This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 28

Number 1, 6 January 2017

Previous issue Next issue

Letters

01LT01

, , , , , and

A biaxially wave-shaped polydimethylsiloxane (PDMS) surface was developed simply by using a taro leaf as the template. The resulting leaf-templated PDMS (L-PDMS) possesses a micro-sized curved interface structure, which is greatly beneficial for the exact embedding of a silver nanowire (AgNW) network conductive film covering the L-PDMS surface. The intrinsically curved AgNW/L-PDMS film surface, without any dangling nanowire, could prevent the fracture of AgNWs due to stretching stress even after cyclic stretching. More importantly, it also exhibited a biaxial stretchability, which showed ultra-stable resistance after continuous stretching for 100 cycles each in X- and Y-directions. This biaxially stretchable AgNW/L-PDMS film could extend the application fields in stretchable electronics.

01LT02

, , , , , , , and

Spray-coating as a facile and quantitative method was introduced to prepare thin and continuous TiO2 compact layers on different substrates for perovskite solar cells. The as-prepared film is highly transparent and smooth, which is of significance in perovskite solar cells to decrease incident light loss and facilitate the film cast and electric contact. The compact TiO2 layer shows excellent performance when coated with perovskite and assembled into a device. Since it provides unlimited substrate size, patterning function and the TiO2 used for spray-coating is well crystallized, this method has huge potential for mass production and great adaptability for a variety of applications.

Topical Review

012001
The following article is Free article

and

Semiconductor nanowires (NWs), in particular Si NWs, have attracted much attention in the last decade for their unique electronic properties and potential applications in several emerging areas. With the introduction of heterostructures (HSs) on NWs, new functionalities are obtained and the device performance is improved significantly in many cases. Due to the easy fabrication techniques, excellent optoelectronic properties and compatibility of forming HSs with different inorganic/organic materials, Si NW HSs have been utilized in various configurations and device architectures. Herein, we review the recent developments in Si NW HS-based devices including the fabrication techniques, properties (e.g., light emitting, antireflective, photocatalytic, electrical, photovoltaic, sensing etc) and related emerging applications in energy generation, conversion, storage, and environmental cleaning and monitoring. In particular, recent advances in Si NW HS-based solar photovoltaics, light-emitting devices, thermoelectrics, Li-ion batteries, supercapacitors, hydrogen generation, artificial photosynthesis, photocatalytic degradation of organic dyes in water treatment, chemical and gas sensors, biomolecular sensors for microbial monitoring etc have been addressed in detail. The problems and challenges in utilizing Si NW HSs in device applications and the key parameters to improve the device performance are pointed out. The recent trends in the commercial applications of Si NW HS-based devices and future outlook of the field are presented at the end.

Focus Issue Paper

014001

, , , , , and

Sub-10nm patterning

In this work, we investigate the ability to control Si nanoparticles (NPs) spatially arranged in a hexagonal network of 20 nm wide nanovolumes at controlled depth within SiO2 thin films. To achieve this goal an unconventional lithographic technique was implemented based on a bottom-up approach, that is fully compatible with the existing semiconductor technology. The method combines ultra-low energy ion beam synthesis with nanostructured block-copolymer thin films that are self-assembled on the SiO2 substrates to form a nanoporous template with hexagonally packed pores. A systematic analytical investigation using time of flight-secondary ion mass spectroscopy and low-loss energy filtered transmission electron microscopy demonstrates that by adjusting few fabrication parameters, it is possible to narrow the size distribution of the NPs and to control the number of NPs per nanovolume. Experimental results are critically discussed on the basis of literature data, providing a description of the mechanism involved in the formation of Si NPs.

