This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 204

Number 1, January 2013

Previous issue Next issue

1

and

The spectrum of singly ionized iron (Fe ii) has been recorded using high-resolution Fourier transform (FT) and grating spectroscopy over the wavelength range 900 Å to 5.5 μm. The spectra were observed in high-current continuous and pulsed hollow cathode discharges using FT spectrometers at the Kitt Peak National Observatory, Tucson, AZ and Imperial College, London and with the 10.7 m Normal Incidence Spectrograph at the National Institute of Standards and Technology. Roughly 12,900 lines were classified using 1027 energy levels of Fe ii that were optimized to measured wavenumbers. The wavenumber uncertainties of lines in the FT spectra range from 10−4 cm−1 for strong lines around 4 μm to 0.05 cm−1 for weaker lines around 1500 Å. The wavelength uncertainty of lines in the grating spectra is 0.005 Å. The ionization energy of (130,655.4 ± 0.4) cm−1 was estimated from the 3d6(5D)5g and 3d6(5D)6h levels.

2

, , and

The effects of gravitational darkening on the thermal structure of Be star disks of differing densities are systematically examined. Gravitational darkening is the decrease of the effective temperature near the equator and the corresponding increase near the poles of a star caused by rapid rotation. We also include the rotational distortion of the star using the Roche model. Increasing the disk density increases the optical depths in the equatorial plane, resulting in the formation of an inner cool region near the equatorial plane of the disk. High rotation rates result in disks that have temperatures similar to those of a denser disk, namely cooler overall. However, the effect of increasing rotation produces additional heating in the upper disk due to the hotter stellar pole. Cool regions in the equatorial plane normally associated with high density are seen in low-density models at high rotation rates. Gravitational darkening increases the amount of very cool and very hot material in the disk and decreases the amount of disk material at moderate temperatures. We also present models that study the effect of gravitational darkening on hydrostatically converged disks, in which the temperature structure is consistent with vertical hydrostatic equilibrium. Because the equatorial regions become cooler, hydrostatically converged models that include gravity darkening have smaller vertical scale heights, and H/R is smaller by as much as 56% near vcrit. Finally, we explore differences in disk temperatures when alternate formulations of gravitational darkening, which lower the temperature difference between the pole and the equator, are used.

3

, , , and

We present a series of papers on the 2012 version of the Yonsei Evolutionary Population Synthesis (YEPS) model, which was constructed based on over 20 years of research. This first paper delineates the spectroscopic aspect of integrated light from stellar populations older than 1 Gyr. The standard YEPS is based on the most up-to-date Yonsei–Yale stellar evolutionary tracks and BaSel 3.1 flux libraries, and provides absorption line indices of the Lick/IDS system and high-order Balmer lines for simple stellar populations as functions of stellar parameters, such as metallicity, age, and α-element mixture. Special care has been taken to incorporate a systematic contribution from horizontal-branch (HB) stars, which alters the temperature-sensitive Balmer lines significantly, resulting in up to a 5 Gyr difference in the age estimation of old, metal-poor stellar populations. We also find that HBs exert an appreciable effect not only on the Balmer lines but also on the metallicity-sensitive lines, including the magnesium index. This is critical in explaining the intriguing bimodality found in index distributions of globular clusters in massive galaxies and to accurately derive spectroscopic metallicities from various indices. A full set of the spectroscopic and photometric YEPS model data of the entire parameter space is currently downloadable at http://web.yonsei.ac.kr/cosmic/data/YEPS.htm.

4

, , , , and

In this paper, we present new empirical radio surface-brightness-to-diameter (Σ–D) relations for supernova remnants (SNRs) in our Galaxy. We also present new theoretical derivations of the Σ–D relation based on equipartition or on a constant ratio between cosmic rays and magnetic field energy. A new calibration sample of 60 Galactic SNRs with independently determined distances is created. Instead of (standard) vertical regression, used in previous papers, different fitting procedures are applied to the calibration sample in the log Σ–log D plane. Non-standard regressions are used to satisfy the requirement that values of parameters obtained from the fitting of Σ–D and D–Σ relations should be invariant within estimated uncertainties. We impose symmetry between Σ–D and D–Σ due to the existence of large scatter in both D and Σ. Using four fitting methods that treat Σ and D symmetrically, different Σ–D slopes β are obtained for the calibration sample. Monte Carlo simulations verify that the slopes of the empirical Σ–D relation should be determined by using orthogonal regression because of its good performance in data sets with severe scatter. The slope derived here (β = 4.8) is significantly steeper than those derived in previous studies. This new slope is closer to the updated theoretically predicted surface-brightness–diameter slope in the radio range of the Sedov phase. We also analyze the empirical Σ–D relations for SNRs in a dense environment of molecular clouds and for SNRs evolving in the lower-density interstellar medium. Applying new empirical relations to estimate distances of Galactic SNRs results in a dramatically changed distance scale.

