the PT is kept below 55 ° C. The study comprises a theoretical part and experimental proof-of-concept demonstration of the proposed design method.

095006

and

In this paper, micro-electro-mechanic systems (MEMS) acoustic emission (AE) transducers are manufactured using an electroplating technique. The transducers use a capacitance change as their transduction principle, and are tuned to the range 50–200 kHz. Through the electroplating technique, a thick metal layer (20 μm nickel + 0.5 μm gold) is used to form a freely moving microstructure layer. The presence of the gold layer reduces the potential corrosion of the nickel layer. A dielectric layer is deposited between the two electrodes, thus preventing the stiction phenomenon. The transducers have a measured quality factor in the range 15–30 at atmospheric pressure and are functional without vacuum packaging. The transducers are characterized using electrical and mechanical tests to identify the capacitance, resonance frequency and damping. Ultrasonic wave generation using a Q-switched laser shows the directivity of the transducer sensitivity. The comparison of the MEMS transducers with similar frequency piezoelectric transducers shows that the MEMS AE transducers have better response characteristics and sensitivity at the resonance frequency and well-defined waveform signatures (rise time and decay time) due to pure resonance behavior in the out-of-plane direction. The transducers are sensitive to a unique wave direction, which can be utilized to increase the accuracy of source localization by selecting the correct wave velocity at the structures.

095007

, , , , and

A study of the characteristics of ferromagnetic signatures obtained by magnetoelectric (ME) laminate sensors has been performed. Anderson functions were used to analyze the signatures, which were found to be dependent on several parameters. An array imager was then developed using multiple ME sensors, which demonstrated how magnetic signature profiles can be used for magnetic field distortion detection.

095008

This paper describes the dynamic characteristics of an adaptive tuned mass damper concept that is based on a real-time semi-actively controlled MR damper (MR-STMD) and is installed in the Wolgograd Bridge. The measurements and simulations of the prototype MR-STMD on the 15.6 m Empa bridge at different disturbing force levels demonstrate that the MR-STMD can cope with the nonlinear effect by which the resonance frequency and damping ratio of the Empa bridge depend on the amplitude and thereby on the excitation level. Whereas the efficiency of the MR-STMD is hardly affected by the aforementioned nonlinear effects, the passive TMD shows strong de-tuning. The tests for fast changes in frequency and amplitude of the disturbing force show that the response of the Empa bridge with the MR-STMD is smaller both during steady state and transient conditions than with a passive TMD, and the relative motion amplitudes in the MR-STMD are smaller or equal to those in the passive TMD. The force tracking accuracies of the prototype MR-STMD and of the Wolgograd MR-STMD are shown to be accurate, which generates precise frequency tuning of the MR-STMD in real-time and thereby explains the achievements described above. The test results indicate that the real-time controlled MR-STMD is an efficient and robust tool for the mitigation of structural vibrations.

095009

, and

The paper proposes a phenomenological model for magneto-elastic interactions in materials with hysteresis, where both mechanical and magnetic variables are fully coupled. The approach allows one to provide a tool for the description of the energy conversion mechanism in the presence of losses, for example, in harvesting devices. The present approach takes into account exchange between mechanical and magnetic energies, as well as dissipation due to hysteresis phenomena. Using the concept of hysteresis potentials, it is shown that the model is consistent with classical nonequilibrium thermodynamics. The effectiveness of the approach is demonstrated by comparison with experimental data.

095010
The following article is Open access

, , , , and

An electrostatic chuck (ESC) is a type of reversible dry adhesive which clamps objects by means of electrostatic force. Currently an ESC is used only for objects having flat surfaces because the attractive force is reduced for rough surfaces. An ESC that can handle objects with rough surfaces will expand its applications to MEMS (micro electro mechanical system) or optical parts handling. An ESC consisting of compliant electrostatic inductive fibers which conform to the profile of the surface has been proposed for such use. This paper aims at furthering previous research by observing the attractive force/pressure generated, both theoretically and experimentally, through step-by-step fabrication and analysis. Additionally, how the proposed fiber ESC behaves toward rough surfaces is also observed. The attractive force/pressure of the fiber ESC is theoretically investigated using a robust mechano-electrostatic model. Subsequently, a prototype of the fiber ESC consisting of ten fibers arranged at an angle is employed to experimentally observe its attractive force/pressure for objects with rough surfaces. The attractive force of the surface which is modeled as a sinusoidal wave with various amplitudes is observed, through which the feasibility of a fiber ESC is justified.

095011

and

One of the problems with regard to the electromechanical impedance (EMI) method in the field of structural health monitoring is the relatively high cost requirement of the system. Since the EMI method utilizes a piezoelectric material in small sizes, numerous pieces of equipment are usually required to cover a large area. Thus, in order to compete for the increasing demand for structural health monitoring of components and structures, the technique must be cost effective and large areas need to be rapidly scanned with minimal disruption to the structure's operation. In this study, a technique is proposed for the EMI method to allow sensing of multiple areas with a single frequency sweep, minimizing both the time and the cost of the method. The principle of the proposed technique is the utilization of different resonance frequencies with the piezoelectric material, allowing one to find the location of the damage. Experiments show exceptional results, bringing the EMI method a step closer for real field application.

095012

and

The intelligent material, so-called magnetorheological (MR) fluid, is utilized to control turning vibration. According to the structure of a common lathe CA6140, a shear MR damper is conceived by designing its structure and magnetic circuit. The vibration suppression effect of the damper is proved with dynamic analysis and simulation. Further, the magnetic circuit of the damper is optimized with the ANSYS parametric design language (APDL). In the optimization course, the area of the magnetic circuit and the damping force are considered. After optimization, the damper's structure and its efficiency of electrical energy consumption are improved. Additionally, a comparative study on damping forces acquired from the initial and optimal design is conducted. A prototype of the developed MR damper is fabricated and magnetic tests are performed to measure the magnetic flux intensities and the residual magnetism in four damping gaps. Then, the testing results are compared with the simulated results. Finally, the suppressing vibration experimental system is set up and cylindrical turning experiments are performed to investigate the working performance of the MR damper.

095013

and

Delayed feedback (DF) control is a well-established technique to suppress single frequency vibration of a non-minimum phase system. Modal control is also a well-established technique to control multiple vibration modes of a minimum phase system. In this paper these techniques are combined to simultaneously suppress multiple vibration modes of a non-minimum phase system involving a small time delay. The control approach is called delayed resonant feedback (DRF) where each modal controller consists of a modal filter to extract the target mode signal from the vibration response, and a phase compensator to account for the phase delay of the mode. The methodology is first discussed using a single mode system. A multi-mode system is then studied and experimental results are presented to demonstrate the efficacy of the control approach for two modes of a beam. It is shown that the system behaves as if each mode under control has a dynamic vibration absorber attached to it, even though the actuator and the sensor are not collocated and there is a time delay in the control system.