Papers

Biology and medicine

015101

, , , , , and

A major benefit to nanomaterial based-medicine is the ability to provide nanosized vehicles for sporadic metabolites. Here, we describe how the conjugation of valuable ginseng secondary metabolites (ginsenoside Rb1 or Rg1) with carbon nanotubes (CNT) can enhance their anti-proliferative and anti-cancer effects. Ginsenoside-CNT conjugate (Rb-CNT or Rg-CNT) permitted the ginsenosides to be used at a low dose, yet achieve a higher incidence of cancer killing. We were able to demonstrate that the ginsenoside-CNT conjugate can decrease cell viability up to 62% in breast cancer cells (MCF-7) and enhance antiproliferation of drug-resistant pancreatic cancer cells (PANC-1) by 61%. The interaction of the ginsenoside-CNT conjugate with breast cancer cells was studied using Raman Spectroscopy mapping. Total transcriptome profiling (Affymetrix platform) of MCF-7 cells treated with the ginsenoside-CNT conjugate shows that a number of cellular, apoptotic and response to stimulus processes were affected. Therefore, our data confirmed the potential use of CNT as a drug delivery system.

015102

, , , , , , , , , et al

Bacterial inclusion bodies are non-toxic, mechanically stable and functional protein amyloids within the nanoscale size range that are able to naturally penetrate into mammalian cells, where they deliver the embedded protein in a functional form. The potential use of inclusion bodies in protein delivery or protein replacement therapies is strongly impaired by the absence of specificity in cell binding and penetration, thus preventing targeting. To address this issue, we have here explored whether the genetic fusion of two tumor-homing peptides, the CXCR4 ligands R9 and T22, to an inclusion body-forming green fluorescent protein (GFP), would keep the interaction potential and the functionality of the fused peptides and then confer CXCR4 specificity in cell binding and further uptake of the materials. The fusion proteins have been well produced in Escherichia coli in their full-length form, keeping the potential for fluorescence emission of the partner GFP. By using specific inhibitors of CXCR4 binding, we have demonstrated that the engineered protein particles are able to penetrate CXCR4+ cells, in a receptor-mediated way, without toxicity or visible cytopathic effects, proving the availability of the peptide ligands on the surface of inclusion bodies. Since no further modification is required upon their purification, the biological production of genetically targeted inclusion bodies opens a plethora of cost-effective possibilities in the tissue-specific intracellular transfer of functional proteins through the use of structurally and functionally tailored soft materials.

Electronics and photonics

015201

, and

We report the batch fabrication of graphene field-effect-transistors (GFETs) with nanoperforated graphene as channel. The transistors were cut and encapsulated. The encapsulated GFETs display saturation regions that can be tuned by modifying the top gate voltage, and have on/off ratios of at least 2 × 103 at room temperature and at small drain and gate voltages. In addition, the nanoperforated GFETs display orders of magnitude higher photoresponses than any room-temperature graphene detector configurations that do not involve heterostructures with bandgap materials.

015202

, , , and

Micromagnetic studies of the magnetization change in magnetostrictive nanomagnets subjected to stress are performed for nanomagnets of different sizes. The interplay between demagnetization, exchange and stress anisotropy energies is used to explain the rich physics of size-dependent magnetization dynamics induced by modulating stress anisotropy in planar nanomagnets. These studies have important implications for strain mediated ultralow energy magnetization control in nanomagnets and its application in energy-efficient nanomagnetic computing devices.

Patterning and nanofabrication

015301

, , and

By combining shadow nanosphere lithography with a glancing angle co-deposition technique, mixed-phase Ag–Cu triangular nanopatterns and films were fabricated. They were prepared at different compositions with respect to Ag from 100% to 0% by changing the relative deposition ratio of each metal. Characterizations by ellipsometry, energy dispersive x-ray spectroscopy, and x-ray diffraction revealed that the thin films and nanopatterns were composed of small, well-mixed Ag and Cu nano-grains with a diameter less than 20 nm, and their optical properties could be described by an effective medium theory. All compositions of the nanopattern had the same shape, but showed tunable localized surface plasmon resonance (LSPR) properties. In general, the LSPR of the nanopatterns redshifted with decreasing composition. Such a relation could be fitted by an empirical model based on the bulk theory of alloy plasmonics. By changing the colloidal template and the material deposited, this fabrication technique can be used to produce other alloy plasmonic nanostructures with predicted LSPR wavelengths.

