This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 27

Number 1, 14 January 2015

Previous issue Next issue

Surface, Interface and Atomic-Scale Science Fast Track Communication

012001

and

At ambient conditions, the Fe3O4(0 0 1) surface shows a $(\sqrt{2}\times\sqrt{2})R45^\circ$ reconstruction that has been proposed as the surface analog of the bulk phase below the Verwey transition temperature, TV. The reconstruction disappears at a high temperature, TS, through a second order transition. We calculate the temperature evolution of the surface electronic structure based on a reduced bulk unit cell of P2/m symmetry that contains the main features of the bulk charge distribution. We demonstrate that the insulating surface gap arises from the large demand of charge of the surface O, at difference with that of the bulk. Furthermore, it is coupled to a significant restructuration that inhibits the formation of trimerons at the surface. An alternative bipolaronic charge distribution emerges below TS, introducing a competition between surface and bulk charge orders below TV.

Surface, Interface and Atomic-Scale Science Topical Reviews

013001
The following article is Open access

The importance of heterogeneous catalysis in modern life is evidenced by the fact that numerous products and technologies routinely used nowadays involve catalysts in their synthesis or function. The discovery of catalytic materials is, however, a non-trivial procedure, requiring tedious trial-and-error experimentation. First-principles-based kinetic modelling methods have recently emerged as a promising way to understand catalytic function and aid in materials discovery. In particular, kinetic Monte Carlo (KMC) simulation is increasingly becoming more popular, as it can integrate several sources of complexity encountered in catalytic systems, and has already been used to successfully unravel the underlying physics of several systems of interest. After a short discussion of the different scales involved in catalysis, we summarize the theory behind KMC simulation, and present the latest KMC computational implementations in the field. Early achievements that transformed the way we think about catalysts are subsequently reviewed in connection to latest studies of realistic systems, in an attempt to highlight how the field has evolved over the last few decades. Present challenges and future directions and opportunities in computational catalysis are finally discussed.

013002

, and

In this review, we discuss the fundamental characterization of graphene oxide (GO) and its future application perspectives. Morphology is discussed through optical microscopy, fluorescence microscopy, scanning electron microscopy, and atomic force microscopy studies. Chemical, structural, and vibrational properties are discussed through x-ray photoemission spectroscopy and Raman spectroscopy studies. Two easy characterization strategies, based on the correlation between x-ray photoemission spectroscopy and contact angle/optical contrast measurements are reported. Sensing and nano-biotechnology applications are discussed with focus on practical gas sensing and optical sensing, on the one hand, and on the toxicity issue of GO, on the other hand. Synthesis and post-synthesis treatments are also discussed, these latter with emphasis on lithography.

013003

Nanoalloys are bi- or multi-component metallic particles in the size range between 1 and 100 nm. Nanoalloys present a wide variety of structures and properties, which make them suitable for many applications in catalysis, optics, magnetism and biomedicine. This topical review is devoted to the structural properties of nanoalloys of weakly miscible metals, which are expected to present phase-separated arrangements of their components, such as core-shell and Janus arrangements. The focus is on singling out size- and composition-dependent transitions between these arrangements, showing that several transitions can be rationalized by a unifying concept, that is symmetry breaking, caused by the accumulation of strain at the atomic level and its subsequent release. The driving forces that rule the interplay between core-shell and other structures and determine the actual shapes of core and shell, and the placement of the core inside the shell are analyzed. Several systems, such as Ag–Cu, Ag–Co, Ag–Ni, Au–Co, Au–Pt, and Ir–Pt are treated, comparing computational results to experimental observations and simple analytical models. After treating the lowest-energy structures, which are representative of the equilibrium configurations at sufficiently low temperatures, high-temperature and growth kinetics effects are considered.