095014

, and

An analytical electrothermal model is developed and validated using experimental measurements. This model is based on known equations of the thermoelectric theory by accounting for the influence of the temperature on the internal properties of thermoelectric generators. General expressions for the internal properties of thermoelectric generators for different ranges of temperatures are determined. The validation of the model shows that representing the variations of the electrical internal resistance and Seebeck coefficient by linear and quadratic analytic expressions, respectively, as a function of the hot-side temperature is satisfactory. The results show the importance of including the effects of the temperature on the properties of the thermoelectric generator. This is especially true because the maximum generated power is realized when the load resistance is set equal to the internal resistance. The model is used to determine characteristic curves for optimal performance of these generators under different operating hot-side temperatures and temperature differences.

095015

, , , and

Research on optimal sensor placement (OSP) has become very important due to the need to obtain effective testing results with limited testing resources in health monitoring. In this study, a new methodology is proposed to select the best sensor locations for large structures. First, a novel fitness function derived from the nearest neighbour index is proposed to overcome the drawbacks of the effective independence method for OSP for large structures. This method maximizes the contribution of each sensor to modal observability and simultaneously avoids the redundancy of information between the selected degrees of freedom. A hybrid algorithm combining the improved discrete particle swarm optimization (DPSO) with the clonal selection algorithm is then implemented to optimize the proposed fitness function effectively. Finally, the proposed method is applied to an arch dam for performance verification. The results show that the proposed hybrid swarm intelligence algorithm outperforms a genetic algorithm with decimal two-dimension array encoding and DPSO in the capability of global optimization. The new fitness function is advantageous in terms of sensor distribution and ensuring a well-conditioned information matrix and orthogonality of modes, indicating that this method may be used to provide guidance for OSP in various large structures.

095016

, and

The tuned mass damper (TMD) is a well acclaimed passive control device for vibration control of structures. However, the requirement of a higher mass ratio restricts its applicability for seismic vibration control of civil engineering structures. Improving the performance of TMDs has been attempted by supplementing them with nonlinear restoring devices. In this regard, the ability of shape memory alloy (SMA) in dissipating energy through a hysteretic phase transformation of its microstructure triggered by cyclic loading is notable. An improved version of TMD assisted by a nonlinear shape memory alloy (SMA) spring, referred as SMA-TMD, is studied here for seismic vibration mitigation. Extensive numerical simulations are conducted based on nonlinear random vibration analysis via stochastic linearization of the nonlinear force–deformation hysteresis of the SMA. A design optimization based on minimizing the root mean square displacement of the main structure is also carried out to postulate the optimal design parameters for the proposed system. The viability of the optimal design is verified with respect to its performance under recorded earthquake motions. Significant improvements of the control efficiency and a reduction of the TMD displacement at a much reduced mass ratio are shown to be achieved in the proposed SMA-TMD over those in the linear TMD.

095017

, and

This paper proposes a substructure isolation method, which uses time series of measured local response for online monitoring of substructures. The proposed monitoring process consists of two key steps: construction of the isolated substructure, and its identification. The isolated substructure is an independent virtual structure, which is numerically isolated from the global structure by placing virtual supports on the interface. First, the isolated substructure is constructed by a specific linear combination of time series of its measured local responses. Then, the isolated substructure is identified using its local natural frequencies extracted from the combined responses. The substructure is assumed to be linear; the outside part of the global structure can have any characteristics. The method has no requirements on the initial state of the structure, and so the process can be carried out repetitively for online monitoring. Online isolation and monitoring is illustrated in a numerical example with a frame model, and then verified in a cantilever beam experiment.

095018

, and

The stress intensity factor (SIF) of a multi-material magnetoelectroelastic wedge in anti-plane deformation is analytically determined by the symplectic method. The Lagrangian equations in configuration variables alone are transformed to Hamiltonian equations in dual variables (configuration and momentum) which allow the use of the method of separation of variables. The solutions of the Hamiltonian equations can be expanded analytically in terms of the symplectic eigenfunctions with coefficients to be determined by the boundary conditions. For the wedge problem, the pairs of anti-plane displacements and shear stresses, electric fields and electric displacements, and magnetic fields and magnetic inductions are proved to be the dual (momentum) variables of the configuration variables. The singularity orders depend directly on the first few eigenvalues whose real parts are less than one but greater than zero. Numerical results for various conditions show the variations of the singularity orders. In particular, special behaviors of the order of the singularity for some special wedge angles are noted.

095019

and

This paper focuses on energy harvesting from traffic-induced vibrations in bridges. Using a pre-stressed concrete highway bridge as a case study, in situ vibration measurements are presented and analysed. From these results, a prototype of a cantilever piezoelectric harvester is designed, tested and modelled. Even though the considered bridge vibrations are characterized by small amplitude and a low frequency (i.e. below 15 Hz), it is shown that mean power of the order of 0.03 mW can be produced, with a controlled voltage between 1.8 and 3.6 V. A simple model is proposed for theoretical prediction of the delivered power in terms of traffic intensity. This model shows good agreement with the experimental results and leads to a simple but effective design rule for piezoelectric harvesters to be used on bridges.

095020

, , and

Inspired by its controllable and field-dependent stiffness/damping properties, there has been increasing research and development of magnetorheological elastomer (MRE) for mitigation of unwanted structural or machinery vibrations using MRE isolators or absorbers. Recently, a breakthrough pilot research on the development of a highly innovative prototype adaptive MRE base isolator, with the ability for real-time adaptive control of base isolated structures against various types of earthquakes including near- or far-fault earthquakes, has been reported by the authors. As a further effort to improve the proposed MRE adaptive base isolator and to address some of the shortcomings and challenges, this paper presents systematic investigations on the development of a new highly adjustable MRE base isolator, including experimental testing and characterization of the new isolator. A soft MR elastomer has been designed, fabricated and incorporated in the laminated structure of the new MRE base isolator, which aims to obtain a highly adjustable shear modulus under a medium level of magnetic field. Comprehensive static and dynamic testing was conducted on this new adaptive MRE base isolator to examine its characteristics and evaluate its performance. The experimental results show that this new MRE base isolator can remarkably change the lateral stiffness of the isolator up to 1630% under a medium level of magnetic field. Such highly adjustable MRE base isolator makes the design and implementation of truly real-time adaptive (e.g. semi-active or smart passive) seismic isolation systems become feasible.

095021

, and

The effect of functional graded piezoelectric materials on the propagation of thickness-twist waves is investigated through equations of the linear theory of piezoelectricity. The elastic and piezoelectric coefficients, dielectric permittivity, and mass density are assumed to change in a linear form but with different graded parameters along the wave propagation direction. We employ the power-series technique to solve the governing differential equations with variable coefficients attributed to the different graded parameters and prove the correction and convergence of this method. As a special case, the functional graded middle layer resulting from piezoelectric damage and material bonding is investigated. Piezoelectric damaged material can facilitate energy trapping, which is impossible in perfect materials. The increase in the damaged length and the reduction in the piezoelectric coefficient decrease the resonance frequency but increase the number of modes. Higher modes of thickness-twist waves appear periodically along the damaged length. Moreover, the displacement of the center of the damaged portion is neither symmetric nor anti-symmetric, unlike the non-graded plate. The conclusions are theoretically and practically significant for wave devices.