5

, , , , , , , , , et al

We present a new catalog of spectroscopically confirmed white dwarf stars from the Sloan Digital Sky Survey (SDSS) Data Release 7 spectroscopic catalog. We find 20,407 white dwarf spectra, representing 19,712 stars, and provide atmospheric model fits to 14,120 DA and 1011 DB white dwarf spectra from 12,843 and 923 stars, respectively. These numbers represent more than a factor of two increase in the total number of white dwarf stars from the previous SDSS white dwarf catalogs based on DR4 data. Our distribution of subtypes varies from previous catalogs due to our more conservative, manual classifications of each star in our catalog, supplementing our automatic fits. In particular, we find a large number of magnetic white dwarf stars whose small Zeeman splittings mimic increased Stark broadening that would otherwise result in an overestimated log g if fit as a non-magnetic white dwarf. We calculate mean DA and DB masses for our clean, non-magnetic sample and find the DB mean mass is statistically larger than that for the DAs.

6

, , , , , , , and

We present the results of a search for red QSOs using a selection based on optical imaging from the Sloan Digital Sky Survey (SDSS) and near-infrared imaging from UKIDSS. Our main goal with the selection is to search for QSOs reddened by foreground dusty absorber galaxies. For a sample of 58 candidates (including 20 objects fulfilling our selection criteria that already have spectra in the SDSS), 46 (79%) are confirmed to be QSOs. The QSOs are predominantly dust-reddened except for a handful at redshifts z ≳ 3.5. However, the dust is most likely located in the QSO host galaxies (and for two, the reddening is primarily caused by Galactic dust) rather than in the intervening absorbers. More than half of the QSOs show evidence of associated absorption (BAL absorption). Four (7%) of the candidates turned out to be late-type stars, and another four (7%) are compact galaxies. We could not identify the remaining four objects. In terms of their optical spectra, these QSOs are similar to the QSOs selected in the FIRST-2MASS Red Quasar Survey except they are on average fainter, more distant, and only two are detected in the FIRST survey. As per the usual procedure, we estimate the amount of extinction using the SDSS QSO template reddened by Small-Magellanic-Cloud-(SMC) like dust. It is possible to get a good match to the observed (rest-frame ultraviolet) spectra, but it is not possible to match the observed near-IR photometry from UKIDSS for nearly all the reddened QSOs. The most likely reasons are that the SDSS QSO template is too red at optical wavelengths due to contaminating host galaxy light and because the assumed SMC extinction curve is too shallow. Three of the compact galaxies display old stellar populations with ages of several Gyr and masses of about 1010M (based on spectral energy distribution modeling). The inferred stellar densities in these galaxies exceed 1010M kpc−2, which is among the highest measured for early-type galaxies. Our survey has demonstrated that selection of QSOs based on near-IR photometry is an efficient way to select QSOs, including reddened QSOs, with only small contamination from late-type stars and compact galaxies. This will be useful with ongoing and future wide-field near-IR surveys such as the VISTA and EUCLID surveys.

7

, , , , , and

We present a formulation for multigroup radiation hydrodynamics that is correct to order O(v/c) using the comoving-frame approach and the flux-limited diffusion approximation. We describe a numerical algorithm for solving the system, implemented in the compressible astrophysics code, CASTRO. CASTRO uses a Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. In our multigroup radiation solver, the system is split into three parts: one part that couples the radiation and fluid in a hyperbolic subsystem, another part that advects the radiation in frequency space, and a parabolic part that evolves radiation diffusion and source–sink terms. The hyperbolic subsystem and the frequency space advection are solved explicitly with high-order Godunov schemes, whereas the parabolic part is solved implicitly with a first-order backward Euler method. Our multigroup radiation solver works for both neutrino and photon radiation.

8

and

We describe the implementation and tests of sink particle algorithms in the Eulerian grid-based code Athena. The introduction of sink particles enables the long-term evolution of systems in which localized collapse occurs, and it is impractical (or unnecessary) to resolve the accretion shocks at the centers of collapsing regions. We discuss the similarities and differences of our methods compared to other implementations of sink particles. Our criteria for sink creation are motivated by the properties of the Larson–Penston collapse solution. We use standard particle-mesh methods to compute particle and gas gravity together. Accretion of mass and momenta onto sinks is computed using fluxes returned by the Riemann solver. A series of tests based on previous analytic and numerical collapse solutions is used to validate our method and implementation. We demonstrate use of our code for applications with a simulation of planar converging supersonic turbulent flow, in which multiple cores form and collapse to create sinks; these sinks continue to interact and accrete from their surroundings over several Myr.