Surface, Interface and Atomic-Scale Science Papers

015001
The following article is Open access

, , , , , and

Electron transport through a single C60 molecule on Cu(1 1 1) has been investigated with a scanning tunnelling microscope in tunnelling and contact ranges. Single-C60 junctions have been fabricated by establishing a contact between the molecule and the tip, which is reflected by a down-shift in the lowest unoccupied molecular orbital resonance. These junctions are stable even at elevated bias voltages enabling conductance measurements at high voltages and nonlinear conductance spectroscopy in tunnelling and contact ranges. Spectroscopy and first principles transport calculations clarify the relation between molecular orbital resonances and the junction conductance. Due to the strong molecule–electrode coupling the simple picture of electron transport through individual orbitals does not hold.

015002

, and

The (3 × 3) silicene on the (4 × 4) Ag(1 1 1) surface is investigated by means of density functional theory calculations. We focus on the nature of the interactions between the silicene and the Ag surface, in particular in terms of spatial charge localisation. No true covalent bonds are formed between the silicene and the Ag surface, but there is an overlap between the charge densities of the bottom Si atoms and the nearest Ag atoms. Charge difference calculations show that a clear charge reorganisation takes place when bringing together the silicene and the Ag substrate. According to Bader charge calculations, the top Si atoms are slightly positively charged, while the Ag surface plane carries a negative charge. This indicates that an electrostatic interaction exists between the top Si atoms and the below-lying Ag atoms, resulting in the first possible explanation of the Ag buckling.

015003

, , , , , and

An interatomic potential for Al is developed within the third generation of the charge optimized many-body (COMB3) formalism. The database used for the parameterization of the potential consists of experimental data and the results of first-principles and quantum chemical calculations. The potential exhibits reasonable agreement with cohesive energy, lattice parameters, elastic constants, bulk and shear modulus, surface energies, stacking fault energies, point defect formation energies, and the phase order of metallic Al from experiments and density functional theory. In addition, the predicted phonon dispersion is in good agreement with the experimental data and first-principles calculations. Importantly for the prediction of the mechanical behavior, the unstable stacking fault energetics along the $\langle {12\bar{{1}}}\rangle$ direction on the (1 1 1) plane are similar to those obtained from first-principles calculations. The polycrsytal when strained shows responses that are physical and the overall behavior is consistent with experimental observations.

015004

and

We have investigated the magnetic properties of low-indexed iron surfaces and the influence of the chemical environment on these properties. We have considered the (1 0 0), (1 1 0), (1 1 1), (2 1 1) and (3 1 0) surfaces, both, bare and with the presence of adsorbates. These were chosen to mimic realistic chemical synthesis environments, being H, Cl, HCl, NH3, NH4Cl, or CH3COOH. We have found an increased magnetization at all bare surfaces. Upon H adsorption the magnetization is generally reduced, but still above the bulk value. All other ligands and their dissociated parts alter the magnetic properties of the surfaces only weakly. Our calculations do not indicate that ligands are responsible for experimental observations of Fe nanoparticles with average magnetizations below the bulk value.

015005

, and

We developed a new interatomic potential for yttria-stabilized zirconia (YSZ) based on the dipole model initially proposed by Tangney and Scandolo. It is demonstrated that the potential can successfully reproduce not only basic bulk properties, including interaction between point defects, but also energies and structures of clean (1 1 0) and (1 1 1) surfaces. We confirmed that the highly perturbed structure of (1 1 0) surface doped by yttria is in a good agreement with results of DFT calculations. Yttrium segregation at (1 1 1) surface was predicted and discussed by comparison with results of DFT simulations.