095022

, , , , and

Condition identification of mechanical equipment from vibration measurement data is significant to avoid economic loss caused by unscheduled breakdowns and catastrophic accidents. However, this task still faces challenges due to the complexity of equipment and the harsh environment. This paper provides a possibility for equipment condition identification by proposing a method called customized lifting multiwavelet packet information entropy. Benefiting from the properties of multi-resolution analysis and multiple wavelet basis functions, the multiwavelet method has advantages in characterizing non-stationary vibration signals. In order to realize the accurate detection and identification of the condition features, a customized lifting multiwavelet packet is constructed via a multiwavelet lifting scheme. Then the vibration signal from the mechanical equipment is processed by the customized lifting multiwavelet packet transform. The relative energy in each frequency band of the multiwavelet packet transform coefficients that equals a percentage of the whole signal energy is taken as the probability. The normalized information entropy is obtained based on the relative energy to describe the condition of a mechanical system. The proposed method is applied to the condition identification of a rolling mill and a demountable disk–drum aero-engine. The results support the feasibility of the proposed method in equipment condition identification.

095023

, and

An energy harvester comprising a cantilever attached to piezoelectric patches and a proof mass is developed for wind energy harvesting, from a cross wind-induced vibration of the cantilever, by the electromechanical coupling effect of piezoelectric materials. The vibration of the cantilever under the cross wind is induced by the air pressure owing to a vortex shedding phenomenon that occurs on the leeward side of the cantilever. To describe the energy harvesting process, a theoretical model considering the cross wind-induced vibration on the piezoelectric coupled cantilever energy harvester is developed, to calculate the charge and the voltage from the harvester. The influences of the length and location of the piezoelectric patches as well as the proof mass on the generated electric power are investigated. Results show that the total generated electric power can be as high as 2 W when the resonant frequency of the cantilever harvester is close to the vortex shedding frequency. Moreover, a value of total generated electric power up to 1.02 W can be practically realized for a cross wind with a variable wind velocity of 9–10 m s−1 by a harvester with a length of 1.2 m. This research facilitates an effective and compact wind energy harvesting device.

095024

, , and

The problem of energy harvesting using piezoelectric transducers for pavement system applications is formulated with a focus on moving vehicle excitations. The pavement behavior is described by an infinite Bernoulli–Euler beam subjected to a moving line load and resting on a Winkler foundation. A closed-form dynamic response of the pavement is determined by a Fourier transform and the residue theorem. The voltage and power outputs of the piezoelectric harvester embedded in the pavements are then obtained by the direct piezoelectric effect. A comprehensive parametric study is conducted to show the effect of damping, the Winkler modulus, and the velocity of moving vehicles on the voltage and power output of the piezoelectric harvester. It is found that the output increases sharply when the velocity of the vehicle is close to the so-called critical velocity.

095025

, , , , and

This paper presents the development and wind tunnel evaluation of a shape memory alloy (SMA) based smart trim tab for a typical two seater civil aircraft. The SMA actuator was housed in the port side of the elevator for the purpose of actuating the trim tab. Wind tunnel tests were conducted on a full scale horizontal tail model with elevator and trim tab at free stream speeds of 25, 35 and 45 m s−1, and also for a number of deflections of the elevator (30° up, 0° neutral and 25° down) and trim tab (11° and 21° up and 15° and 31° down). To measure the hinge moment experienced by the trim tab under various test conditions, two miniaturized balances were designed and fabricated. A gain scheduled proportional integral (GSPI) controller was developed to control the SMA actuated smart trim tab. It was confirmed during the tests that the trim tab could be controlled at the desired position against the aerodynamic loads acting on it for the various test conditions.

095026

, , and

The cell-based smoothed discrete shear gap method (CS-FEM-DSG3) using three-node triangular elements was recently proposed to improve the performance of the discrete shear gap method (DSG3) for static and free vibration analyses of isotropic Mindlin plates. In this paper, the CS-FEM-DSG3 is further extended for static and free vibration analyses and dynamic control of composite plates integrated with piezoelectric sensors and actuators. In the piezoelectric composite plates, the electric potential is assumed to be a linear function through the thickness of each piezoelectric sublayer. A displacement and velocity feedback control algorithm is used for active control of the static deflection and the dynamic response of the plates through closed loop control with bonded or embedded distributed piezoelectric sensors and actuators. The accuracy and reliability of the proposed method is verified by comparing its numerical solutions with those of other available numerical results.

095027

, , , and

Ionic polymer–metal composite (IPMC), also called artificial muscle, is an EAP material which can generate a relatively large deformation with a low driving voltage (generally less than 5 V). Like other EAP materials, IPMC possesses strong nonlinear properties, which can be described as a hybrid of back-relaxation (BR) and hysteresis characteristics, which also vary with water content, environmental temperature and even the usage consumption. Nowadays, many control approaches have been developed to tune the IPMC actuators, among which adaptive methods show a particular striking performance. To deal with IPMCs' nonlinear problem, this paper represents a robust discrete adaptive inverse (AI) control approach, which employs an on-line identification technique based on the BR operator and Prandtl–Ishlinskii (PI) hysteresis operator hybrid model estimation method. Here the newly formed control approach is called discrete adaptive sliding-mode-like control (DASMLC) due to the similarity of its design method to that of a sliding mode controller. The weighted least mean squares (WLMS) identification method was employed to estimate the hybrid IPMC model because of its advantage of insensitivity to environmental noise. Experiments with the DASMLC approach and a conventional PID controller were carried out to compare and demonstrate the proposed controller's better performance.

095028

, and

Embedded systems have decreased in size and increased in capability; however, small-scale energy storage technologies still significantly limit these advances. Energy neutral operation using small-scale energy harvesting technologies would allow for longer device operation times and smaller energy storage masses. Vibration energy harvesting is an attractive method due to the prevalence of energy sources in many environments. Losses in efficiency due to AC–DC rectification and conditioning circuits limit its application. This work presents a low-loss hybrid rectification technique for piezoelectric vibration energy harvesting using magnetically actuated reed switches and a passive semiconductor full-bridge rectifier. This method shows the capability to have higher efficiency levels and the rectification of low-voltage harvesters without the need for active electrical components. A theoretical model shows that the hybrid rectification technique performance is highly dependent on the proximity delay and the hysteresis behavior of the reed switches. Experimental results validate the model and support the hypothesis of increased performance using the hybrid rectification technique.