Sensing and actuating

015501

, , , , , and

AgInS2 (AIS) quantum dots (QDs) were synthesized via a thermal decomposition reaction with dodecylamine as the ligand to help stabilize the QDs. This reaction procedure is relatively easy to implement, scalable to large batches (up to hundreds of milligrams of QDs are produced), and a convenient method for the synthesis of chalcogenide QDs. Metal powders of AgNO3 and In(NO3)3, were used as the metal precursors while diethyldithiocarbamate was used as the sulfur source. The AIS QDs were characterized via transmission electron microscopy, atomic force microscopy, and energy dispersive x-ray spectroscopy. As an application for these less toxic nanomaterials, we demonstrate the selective detection of Trinitrotoluene (TNT) at concentrations as low as 6 micromolar (μM) and without the functionalization of a ligand that is specifically designed to interact with TNT molecules. We also demonstrate a simple approach to patterning the AIS QDs onto filter paper, for the detection of TNT molecules by eye. Collectively, the ease of the synthesis of the less toxic AIS QDs, and the ability to detect TNT molecules by eye suggest an attractive route to highly sensitive and portable substrates for environmental monitoring, chemical warfare agent detection, and other applications.

015502

, , , and

It has been theoretically suggested and experimentally demonstrated that fast and low-cost sequencing of DNA, RNA, and peptide molecules might be achieved by passing such molecules between electrodes embedded in a nanochannel. The experimental realization of this scheme faces major challenges, however. In realistic liquid environments, typical currents in tunneling devices are of the order of picoamps. This corresponds to only six electrons per microsecond, and this number affects the integration time required to do current measurements in real experiments. This limits the speed of sequencing, though current fluctuations due to Brownian motion of the molecule average out during the required integration time. Moreover, data acquisition equipment introduces noise, and electronic filters create correlations in time-series data. We discuss how these effects must be included in the analysis of, e.g., the assignment of specific nucleobases to current signals. As the signals from different molecules overlap, unambiguous classification is impossible with a single measurement. We argue that the assignment of molecules to a signal is a standard pattern classification problem and calculation of the error rates is straightforward. The ideas presented here can be extended to other sequencing approaches of current interest.

015503

, , , and

Titanium dioxide (TiO2) nanoparticles (NPs) embedded γ-phase containing polyvinylidene fluoride (PVDF) nanocomposite (PNC) film turns to an excellent material for energy storage application due to an increased dielectric constant (32 at 1 kHz), enhanced electric breakdown strength (400 MV m−1). It also exhibits a high energy density of 4 J cm−3 which is 25 times higher than that of virgin PVDF. 98% of the electroactive γ-phase has been acheived by the incorporation of TiO2 NPs and the resulting PNC behaves like a super-toughened material due to a dramatic improvement (more than 80%) in the tensile strength. Owing to their electroactive nature and extraordinary mechanical properties, PNC films have a strong ability to fabricate the piezoelectric nanogenerators (PNGs) that have recently been an area of focus regarding mechanical energy harvesting. The feasibility of piezoelectric voltage generation from PNGs is demostrated under the rotating fan that also promises further utility such as rotational speed (RPM) determination.