015006

, , and

First principles calculations were performed to study the interface electronic structure and the Schottky barrier heights (SBHs) of ZnO–metal interfaces. Different kinds of metals were considered with different chemistries on the polar (0 0 0 1) and (0 0 0  $\bar1$ ) ZnO surfaces. The projection of the density of states on the atomic orbitals of the interface atoms reveals that two kinds of interface electronic states appear: states due to the chemical bonding which appear at well defined energies and conventional metal-induced gap states associated with a smooth density of states in the bulk ZnO band gap region. The relative weight and distribution of the two classes of states depend on both the ZnO substrate termination and on the metal species. SBHs are found to be very sensitive to the specific interface chemical bonding. In particular, it is possible to note the occurrence of either Schottky barriers or Ohmic contacts. Our results have been compared with experiments and with available phenomenological theories, which estimate the SBH from few characteristic material parameters. Finally, the electronic and structural contributions to the SBH have been singled out and related to the different charge transfers occurring at the different interfaces.

015007

, and

Thermal boundary conductance at a metal-dielectric interface is a quantity of prime importance for heat management at the nanoscale. While the boundary conductance is usually ascribed to the coupling between metal phonons and dielectric phonons, in this work we examine the influence of a direct coupling between the metal electrons and the dielectric phonons. The effect of electron–phonon processes is generally believed to be resistive and tends to decrease the overall thermal boundary conductance as compared to the phonon–phonon conductance σp. Here, we find that the effect of a direct electron-phonon interfacial coupling σe is to enhance the effective thermal conductance between the metal and the dielectric. Resistive effects turn out to be important only for thin films of metals that have a low electron–phonon coupling strength. Two approaches are explored to reach these conclusions. First, we present an analytical solution of the two-temperature model to compute the effective conductance which accounts for all the relevant energy channels, as a function of σe, σp and the electron–phonon coupling factor G. Second, we use numerical resolution to examine the influence of σe on two realistic cases: a gold film on silicon or silica substrates. We point out the implications for the interpretation of time-resolved thermoreflectance experiments.

015008

and

We calculate the magnetization of the helical metallic surface states of a topological insulator. We account for the presence of a small sub-dominant Schrödinger piece in the Hamiltonian in addition to the dominant Dirac contribution. This breaks particle-hole symmetry. The cross-section of the upper Dirac cone narrows while that of the lower cone broadens. The sawtooth pattern seen in the magnetization of the pure Dirac limit as a function of chemical potential (μ) is shifted; but, the quantization of the Hall plateaus remains half integral. This is verified by taking the derivative of the magnetization with respect to μ. We compare our results with those when the non-relativistic piece dominates over the relativistic contribution and the quantization is integral. Analytic results for the magnetic oscillations are obtained where we include a first order correction in the ratio of non-relativistic to relativistic magnetic energy scales. Our fully quantum mechanical derivations confirm the expectation of semiclassical theory except for a small correction to the expected phase. There is a change in the overall amplitude of the magnetic oscillations. The Dingle and temperature factors are modified.

015009

and

The apparent contact angle of large 2D drops with randomly rough self-affine profiles is numerically investigated. The numerical approach is based upon the assumption of large separation of length scales, i.e. it is assumed that the roughness length scales are much smaller than the drop size, thus making it possible to treat the problem through a mean-field like approach relying on the large-separation of scales. The apparent contact angle at equilibrium is calculated in all wetting regimes from full wetting (Wenzel state) to partial wetting (Cassie state). It was found that for very large values of the roughness Wenzel parameter (rW > −1/ cos θY, where θY is the Young's contact angle), the interface approaches the perfect non-wetting condition and the apparent contact angle is almost equal to 180°. The results are compared with the case of roughness on one single scale (sinusoidal surface) and it is found that, given the same value of the Wenzel roughness parameter rW, the apparent contact angle is much larger for the case of a randomly rough surface, proving that the multi-scale character of randomly rough surfaces is a key factor to enhance superhydrophobicity. Moreover, it is shown that for millimetre-sized drops, the actual drop pressure at static equilibrium weakly affects the wetting regime, which instead seems to be dominated by the roughness parameter. For this reason a methodology to estimate the apparent contact angle is proposed, which relies only upon the micro-scale properties of the rough surface.