095029

and

We investigate the effects of aerodynamic loads on the performance of wing-based piezoaeroelastic energy harvesters. The rigid airfoil consists of pitch and plunge degrees of freedom supported by flexural and torsional springs with a piezoelectric coupling attached to the plunge degree of freedom. The effects of aerodynamic loads are investigated by considering a camber in the airfoil. A two-dimensional unsteady vortex-lattice method (UVLM) is used to model the unsteady aerodynamic loads. An iterative scheme based on Hamming's fourth-order predictor–corrector method is employed to solve the governing equations simultaneously and interactively. The effects of varying the camber, its location, and the nonlinear torsional spring coefficient are determined. The results show that, for small values of the camber location, the flutter speed changes greatly on increasing the camber of the airfoil. On the other hand, for large values of the camber location, the variation of the flutter speed when changing the camber is very negligible. We demonstrate that the symmetric airfoil case is the best configuration to design enhanced wing-based piezoaeroelastic energy harvesters. Furthermore, the results show that an increase in the camber results in a decrease in the level of the harvested power. For cambered airfoils, we demonstrate that an increase in the camber location leads to an increase in the level of the harvested power. The results show that an increase in the airfoil camber delays the appearance of a secondary Hopf bifurcation.

Editorial

094001

, , , , , , , and

The fifth annual meeting of the ASME/AIAA Smart Materials, Adaptive Structures and Intelligent Systems Conference (SMASIS) was held in beautiful Stone Mountain near Atlanta, GA. It is the conference's objective to provide an up-to-date overview of research trends in the entire field of smart materials systems. This was reflected in keynote speeches by Professor Eduard Arzt (Institute of New Materials and Saarland University, Saarbrücken, Germany) on 'Micro-patterned artificial 'Gecko' surfaces: a path to switchable adhesive function', by Professor Ray H Baughman (The Alan G MacDiarmid NanoTech Institute, University of Texas at Dallas) on 'The diverse and growing family of carbon nanotube and related artificial muscles', and by Professor Richard James (University of Minnesota) on 'The direct conversion of heat to electricity using multiferroic materials with phase transformations'.

SMASIS 2012 was divided into eight symposia which span basic research, applied technological design and development, and industrial and governmental integrated system and application demonstrations.

• SYMP 1. Development and characterization of multifunctional materials.

• SYMP 2. Mechanics and behavior of active materials.

• SYMP 3. Modeling, simulation and control of adaptive systems.

• SYMP 4. Integrated system design and implementation.

• SYMP 5. Structural health monitoring/NDE.

• SYMP 6. Bio-inspired materials and systems.

• SYMP 7. Energy harvesting.

• SYMP 8. Structural and materials logic.

This year we were particularly excited to introduce a new symposium on energy harvesting, which has quickly matured from a special track in previous years to an independent symposium for the first time. The subject cuts across fields by studying different materials, ranging from piezoelectrics to electroactive polymers, as well as by emphasizing different energy sources from wind to waves and ambient vibrations. Modeling, experimental studies, and technology applications all belong to the symposium topics.

In addition, the conference also featured a special symposium dedicated to DARPA's structural and materials/logic program. The program seeks to enable structural systems to adapt to varying loads and simultaneously exhibit both high stiffness and high damping.

Authors of selected papers in the materials areas (symposia 1, 2, and 6) as well as energy harvesting (symposium 7) were invited to write a full journal article on their presentation topic for publication in this special issue of Smart Materials and Structures . This collection of papers demonstrates the exceptional quality and originality of the conference presentations. We are very appreciative of their efforts to produce this collection of highly relevant articles on smart materials.

Special Issue Papers

Multifunctional materials

094002

, , and

In this contribution we present a comprehensive theoretical and experimental description of an active shape memory alloy (SMA) fiber reinforced composite (FRP) hybrid structure. The major influences on actuation performance arising from variations in the design and manufacturing process are discussed, utilizing a new phenomenological model to describe the actuating SMA material. The different material properties for the activated, respective the unactivated, SMA as well as the influence of different loading conditions or pre-treatment of the material are taken into account in this model. To validate our material model we performed new actuation experiments with an exemplary SMA–FRP structure, which we compared to finite element (FE) simulation results. Our FE-model is based on a material model for the actuating SMA elements derived from experiments and data on the actual microscopic geometry of the hybrid composite. Therefore it is able to predict very precisely the actuation behavior of a typical FRP structure for industrial use cases: a thin walled CFRP sheet with SMA wires attached to the top for performing a bending motion with a maximum deflection of approx. 25% of its length.

094003

, , and

Experimental investigations of highly vertically aligned carbon nanotubes (CNTs), also known as CNT-arrays, are the main focus of this paper. The free strain as result of an active material behavior is analyzed via a novel experimental setup. Previous test experiences of papers made of randomly oriented CNTs, also called Bucky-papers, reveal comparably low free strain. The anisotropy of aligned CNTs promises better performance. Via synthesis techniques like chemical vapor deposition (CVD) or plasma enhanced CVD (PECVD), highly aligned arrays of multi-walled carbon nanotubes (MWCNTs) are synthesized. Two different types of CNT-arrays are analyzed, morphologically first, and optically tested for their active characteristics afterwards. One type of the analyzed arrays features tube lengths of 750–2000 μm with a large variety of diameters between 20 and 50 nm and a wave-like CNT-shape. The second type features a maximum, almost uniform, length of 12 μm and a constant diameter of 50 nm. Different CNT-lengths and array types are tested due to their active behavior. As result of the presented tests, it is reported that the quality of orientation is the most decisive property for excellent active behavior. Due to their alignment, CNT-arrays feature the opportunity to clarify the actuation mechanism of architectures made of CNTs.

094004

and

As new compositions of relaxor ferroelectric single crystals are developed, the full thermo-electro-mechanical behavior of each composition must be characterized to determine the linear coefficients as a function of stress, electric field and temperature, and the limitations on linear behavior imposed by field driven phase transformations. This characterization currently requires two crystal cuts, [001] and [110], each subjected to five electric field–electric displacement cycles at each of five different stress levels and five stress–strain cycles at each of five different electric field levels repeated at five temperatures. A new approach to characterizing the linear piezoelectric behavior and the nonlinear ferroelectric phase transformation behavior is proposed based on a combination of a work–energy based model of the driving forces for the phase transformation together with electric field loading while monitoring strain and electric displacement, and a measurement of mechanical compliance. The procedure for [110] single crystals is presented. [001] single crystals require a different approach due to the direction of loads driving the phase transformation.

094005

and

Following a guest diffusion approach, the surface of a shape memory poly(ester urethane) (PEU) was either black or blue colored. Bowtie-shaped quick response (QR) code carriers were then obtained from laser engraving and cutting, before thermo-mechanical functionalization (programming) was applied to stabilize the PEU in a thermo-responsive (switchable) state. The stability of the dye within the polymer surface and long-term functionality of the polymer were investigated against UVA and hydrolytic ageing. Spectrophotometric investigations verified UVA ageing-related color shifts from black to yellow-brownish and blue to petrol-greenish whereas hydrolytically aged samples changed from black to greenish and blue to light blue. In the case of UVA ageing, color changes were accompanied by dye decolorization, whereas hydrolytic ageing led to contrast declines due to dye diffusion. The Michelson contrast could be identified as an effective tool to follow ageing-related contrast changes between surface-dyed and laser-ablated (undyed) polymer regions. As soon as the Michelson contrast fell below a crucial value of 0.1 due to ageing, the QR code was no longer decipherable with a scanning device. Remarkably, the PEU information carrier base material could even then be adequately fixed and recovered. Hence, the surface contrast turned out to be the decisive parameter for QR code carrier applicability.

