This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 64

Number 6, June 2001

Previous issue Next issue

REVIEW ARTICLES

701

, and

We review some electron transport experiments on few-electron, vertical quantum dot devices. The measurement of current versus source-drain voltage and gate voltage is used as a spectroscopic tool to investigate the energy characteristics of interacting electrons confined to a small region in a semiconducting material. Three energy scales are distinguished: the single-particle states, which are discrete due to the confinement involved; the direct Coulomb interaction between electron charges on the dot; and the exchange interaction between electrons with parallel spins. To disentangle these energies, a magnetic field is used to reorganize the occupation of electrons over the single-particle states and to induce changes in the spin states. We discuss the interactions between small numbers of electrons (between 1 and 20) using the simplest possible models. Nevertheless, these models consistently describe a large set of experiments. Some of the observations resemble similar phenomena in atomic physics, such as shell structure and periodic table characteristics, Hund's rule, and spin singlet and triplet states. The experimental control, however, is much larger than for atoms: with one device all the artificial elements can be studied by adding electrons to the quantum dot when changing the gate voltage.

737

Resonant Rayleigh scattering (RRS) in semiconductors is due to imperfections breaking the symmetry of translational invariance of the crystal: impurities, defects or interfaces. The RRS observed from semiconductor quantum wells (QWs) is mainly due to fluctuations in the lateral two-dimensional potential energy confining charge carriers and excitons. Time resolving the RRS allows us to extract the statistical properties of the disorder potential, including a certain degree of spatial correlation. Furthermore, the temporal coherence of RRS has been demonstrated by interferometric experiments with a single speckle, allowing us to discriminate RRS very clearly from incoherent fluorescence. This lively ongoing field of research has brought about generic fundamental notions readily applicable to spectroscopy of other semiconductor nanostructures or possibly inorganic crystals, which are worth compiling. This paper aims at reviewing a large fraction of the experiments carried out on GaAs QWs, which have contributed significantly to the understanding of the static and dynamic properties of RRS.