015010

and

When a solid surface is bombarded with a broad ion beam at a relatively large angle of incidence, the surface often develops a terraced form. We introduce a model that includes an improved approximation to the sputter yield and that produces a terraced surface morphology at long times for a wide range of parameter values. Numerical integrations of our equation of motion reveal that the terraces coarsen as time passes, just as observed experimentally. We also show that the terrace propagation direction can reverse as the amplitude of the surface disturbance grows. This highlights the important role higher order nonlinearities play in determining the propagation velocity at high fluences.

Papers

Nanostructures and nanoelectronics

015301

, , and

We investigate coherent electron-switching transport in a double quantum waveguide system in a perpendicular static or vanishing magnetic field. The finite symmetric double waveguide is connected to two semi-infinite leads from both ends. The double waveguide can be defined as two parallel finite quantum wires or waveguides coupled via a window to facilitate coherent electron inter-wire transport. By tuning the length of the coupling window, we observe oscillations in the net charge current and a maximum electron conductance for the energy levels of the two waveguides in resonance. The importance of the mutual Coulomb interaction between the electrons and the influence of two-electron states is clarified by comparing results with and without the interaction. Even though the Coulomb interaction can lift two-electron states out of the group of active transport states the length of the coupling window can be tuned to locate two very distinct transport modes in the system in the late transient regime before the onset of a steady state. A static external magnetic field and quantum-dots formed by side gates (side quantum dots) can be used to enhance the inter-waveguide transport which can serve to implement a quantum logic device. The fact that the device can be operated in the transient regime can be used to enhance its speed.

015302

and

Mixed, charge and heat current fluctuations as well as thermoelectric differential conductances are considered for non-interacting nanosystems connected to reservoirs. Using the Landauer-Büttiker formalism, we derive general expressions for these quantities and consider their possible relationships in the entire ranges of temperature, voltage and coupling to the environment or reservoirs. We introduce a dimensionless quantity given by the ratio between the product of mixed noises and the product of charge and heat noises, distinguishing between the auto-ratio defined in the same reservoir and the cross-ratio between distinct reservoirs. From the linear response regime to the high-voltage regime, we further specify the analytical expressions of differential conductances, noises and ratios of noises, and examine their behavior in two concrete nanosystems: a quantum point contact in an ohmic environment and a single energy level quantum dot connected to reservoirs. In the linear response regime, we find that these ratios are equal to each other and are simply related to the figure of merit. They can be expressed in terms of differential conductances with the help of the fluctuation-dissipation theorem. In the non-linear regime, these ratios radically distinguish between themselves as the auto-ratio remains bounded by one, while the cross-ratio exhibits rich and complex behaviors. In the quantum dot nanosystem, we moreover demonstrate that the thermoelectric efficiency can be expressed as a ratio of noises in the non-linear Schottky regime. In the intermediate voltage regime, the cross-ratio changes sign and diverges, which evidences a change of sign in the heat cross-noise.

Solid structure and lattice dynamics

015401

, , , , , , and

Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

Electronic structure

015501

, , , , and

The electronic structure and magnetic properties of GeTe-based dilute magnetic semiconductors (DMS) are investigated by the Korringa–Kohn–Rostoker Green's function method and the projector augmented wave method. Our calculations for the formation energies of transition metal impurities (TM) in GeTe indicate that the solubilities of TM are quite high compared to typical III–V and II–VI based DMS and that the TM doped GeTe has a possibility of room temperature ferromagnetism with high impurity concentrations. The high solubilities originate from the fact that the top of the valence bands of GeTe consists of the Te-5p anti-bonding states which are favorable to acceptor doping. (Ge, Cr)Te system shows strong ferromagnetic interaction by the double exchange mechanism and is a good candidate for DMS with high Curie temperature. Additionally, in the case of (Ge, Mn)Te with the d5 configuration, by introducing the Ge vacancies the p-d exchange interaction is activated and it dominates the antiferromagnetic superexchange, resulting in ferromagnetic exchange interactions between Mn. This explains recent experimental results reasonably. Based on the accurate estimation of the Curie temperatures by Monte Carlo simulation for the classical Heisenberg model with the calculated exchange coupling constants, we discuss the relevance of the TM doped GeTe for semiconductor spintronics.