Active materials

094006

, , and

As typically utilized in applications, a shape memory alloy (SMA) actuator operates under a large number of thermomechanical cycles, hence the importance of accounting for the cyclic behavior characteristics in modeling and numerical simulation of these actuators. To this end, the present work is focused on the characterization of the cyclic, evolutionary behavior of binary 55NiTi using a newly developed, multi-axial, material-modeling framework and its finite element analysis (FEA) implementation for use in the simulations of SMA actuators. In particular, two different geometric configurations of four- and two-coil helical springs subjected to axial end-forces are investigated under the effect of a large number of thermal cycles leading to the saturated deformation state of the coils. In addition, two different boundary conditions were examined, corresponding to: (a) the loading end cross section assumed to be free-to-twist, and (b) the loading end cross section assumed to be restrained against twist rotation. The study has led to the following five important conclusions: (i) the states of stresses and strains in the coils exhibited marked spatial non-homogeneities, both along the length as well as the cross section of the wires; (ii) the cyclic deformation response of the coils exhibits a similar evolutionary character to that of the 55NiTi material when tested under simple isobaric tensile stress conditions; (iii) the end boundary conditions affect the evolution of the deformation response; (iv) the magnitudes of the evolving nonlinear deformation states (i.e., axial displacements on the martensite and austenite sides, as well as the actuation displacement) were found to be proportional to the number of coils in an essentially linear manner, and (v) the change in coil diameter, while maintaining the pitch height, wire diameter and the number of coils fixed, has a significant effect on the response of the helical spring, both with regard to the resulting stress state and the evolutionary axial displacement behavior during the thermal cycles.

094007

, , and

Analytical solutions are derived for the isothermal pseudoelastic response of a shape memory alloy (SMA) thick-walled cylinder subjected to internal pressure. The Tresca transformation criterion and linear hardening are used. Equations are given for the radial and circumferential stresses, transformation strains and radial displacement at various steps of loading and unloading. A structural pressure–temperature phase diagram is provided for the cylinder, analogous to the stress–temperature phase diagram of SMA materials. Pressurization of an initially 100% austenitic cylinder causes the martensite to initially form at the inner radius. For a relatively thin-walled cylinder the transformation front reaches the outer radius before the transformation has completed at the inner radius, whereas for a thick-walled cylinder the transformation completes at the inner radius while there is still an outer ring of 100% austenite. For a given OD/ID ratio, a critical temperature is derived that stipulates which of these two cases occurs. An analytical result is provided for the pressure that will cause the transformation to complete at the inner radius. During unloading, the reverse transformation can start at either the inner or the outer surface of the cylinder and can propagate outward and then reverse its direction and propagate back to the inner surface. The effect of martensitic transformation on the structural yield strength due to plasticity is also investigated and it is shown that the pressure required to initiate yielding can be substantially decreased or increased depending on the temperature and the state of transformation achieved, even though the yield stress of the material is independent of temperature. Finally, the effectiveness of the Tresca transformation criterion to derive closed-form solutions for this problem is demonstrated by comparing with finite element solutions using the von Mises theory.

094008

, and

Origami engineering, which is the practice of creating useful three-dimensional structures through folding and fold-like operations applied to initially two-dimensional entities, has the potential to impact several areas of design and manufacturing. In some instances, however, it may be impractical to apply external manipulations to produce the desired folds (e.g., as in remote applications such as space systems). In such cases, self-folding capabilities are valuable. A self-folding material or material system is one that can perform folding operations without manipulations from external forces. This work considers a concept for a self-folding material system. The system extends the 'programmable matter' concept and consists of an active, self-morphing sheet composed of two meshes of thermally actuated shape memory alloy (SMA) wire separated by a compliant passive layer. The geometric and power input parameters of the self-folding sheet are optimized to achieve the tightest local fold possible subject to stress and temperature constraints. The sheet folding performance considering folds at different angles relative to the orientation of the wire mesh is also analyzed. The optimization results show that a relatively low elastomer thickness is preferable to generate the tightest fold possible. The results also show that the self-folding sheet does not require large power inputs to achieve an optimal folding performance. It was shown that the self-folding sheet is capable of creating similar quality folds at different orientations.

094009

, and

A three-dimensional constitutive model for shape memory alloy (SMA) behaviors, implemented in an Abaqus user material subroutine, was used to examine localization of elastic and phase transformation fields due to the presence of structured arrays of holes in a NiTi plate. Simulations of the superelastic responses of these structures are presented and compared with a monolithic specimen. Localization of elastic fields is quantified by examining maximum von Mises stress values, transformation heterogeneities are observed through distributions of martensite volume fraction at different time steps of the simulations, and maximum principal strain values in the specimens show the combined effect of transformation and elasticity. The results provide fundamental understanding of the role of individual and coupling of individual pores in SMA structures and demonstrate the need for 3D modeling to optimize structure performance.

094010

, and

No-load losses within brakes and clutches based on magnetorheological fluids are unavoidable and represent a major barrier towards their wide-spread commercial adoption. Completely torque free rotation is not yet possible due to persistent fluid contact within the shear gap. In this paper, a novel concept is presented that facilitates the controlled movement of the magnetorheological fluid from an active, torque-transmitting region into an inactive region of the shear gap. This concept enables complete decoupling of the fluid engaging surfaces such that viscous drag torque can be eliminated. In order to achieve the desired effect, motion in the magnetorheological fluid is induced by magnetic forces acting on the fluid, which requires an appropriate magnetic circuit design. In this investigation, we propose a methodology to determine suitable magnetic circuit designs with well-defined fail-safe behavior. The magnetically induced motion of magnetorheological fluids is modeled by the use of the Kelvin body force, and a multi-physics domain simulation is performed to elucidate various transitions between an engaged and disengaged operating mode. The modeling approach is validated by captured high-speed video frames which show the induced motion of the magnetorheological fluid due to the magnetic field. Finally, measurements performed with a prototype actuator prove that the induced viscous drag torque can be reduced significantly by the proposed magnetic fluid control methodology.

094011

, , and

The switching characteristics of BaTiO3 single crystals subjected to uniaxial electromechanical loading in the non-polar [110] direction at room temperature and 55 ° C were investigated. Polarization and strain hysteresis measurements in the [110] direction revealed that under the combination of large in-plane switching coercivities and a strong out-of-plane depolarization field (induced by the shape irregularity and large unshielded surfaces of the crystal sample), strain-inducing 90° in-plane to out-of-plane (or vice versa) switching was the dominant switching behavior even in the absence of mechanical bias. By lowering the in-plane switching coercivities, which was achieved by increasing the loading temperature from room temperature to 55 ° C, a contrasting non-strain-inducing switching behavior characterized by 90° and/or 180° switches between the in-plane variants was observed instead. The contrasting switching behavior at two different temperatures indicates that apart from the bias stress magnitude, the combined effect of the depolarization field and switching coercivity is another critical factor governing the strain actuation of BaTiO3 single crystals. The [110] electromechanical loading responses reveal the possibility of increasing the strain capacity of BaTiO3 single crystals by introducing accompanying depolarization fields which promote strain-inducing 90° switching. Such an approach could be potentially useful when bias stress-activated ferroelastic switching is not attainable.