Materials: synthesis or self-assembly

015601

, , , , , and

Hexagonal-phase NaGdF4: Yb, Er upconversion nanocrystals (UCNCs) with tunable morphology and properties were successfully prepared via a thermal decomposition method. The influences of the adding sequence of the precursors on the morphology, chemical composition, luminescence and magnetic properties were investigated by transmission electron microscopy (TEM), inductively coupled plasma-atomic emission spectrometry (ICP-AES), upconversion (UC) spectroscopy, and a vibrating sample magnetometer (VSM). It was found that the resulting nanocrystals, with different sizes ranging from 24 to 224 nm, are in the shape of spheres,  hexagonal plates and flakes; moreover, the composition percentage of Yb3+-Er3+ and Gd3+ ions was found to vary in a regular pattern with the adding sequence. Furthermore, the intensity ratios of emission colors (fg/r, fg/p), and the magnetic mass susceptibility of hexagonal-phase NaGdF4: Yb, Er nanocrystals change along with the composition of the nanocrystals. A positive correlation between the susceptibility and fg/r of NaGdF4: Yb, Er was proposed. The decomposition processes of the precursors were investigated by a thermogravimetric (TG) analyzer. The result indicated that the decomposition of the resolved lanthanide trifluoroacetate is greatly different from lanthanide trifluoroacetate powder. It is of tremendous help to recognize the decomposition process of the precursors and to understand the related reaction mechanism.

Materials: properties, characterization or tools

015701

, , , , , , , , , et al

The impact of electromechanical coupling on optical properties of light-emitting diodes (LEDs) with InGaN/GaN quantum-dot (QD) active regions is studied by numerical simulations. The structure, i.e. the shape and the average In content of the QDs, has been directly derived from experimental data on out-of-plane strain distribution obtained from the geometric-phase analysis of a high-resolution transmission electron microscopy image of an LED structure grown by metalorganic vapor-phase epitaxy. Using continuum $\vec{k}\cdot \vec{p}$ calculations, we have studied first the lateral and full electromechanical coupling between the QDs in the active region and its impact on the emission spectrum of a single QD located in the center of the region. Our simulations demonstrate the spectrum to be weakly affected by the coupling despite the strong common strain field induced in the QD active region. Then we analyzed the effect of vertical coupling between vertically stacked QDs as a function of the interdot distance. We have found that QCSE gives rise to a blue-shift of the overall emission spectrum when the interdot distance becomes small enough. Finally, we compared the theoretical spectrum obtained from simulation of the entire active region with an experimental electroluminescence (EL) spectrum. While the theoretical peak emission wavelength of the selected central QD corresponded well to that of the EL spectrum, the width of the latter one was determined by the scatter in the structures of various QDs located in the active region. Good agreement between the simulations and experiment achieved as a whole validates our model based on realistic structure of the QD active region and demonstrates advantages of the applied approach.

015702

, , , , , and

We studied temperature-dependent photoluminescence (PL) spectra of lead selenide (PbSe) dendrites and cubes grown by a solvothermal method. Their PL peaks were located at ∼8 μm at 10 K with a full width at half maximum (FWHM) of 10 meV. Using the temperature-dependent FWHM values, we obtained carrier–phonon coupling coefficients for PbSe. We also demonstrated mechanochemical synthesis of polycrystalline PbS nanoparticles and their successful conversion into a PbSe layer composed of nanocrystals by a selenization process with thermal treatment. The nanocrystals were found to be formed by the orientation alignment of small grains in the process. The PL peak energies of the PbSe layers as well as the PbSe dendrites and the cubes agreed well with their absorption edges in the transmission spectra, indicating that the photoluminescence originates from the band-edge emission. The band-edge emissions hold promise for the development of potential mid-infrared light sources using PbSe fabricated by these methods.

015703

, , , and

Due to the outstanding mechanical properties of individual carbon nanotubes (CNTs) at the nanoscale, CNT yarns are expected to demonstrate high strength at the macroscale. In this study, a predictable model was developed to predict the tensile strength of twisted CNT yarns. First, the failure mechanism of twisted CNT yarns was investigated using in situ tensile tests and ex situ observations. It was revealed that CNT bundles, which are groups of CNTs that are tightly bound together, formed during tensile loading, leaving some voids around the bundles. Failure of the CNT yarns occurred as the CNT bundles were pulled out of the yarns. Two stresses that determined the tensile strength of the CNT yarns were identified: interfacial shear and frictional stresses originating from van der Waals interactions, and the lateral pressure generated by the twisted yarn structure. Molecular dynamics and yarn mechanics were used to calculate these two stresses. Finally, the tensile strength of CNT yarns was predicted and compared with experimental data, showing reasonable agreement.