015502

, , , , , , and

Angle-resolved photoemission measurements have been performed on Bi2Ir2O7 single crystals, a metallic end-member of the family of pyrochlore iridates. The density of states, the Fermi surface, and the near-Fermi-level band dispersion in the plane perpendicular to the (1, 1, 1) direction were all measured and found to be in rough overall agreement with our LDA + SOC density functional calculations. Assuming that this same calculation approach will extend to other members of the pyrochlore iridates, the overall agreement we found increases the possibility that some of the novel predicted phases such as quantum spin-ice or Weyl Fermion states will exist in this family of compounds.

015503

, , and

We report on a spin-resolved two-photon photoemission study of the Ni(1 1 1) surface states. Nickel thin films were grown by molecular beam epitaxy on a W(1 1 0) substrate. The first image-potential state is used as a sensor to map the spin polarization of the occupied surface states. This allows us to identify the majority spin component of the Shockley surface state as well as a majority and minority d-derived surface resonance. The n = 1 image-potential state is found to be exchange split by 14 ± 3 meV. In spite of the fact that the band structure at the Fermi level exhibits a strongly discerned density of states in both spin channels, we observe low spin asymmetries in the decay and dephasing rates of the photoexcited electrons. Varying the sample preparation reveals that the Shockley surface state contributes about 40% to the spin-dependent decay rate.

015504

, , , , , , and

The electronic structure of insulating antiferromagnetic LiMnAs is investigated using soft x-ray spectroscopy and compared to the electronic structure of metallic LiFeAs. Our calculations support the experimentally observed insulating antiferromagnetic order in LiMnAs. The x-ray absorption and resonant inelastic x-ray scattering spectra in LiFeAs and LiMnAs are adequately explained by the electronic structure alone, although it is possible that LiMnAs has significant electronic correlations driven by Hund's J coupling. Finally, we show evidence of a possible spin trap in Li(Fe0.95Mn0.05)As.

Correlated electrons

015601

, and

Bi2Te3 is a member of a new class of materials known as topological insulators which are supposed to be insulating in the interior and conducting on the surface. However, experimental verification of the conductive qualities of the surface states has been hindered by parallel bulk conductions. We report low temperature magnetotransport measurements on single crystal samples of Bi2Te3. We observe metallic character in our samples and large and linear magnetoresistance from 1.5 K to 290 K with prominent Shubnikov–de Haas (SdH) oscillations whose traces persist up to 20 K. Even though our samples are metallic, we are able to obtain a Berry phase close to the value of π, which is expected for Dirac fermions of the topological surface states. This indicates that we have obtained evidence for the topological surface states in metallic single crystals of Bi2Te3. Other physical measurements obtained from the analysis of the SdH oscillations are also in close agreement with those reported for the topological surface states. The linear magnetoresistance observed in our sample, which is considered as a signature of the Dirac fermions of the surface states, lends further credence to the existence of topological surface states.

015602

, , , , , , , , , et al

Electric resistivity, specific heat, magnetic susceptibility, and inelastic neutron scattering experiments were performed on a single crystal of the heavy fermion compound Ce(Ni0.935Pd0.065)2Ge2 in order to study the spin fluctuations near an antiferromagnetic (AF) quantum critical point (QCP). The resistivity and the specific heat coefficient for T ⩽ 1 K exhibit the power law behavior expected for a 3D itinerant AF QCP (ρ(T) ∼ T3/2 and γ(T) ∼ γ0 − bT1/2). However, for 2 ⩽ T ⩽ 10 K, the susceptibility and specific heat vary as log T and the resistivity varies linearly with temperature. Furthermore, despite the fact that the resistivity and specific heat exhibit the non-Fermi liquid behavior expected at a QCP, the correlation length, correlation time, and staggered susceptibility of the spin fluctuations remain finite at low temperature. We suggest that these deviations from the divergent behavior expected for a QCP may result from alloy disorder.