094012

, and

Shape memory alloy (SMA) wires are attractive for actuation systems due to their high energy density, light weight and silent operation. In addition, they feature self-sensing capabilities by relating electrical resistance measurements to strain changes. In real world applications SMAs typically operate in non-ambient air and it is imperative to understand an actuator's behavior under varying convective cooling conditions, especially for smaller diameter wires, where convective effects are amplified. This paper shows that the multi-functionality of SMA actuators can be further extended by related heating power to convective air speed. It investigates the relationship between the normalized excess power needed and corresponding airspeed under controlled, laminar airflow patterns in a small-scale wind tunnel. For each experiment, airflow through the wind tunnel, strain in the SMA wire, and power supplied to the SMA wire were controlled, while the stress and resistance of the wire were measured. The ability to understand and predict an SMA wire's behavior under various external airflows will aid in the design and understanding of future SMA actuated structures, such as micro-air vehicles, and shows that SMAs can function as self-sensing actuators and airspeed sensors.

094013

, , and

Azobenzene liquid crystal polymer networks (azo-LCNs) undergo a complex light-driven molecular conformation change of the azobenzene chromophore which imparts a macroscopic shape change within a glassy polymer network. To better understand molecular conformational changes which underlie macroscopic polymer deformation, we have collected solid-state nuclear magnetic resonance (NMR) data on 19F fluorinated side-chain azo-LCNs using an in situ visible light (450–458 nm) LED light source. We illustrate measurable changes in 19F NMR lineshapes under light irradiation, indicating that conformational changes can be probed by NMR. The measured effects of light on NMR spectra are also found to be reversible upon removal of the light source. We further show that sample heating does not affect azobenzene isomerization through analysis of temperature-dependent magic-angle-spinning NMR lineshapes. These results illustrate a narrowing of the lineshapes, but no change in the NMR peak positions, indicating that heating from 30 and 60 ° C affects molecular dynamics but does not change the azobenzene conformation. In addition to NMR data, benchtop photomechanical uni-axial measurements are taken over a temperature range from 23 to 60 ° C. Samples with the fluorinated side-chain azo-LCNs are compared to samples composed only of non-fluorinated main-chain azo-LCN composition. Similar stress relaxation was observed in both compositions under high pre-stretch. The amount of stress relaxation was found to depend on the pre-stretch, the ambient temperature, and the polarization of light.

094014

and

This work was motivated by the observation that a small percentage of the ceramic lead zirconate titanate (PZT) parts in a device application, one that requires an electrode pattern on the PZT surface, developed fatigue cracks at the edges of the electrodes; yet all of the parts were subjected to similar loading. To obtain additional information on the fracture behavior of this material, similar specimens were run at higher voltage in the laboratory under a microscope to observe the initiation and growth of the fatigue cracks. A sequence of experiments was next performed to determine whether there were fracture toughness variations that depended on material processing. Plates were cut from a single bar in different locations and the Vickers indentation technique was used to measure the relative fracture toughness as a function of position along the bar. Small variations in toughness were found, that may account for some of the devices developing fatigue cracks and not others. Fracture toughness was measured next as a function of electric field. The surface crack in flexure technique was modified to apply an electric field perpendicular to a crack. The results indicate that the fracture toughness drops under a positive electric field and increases under a negative electric field that is less than the coercive field, but as the negative coercive field is approached the fracture toughness drops. Examination of the fracture surfaces using an optical microscope and a surface profilometer reveal the initial indentation crack shape and (although less accurately) the crack shape and size at the transition from stable to unstable growth. These results are discussed in terms of a ferroelastic toughening mechanism that is dependent on electric field.

094015

, and

Dielectric electro-active polymers (DEAPs) have become attractive materials for various actuation and sensing applications due to their high energy and power density, high efficiency, light weight, and fast response speed. However, commercial development has been hindered due to a variety of constraints such as reliability, non-linear behavior, cost of driving electronics, and form factor requirements. This paper presents the systematic development from laboratory concept to commercial readiness of a novel pressure sensing system using a DEAP membrane. The pressure sensing system was designed for in-line pressure measurements for low pressure applications such as health systems monitoring. A first generation sensor was designed, built and tested with a focus on the qualitative capabilities of EAP membranes as sensors. Experimental measurements were conducted that demonstrated the capability of the sensor to output a voltage signal proportional to a changing pressure. Several undesirable characteristics were observed during these initial tests such as strong hysteresis, non-linearity, very limited pressure range, and low fatigue life. A second generation prototype was then designed to remove or compensate for these undesirable characteristics. This prototype was then built and tested. The new design showed an almost complete removal of hysteretic non-linear effects and was capable of operating at 10 ×  the pressure range of the initial generation. This new design is the framework for a novel DEAP based pressure sensor ready for commercial applications.

094016

, and

This paper presents an experimental comparison of three different biasing elements utilized to produce out-of-plane actuation for a diaphragm dielectric electro-active polymer (DEAP). A hanging mass, a linear coil spring, and a nonlinear (bistable) mechanism are individually paired with an unloaded DEAP actuator. High voltage (2.5 kV) is applied to the DEAP and the out-of-plane stroke of the DEAP is measured. The actuator stroke is notably different for each bias element. Results show that as the bias element stiffness increases, the actuator stroke decreases. However, the bistable element, when coupled with the DEAP, demonstrated improved actuation in a specific range of DEAP pre-deflection. Not only was the stroke larger for this case, the stroke also did not attenuate at higher voltage frequencies as much as the linear coil spring bias elements. This study demonstrates a promising method for obtaining high performance DEAP actuators in the future.

094017

, , and

This work is focused on the characterization of the cyclic response of the 55NiTi polycrystalline material system using a recently formulated, multimechanism-based, modeling framework. It has a number of significant contributions. First, it presents a comprehensive characterization of such a complex material system under broad thermo-mechanical loading conditions in isobaric experiments that cover: (a) the entire relevant stress range from 10 to 300 MPa, and (b) sufficient number of thermal cycles to enable the investigation of the details of the evolution of the cyclic strain-versus-temperature hysteresis loops. Second, the detailed comparisons presented for the model results and the experimental measurements provide the necessary validation of the modeling capabilities of the multimechanism framework. Third, specific plots are given detailing the variations with thermal cycling of the internal variables associated with each of the individual inelastic mechanisms. Fourth, an anatomical discussion details the interplay between the internal mechanisms to describe the material behavior within all the important response characteristic regions, thus providing a convenient means to complement the theoretical concepts in the mathematical approach. Given the comprehensive nature of this model, and its successful experimental validation under a wide range of conditions, it is believed that the model is capable of analyzing 55NiTi actuators. It is also emphasized that the insights provided in this work will carry forth to characterization of other SMA material systems.