9

, , and

We present a systematic survey of the range of predictions of the neutron star inner crust composition, crust-core transition densities and pressures, and density range of the nuclear "pasta" phases at the bottom of the crust provided by the compressible liquid drop model in light of the current experimental and theoretical constraints on model parameters. Using a Skyrme-like model for nuclear matter, we construct baseline sequences of crust models by consistently varying the density dependence of the bulk symmetry energy at nuclear saturation density, L, under two conditions: (1) that the magnitude of the symmetry energy at saturation density J is held constant, and (2) J correlates with L under the constraint that the pure neutron matter (PNM) equation of state (EoS) satisfies the results of ab initio calculations at low densities. Such baseline crust models facilitate consistent exploration of the L dependence of crustal properties. The remaining surface energy and symmetric nuclear matter parameters are systematically varied around the baseline, and different functional forms of the PNM EoS at sub-saturation densities implemented, to estimate theoretical "error bars" for the baseline predictions. Inner crust composition and transition densities are shown to be most sensitive to the surface energy at very low proton fractions and to the behavior of the sub-saturation PNM EoS. Recent calculations of the energies of neutron drops suggest that the low-proton-fraction surface energy might be higher than predicted in Skyrme-like models, which our study suggests may result in a greatly reduced volume of pasta in the crust than conventionally predicted.

10

, , , , , , , and

Detection of B-mode polarization of the cosmic microwave background (CMB) radiation is one of the frontiers of observational cosmology. Because they are an order of magnitude fainter than E-modes, it is quite a challenge to detect B-modes. Having more manageable systematics, interferometers prove to have a substantial advantage over imagers in detecting such faint signals. Here, we present a method for Bayesian inference of power spectra and signal reconstruction from interferometric data of the CMB polarization signal by using the technique of Gibbs sampling. We demonstrate the validity of the method in the flat-sky approximation for a simulation of an interferometric observation on a finite patch with incomplete uv-plane coverage, a finite beam size, and a realistic noise model. With a computational complexity of O(n3/2), n being the data size, Gibbs sampling provides an efficient method for analyzing upcoming cosmology observations.

11

, , and

We investigate the computation of the intrinsic continuum linear polarization from electron scattering in optically thin and thick circumstellar disks of gas. We present the use of a non-LTE radiative transfer code, along with two different computational methods for obtaining the Stokes parameters, to reproduce the polarization levels that arise from disks of classical Be stars. Since the pioneering work of Poeckert & Marlborough, numerous improvements and refinements have been incorporated into computational radiative transfer models of classical Be stars. We present an assessment of the effect of several improvements on Poeckert & Marlborough's technique for calculating the polarization levels of the classical Be star γ Cas. We find that improvements to the sampling of the disk density and the inclusion of a non-isothermal structure for the gas in the disk yield polarization levels that differ from the levels expected by Poeckert & Marlborough. Principally, the inclusion of the self-consistent calculation of the thermal structure of the disk has a significant impact on the resulting polarization. In addition, we assess the importance of the inclusion of multiple scattering calculations in predicting the continuum polarization in classical Be stars. We confirm that multiple scattering calculations are necessary for studying the linear polarization levels from optically thick gaseous disks around classical Be stars.

12

, , , , , , , , , et al

We report the design and development of a self-contained multi-band receiver (MBR) system, intended for use with a single large aperture to facilitate sensitive and high time-resolution observations simultaneously in 10 discrete frequency bands sampling a wide spectral span (100–1500 MHz) in a nearly log-periodic fashion. The development of this system was primarily motivated by need for tomographic studies of pulsar polar emission regions. Although the system design is optimized for the primary goal, it is also suited for several other interesting astronomical investigations. The system consists of a dual-polarization multi-band feed (with discrete responses corresponding to the 10 bands pre-selected as relatively radio frequency interference free), a common wide-band radio frequency front-end, and independent back-end receiver chains for the 10 individual sub-bands. The raw voltage time sequences corresponding to 16 MHz bandwidth each for the two linear polarization channels and the 10 bands are recorded at the Nyquist rate simultaneously. We present the preliminary results from the tests and pulsar observations carried out with the Robert C. Byrd Green Bank Telescope using this receiver. The system performance implied by these results and possible improvements are also briefly discussed.

13

A new method of polarimetric calibration is presented in which the instrumental response is derived from regular observations of PSR J0437−4715 based on the assumption that the mean polarized emission from this millisecond pulsar remains constant over time. The technique is applicable to any experiment in which high-fidelity polarimetry is required over long timescales; it is demonstrated by calibrating 7.2 years of high-precision timing observations of PSR J1022+1001 made at the Parkes Observatory. Application of the new technique followed by arrival time estimation using matrix template matching yields post-fit residuals with an uncertainty-weighted standard deviation of 880 ns, two times smaller than that of arrival time residuals obtained via conventional methods of calibration and arrival time estimation. The precision achieved by this experiment yields the first significant measurements of the secular variation of the projected semimajor axis, the precession of periastron, and the Shapiro delay; it also places PSR J1022+1001 among the 10 best pulsars regularly observed as part of the Parkes Pulsar Timing Array (PPTA) project. It is shown that the timing accuracy of a large fraction of the pulsars in the PPTA is currently limited by the systematic timing error due to instrumental polarization artifacts. More importantly, long-term variations of systematic error are correlated between different pulsars, which adversely affects the primary objectives of any pulsar timing array experiment. These limitations may be overcome by adopting the techniques presented in this work, which relax the demand for instrumental polarization purity and thereby have the potential to reduce the development cost of next-generation telescopes such as the Square Kilometre Array.