015603

and

In order to investigate the quantum phase transition in the one-dimensional quantum compass model, we numerically calculate non-local string correlations, entanglement entropy and fidelity per lattice site by using the infinite matrix product state representation with the infinite time evolving block decimation method. In the whole range of the interaction parameters, we find that four distinct string orders characterize the four different Haldane phases and the topological quantum phase transition occurs between the Haldane phases. The critical exponents of the string order parameters β = 1/8 and the cental charges c = 1/2 at the critical points show that the topological phase transitions between the phases belong to an Ising type of universality classes. In addition to the string order parameters, the singularities of the second derivative of the ground state energies per site, the continuous and singular behaviors of the Von Neumann entropy and the pinch points of the fidelity per lattice site manifest that the phase transitions between the phases are of the second-order, in contrast to the first-order transition suggested in previous studies.

Superconductors and metals

015701

, and

URu2Si2 presents superconductivity at temperatures below 1.5 K and a hidden order (HO) at about 17.5 K. Both electronic phenomena are influenced by Fano and Kondo resonances. At 17.5 K the HO was related in the past to a Peierls distortion that produces an energy gap deformed by the resonances. This order has been studied for more than 20 years and still there is no clear understanding. In this work we studied the electronic characteristics of URu2Si2 in a single crystal, with tunneling and metallic point contact spectroscopies. In the superconducting state, we determined the energy gap, which shows the influence of the Fano and Kondo resonances. At temperatures where HO is observed, the tunnel junctions spectra show the influence of the two resonances. Tunnel junction characteristics show that the Fermi surface nesting depends on the crystallographic direction.

Semiconductors

015801

, , , , , , and

The Zintl phase Sr5In2Sb6 is isostructural with Ca5In2Sb6—a promising thermoelectric material with a peak zT of 0.7 when the carrier concentration is optimized by doping. Density functional calculations for Sr5In2Sb6 reveal a decreased energy gap and decreased valence band effective mass relative to the Ca analog. Chemical bonding analysis using the electron localizability indicator was found to support the Zintl bonding scheme for this structure type. High temperature transport measurements of the complete Ca5−xSrxIn2Sb6 solid solution were used to investigate the influence of the cation site on the electronic and thermal properties of A5In2Sb6 compounds. Sr was shown to be fully miscible on the Ca site. The higher density of the Sr analog leads to a slight reduction in lattice thermal conductivity relative to Ca5In2Sb6, and, as expected, the solid solution samples have significantly reduced lattice thermal conductivities relative to the end member compounds.

Magnetism and magnetic materials

016001

, , , and

We report the discovery of a new allotrope of iron by first principles calculations. This phase has Pmn21 symmetry, a six-atom unit cell (hence the name Fe6), and the highest magnetization density (Ms) among all the known crystalline phases of iron. Obtained from the structural optimizations of the Fe3C-cementite crystal upon carbon removal, Pmn21 Fe6 is shown to result from the stabilization of a ferromagnetic FCC phase, further strained along the Bain path. Although metastable from 0 to 50 GPa, the new phase is more stable at low pressures than the other well-known HCP and FCC allotropes and smoothly transforms into the FCC phase under compression. If stabilized to room temperature, for example, by interstitial impurities, Fe6 could become the basis material for high Ms rare-earth-free permament magnets and high-impact applications such as light-weight electric engine rotors or high-density recording media. The new phase could also be key to explaining the enigmatic high Ms of Fe16N2, which is currently attracting intense research activity.