Bio-inspired materials

094018

, , and

A device that can provide articulation to surgical tool tips is needed in natural orifice transluminal endoscopy surgery (NOTES). In this paper, we propose a compliant articulation structure that uses superelastic NiTiNOL to achieve a large deflection angle and force in a compact size. Six geometric parameters are used to define this structure, and constraints based on the fabrication process are imposed. Using finite element analysis, a family of designs is evaluated in terms of the free deflection angle and blocked force. The same family of designs is evaluated for both NiTiNOL and stainless steel. It can be seen that significant benefits are observed when using NiTiNOL compared to 316 stainless steel; a maximum free deflection angle of 64.8° and maximum blocked force of 24.7 N are predicted. The structures are designed to avoid stress concentrations, and design guidelines are recommended. The meso-scale articulation structure is fabricated using both a Coherent Avia Q-switched, 355 nm laser and a Myachi Unitek 200 W single mode pulsed fiber laser with active water cooling. Select fabricated structures are then tested to validate the finite element models.

094019

, , and

A novel contact aided compliant mechanism called bend-and-sweep compliant mechanism is presented in this paper. This mechanism has nonlinear stiffness properties in two orthogonal directions. An angled compliant joint (ACJ) is the fundamental element of this mechanism. Geometric parameters of ACJs determine the stiffness of the compliant mechanism. This paper presents the design and optimization of bend-and-sweep compliant mechanism. A multi-objective optimization problem was formulated for design optimization of the bend-and-sweep compliant mechanism. The objectives of the optimization problem were to maximize or minimize the bending and sweep displacements, depending on the situation, while minimizing the von Mises stress and mass of each mechanism. This optimization problem was solved using NSGA-II (a genetic algorithm). The results of this optimization for a single ACJ during upstroke and downstroke are presented in this paper. Results of two different loading conditions used during optimization of a single ACJ for upstroke are presented. Finally, optimization results comparing the performance of compliant mechanisms with one and two ACJs are also presented. It can be inferred from these results that the number of ACJs and the design of each ACJ determines the stiffness of the bend-and-sweep compliant mechanism. These mechanisms can be used in various applications. The goal of this research is to improve the performance of ornithopters by passively morphing their wings. In order to achieve a bio-inspired wing gait called continuous vortex gait, the wings of the ornithopter need to bend, and sweep simultaneously. This can be achieved by inserting the bend-and-sweep compliant mechanism into the leading edge wing spar of the ornithopters.

094020

, , and

Cylindrical soft actuators efficiently convert fluid pressure into mechanical energy and thus offer excellent force-to-weight ratios while behaving similar to biological muscle. McKibben-like rubber muscle actuators (RMAs) were embedded into neat elastomer and act as shape-changing panels. The effect of actuator spacing and modeling methods on the performance of these panels was investigated. Simulations from nonlinear finite element models were compared with results from test panels containing four RMAs that were spaced 0, 1/2, 1, and 1.3 RMA diameters apart.

Nonlinear 'laminated plate' and 'rod & plate' finite element (FE) models of individual (non-embedded) RMAs and panels with embedded RMAs were developed. Due to model complexity and resource limitations, several simplified 2D and 3D FE model types, including a 3D 'Unit Cell' were created. After subtracting the 'activation pressure' needed to initiate contraction, all the models for the individual actuators produced forces consistent with experimental values, but only the more resource-intensive rod & plate models replicated fiber/braid re-orientation and produced more realistic values for actuator contraction. For panel models, the Full 3D rod & plate model appeared to be the most accurate for panel contraction and force, but was not completed for all configurations due to resource limitations. Most embedded panel FE models produced maximum panel actuator force and maximum contraction when the embedded actuators are spaced between 1/2 and 1 diameter apart.

Seven panels with embedded RMAs were experimentally fabricated and tested. Panel tests confirmed that maximum or optimal performance occurs when the RMAs are spaced between 1/2 and 1 diameter apart. The tested actuator force was fairly constant in this range, suggesting that minor design or manufacturing differences may not significantly affect panel performance. However, the amount of axial force and contraction decreases significantly at greater than optimal spacing.

This multi-faceted work provides useful design, simulation fabrication, and test characteristics for shape-adaptive panels. Bending panels were demonstrated but not modeled. Developers of future shape-adaptive air vehicles have been provided with additional simulation and design tools.

094021

, , , and

A jellyfish-inspired jet propulsion robot (JetPRo) is designed, fabricated, and characterized with the objective of creating a fast-swimming uncrewed undersea vehicle. JetPRo measures 7.9 cm in height, 5.7 cm in diameter and is designed to mimic the proficient jetting propulsion mechanism used by the hydromedusa Sarsia tubulosa, which measures approximately 1 cm in diameter. In order to achieve the uniform-bell contraction used by S. tubulosa, we develop a novel circumferential actuation technique based on a mechanical iris diaphragm. When triggered, this mechanism induces a volumetric change of a deformable silicone cavity to expel a jet of fluid and produces positive thrust. A theoretical jetting model is used to optimize JetPRo's gait for maximum steady-state swimming velocity, a result achieved by minimizing the timing between the contraction and relaxation phases. We validate this finding empirically and quantify the swimming performance of the robot using video tracking and time resolved digital particle image velocimetry. JetPRo was able to produce discrete vortex rings shed before pinch off and swim upwards with a maximum steady-state velocity of 11.6 cm s−1, outperforming current state-of-the-art robotic jellyfish in velocity as well as diameter-normalized velocity.

094022

, , and

A biologically inspired pneumatic pressure source was designed and sized to supply high pressure CO2(g) to power a rubber muscle actuator. The enzyme urease served to catalyze the hydrolysis of urea, producing CO2(g) that flowed into the actuator. The actuator's power envelope was quantified by testing actuator response on a custom-built linear-motion rig. Reaction kinetics and available work density were determined by replacing the actuator with a double-action piston and measuring volumetric gas generation against a fixed pressure on the opposing piston. Under the conditions investigated, urease catalyzed the generation of up to 0.81 MPa (117 psi) of CO2(g) in the reactor headspace within 18 min, and the evolved gas produced a maximum work density of 0.65 J ml−1.

094023

The droplet interface bilayer (DIB) is a simple technique for constructing a stable lipid bilayer at the interface of two lipid-encased water droplets submerged in oil. Networks of DIBs formed by connecting more than two droplets constitute a new form of modular biomolecular smart material, where the transduction properties of a single lipid bilayer can affect the actions performed at other interface bilayers in the network via diffusion through the aqueous environments of shared droplet connections. The passive electrical properties of a lipid bilayer and the arrangement of droplets that determine the paths for transport in the network require specific electrical control to stimulate and interrogate each bilayer. Here, we explore the use of virtual ground for electrodes inserted into specific droplets in the network and employ a multichannel patch clamp amplifier to characterize bilayer formation and ion-channel activity in a serial DIB array. Analysis of serial connections of DIBs is discussed to understand how assigning electrode connections to the measurement device can be used to measure activity across all lipid membranes within a network. Serial arrays of DIBs are assembled using the regulated attachment method within a multi-compartment flexible substrate, and wire-type electrodes inserted into each droplet compartment of the substrate enable the application of voltage and measurement of current in each droplet in the array.

Energy harvesting

094024

In order to develop self-powered wireless sensor nodes, many energy harvesting devices that are able to convert available ambient energy into electrical energy have been proposed in the literature. A promising technique, in terms of simplicity and high conversion efficiency, is the harvesting of ambient kinetic energy through piezoelectric materials. The aim of this work is to design and investigate the modal response and power output of a fractal-inspired, multi-frequency, piezoelectric energy converter. The converter is a square, thin sheet structure, characterized by a fractal geometry obtained through a pattern of cuts in the plate. There are two steps involved. First, a computational analysis of the converter is performed. Second, a physical prototype of the converter is built and its eigenfrequencies and power generation under different resistive loads are experimentally examined in the range from 0 to 120 Hz. The converter exhibits three eigenfrequencies and a good power output, particularly at the first eigenfrequency.

094025

and

This paper reports on the characterization of high-energy vibro-impacting regimes in a vibration energy harvester with softening Duffing nonlinearity, by mathematical modelling and numerical analysis with experimental validation. The harvester is implemented as a base excited permanent-magnet/ball-bearing arrangement, where oscillations by the ball-bearing induce a change in magnetic flux in a wire coil, which in turn generates a voltage. Symmetric rigid aluminum stops in the harvester structure restrain the amplitude of the ball-bearing motion (within gap Δ) and thus produce vibro-impact behaviour under certain operating conditions—leading to wideband operation. These operating conditions are analysed by means of an event-driven equation switching algorithm, implementing a base-driven Duffing oscillator with conditional hyster–Hertz impact mechanics. In considering the 'probability-of-existence' of impact regimes, predictions about the frequency bandwidth of the high-energy impact state are made and compared to the experimental prototype. A trade-off between operating bandwidth and output power is noted. For the non-optimized harvester arrangement examined in this paper, with a gap Δ = 14.7 mm the bandwidth was predicted to be ∼1.3 Hz, and was measured at 0.7 Hz with an output power of 7.4 mW rms. With a gap size Δ = 2.9 mm the bandwidth was predicted to be ∼7.2 Hz, and was measured at 6.1 Hz with an output power of 54 μW rms. The authors believe that the probability-of-existence approach may be useful for characterizing the conditions required for exciting high-energy states of other nonlinear vibration energy harvesting systems.

094026

, , and

This paper investigates the electrical response of a series connection of piezoelectric energy harvesters (PEHs) attached to various interface electronics, including standard and parallel-/series-SSHI (synchronized switch harvesting on inductor) circuits. In contrast to the case of parallel connection of multiple oscillators, the system response is determined by the matrix formulation of charging on a capacitance. In addition, the adoption of an equivalent impedance approach shows that the capacitance matrix can be explicitly expressed in terms of the relevant load impedance. A model problem is proposed for performance evaluation of harvested power under different choices of interface circuits. The result demonstrates that the parallel-SSHI array system exhibits higher power output with moderate bandwidth improvement, while the series-SSHI system delivers a pronounced wideband at the cost of peak harvested power. The standard array system shows a mild ability in power harvesting between these two SSHI systems. Finally, comparisons between the series and parallel connection of oscillators are made, showing the striking contrast of these two cases.

094027

, and

Vibration energy harvesting devices have shown potential applications to power many devices such as electronic self-sustainable units. Most traditional linear energy harvesters exploit the phenomenon of resonance to produce electric power. Nonlinear energy harvesters, however, present more interesting alternatives and there is potential for them to work well over relatively wider bandwidths due to characteristics such as bifurcation. The aim of this study is to introduce an alternative design to a nonlinear electromagnetic energy harvesting device to improve the power production of the unit. The configuration presented in the following work has demonstrated higher power efficiency over a wider range of frequencies compared to the previous design. The numerical power outputs for both designs are compared and validated against their experimental values. Finally, the validated numerical model is used to find the optimal design to produce the maximum power for the unit2.

094028

, and

Energy harvesting using dielectric elastomers is an upcoming possibility to convert ambient energy into electric energy. Published results for energy harvesting cycles deal with charging and discharging of the polymer during a constant stretch state. However, real applications feature a continuously changing stretch and thus the time frames of the charging- and discharging-intervals have a considerable influence on the amount of harvested energy. This paper presents the calculation of the optimal charging- and discharging-intervals to maximize the energy gain. For this purpose the authors investigate the physical model of a lossy generator to derive the converted energy as a function of the timing of the charging- and discharging-interval. The subsequent optimization results in an energy-optimal harvesting cycle that combines the fundamental harvesting cycles with constant electric field and constant charge. Finally, we present the achievable energy gain of this optimized harvesting cycle as well as control laws to realize the optimized harvesting cycle.

094029
The following article is Free article

Vibration energy harvesters are designed to gather parasitic energy from the motion of their host structures. In many germane scenarios, this motion is broadband; however, the preponderance of design criteria appearing in the literature for vibration energy harvesters considers sinusoidal base excitation at a single frequency. While this analysis often leads to analytical formulas for estimating power harvested, they fail to account for the contribution of multiple frequency components of the host motion and the excitation of higher vibration modes of the transducer. In this paper, an attempt is made to provide brief, analytical approximation of these additional factors. To wit, the single-mode, single-frequency power formula is extended to multi-frequency inputs and multiple modal excitations by matching each base acceleration frequency component to at most one mode of vibration whose half-power bandwidth that frequency falls within. Then, due to orthogonality, the expected power can be written as the sum of the contributions of the individual frequency components. To demonstrate the accuracy of this approximation, recorded acceleration signals from a car idling and a person walking are used as inputs, and predictions from the approximation are compared to results from full simulations. Approximations using only three frequency components are shown to be more than 80% accurate, with increased accuracy as the base acceleration signal becomes narrower in bandwidth. The effects of charge cancellation in the higher modes are also considered using simulations and the aforementioned approximations. These studies show that rectifying the strain in the higher modes is only beneficial if these modes contribute significantly to the power harvested. The approximate formulas derived in this paper are useful for making this determination.

Technical Note

097001

, , and

The transient shear behavior of magnetic powder (MP) excited by a stepwise magnetic field in a rotational magnetic powder clutch (MPC) was experimentally studied. The experiment showed that the stable shear stress was approximately proportional to the applied magnetic flux density. The characteristic rising time of the shear stress was independent of the strength of the magnetic field and was affected by the shear rate. It took less than 0.1 s for the shear stress to rise to 63% (1 − e−1) of the stable value. The transient shear stress rising process consisted of two subprocesses: the chain forming process which was less than 100 ms, and the chain coarsening process lasting for dozens of seconds. Upon switching the field off, the shear stress fell rapidly to zero in 0.1 s. Control methods to improve the transient response time of the MPC were discussed and experimentally verified: applying a low voltage in advance; applying a high level voltage for the torque to rise to the target torque and then a desired voltage. These transient characteristics of MP were compared with those of electrorheological (ER) and magneto-rheological (MR) fluids and actuators. The study provides a better understanding of MP excited by a magnetic field and the implications for application.