016002

, , , and

We have investigated the effects of 3d transition metal (TM) and non-magnetic interstitial impurities in α-PbO (0 0 1) surface using ab-initio calculations. The calculated impurity-induced magnetic moments are 2.25 μB, 3.11 μB and 0.94 μB for Fe, Mn and Pb interstitials respectively. In the bonding process, TM's lower energy lying $d_{z^{2}}$ states form overlaps with nearest neighbour oxygen atoms' pz states, with other non-bonding spin split d states situated near or at the Fermi level. These spin split orbitals introduce spin polarised p impurity states of oxygen atoms near the surface.

016003

, , and

In this work, we present a study of the low temperature magnetic phases of polycrystalline MnCr2O4 spinel through dc magnetization and ferromagnetic resonance spectroscopy (FMR). Through these experiments, we determined the main characteristic temperatures: TC ∼ 41 K and TH ∼ 18 K corresponding, respectively, to the ferrimagnetic order and to the low temperature helicoidal transitions. The temperature evolution of the system is described by a phenomenological approach that considers the different terms that contribute to the free energy density. Below the Curie temperature, the FMR spectra were modeled by a cubic magnetocrystalline anisotropy to the second order, with K1 and K2 anisotropy constants that define the easy magnetization axis along the <1 1 0> direction. At lower temperatures, the formation of a helicoidal phase was considered by including uniaxial anisotropy axis along the $[1\,\bar{1}\,0]$ propagation direction of the spiral arrange, with a Ku anisotropy constant. The values obtained from the fittings at 5 K are K1 = −2.3 × 104 erg cm−3, K2 = 6.4 × 104 erg cm−3 and Ku = 7.5 × 104 erg cm−3.

016004

, , , , , , , and

A Muon spin relaxation (µSR) study has been performed on the Kondo lattice heavy fermion itinerant ferromagnet CeCrGe3. Recent investigations of bulk properties have revealed a long-range ordering of Cr moments at Tc = 70 K in this compound. Our µSR investigation between 1.2 K and 125 K confirm the bulk magnetic order which is marked by a loss in initial asymmetry below 70 K accompanied with a sharp increase in the muon depolarization rate. Field dependent µSR spectra show that the internal field at the muon site is higher than 0.25 T apparently due to the ferromagnetic nature of ordering. The effect of Ti substitution on the magnetism in CeCrGe3 is presented. A systematic study has been made on polycrystalline CeCr1−xTixGe3 (0 ⩽ x ⩽ 1) using magnetic susceptibility χ(T), isothermal magnetization M(H), specific heat C(T) and electrical resistivity ρ(T) measurements which clearly reveal that the substitution of Ti for Cr in CeCrGe3 strongly influences the exchange interaction and ferromagnetic ordering of Cr moments. The Cr moment ordering temperature is suppressed gradually with increasing Ti concentration up to x = 0.50 showing Tc = 7 K beyond which Ce moment ordering starts to dominate and a crossover between Cr and Ce moment ordering is observed with a Ce moment ordering Tc = 14 K for x = 1.0. The Kondo lattice behavior is evident from temperature dependence of ρ(T) in all CeCr1−xTixGe3 samples.

016005

, , and

We have investigated the temperature evolution of magnetism and its interrelation with structural parameters in the perovskite-based layered compound Sr2IrO4, which is believed to be a Jeff = 1/2 Mott insulator. The structural distortion plays an important role in this material and induces a weak ferromagnetism in an otherwise antiferromagnetically ordered magnetic state with a transition temperature around 240 K. Interestingly, at low temperatures, below around 100 K, a change in the magnetic moment has been observed. Temperature dependent x-ray diffraction measurements show that sudden changes in structural parameters around 100 K are responsible for this. Resistivity measurements show insulating behavior throughout the temperature range across the magnetic phase transition. The electronic transport can be described with Mott's two-dimensional variable range hopping (VRH) mechanism, however, three different temperature ranges are found for VRH, which is a result of varying the localization length with temperature. A negative magnetoresistance (MR) has been observed at all temperatures in contrast to positive behavior generally observed in strongly spin-orbit coupled materials. The quadratic field dependence of MR implies the relevance of a quantum interference effect.