This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 781

Number 1, 2014 January 20

Previous issue Next issue

1

, , , , , , , , , et al

We present optical, near-infrared, and radio observations of the afterglow of GRB 120521C. By modeling the multi-wavelength data set, we derive a photometric redshift of z ≈ 6.0, which we confirm with a low signal-to-noise ratio spectrum of the afterglow. We find that a model with a constant-density environment provides a good fit to the afterglow data, with an inferred density of n ≲ 0.05 cm−3. The radio observations reveal the presence of a jet break at tjet ≈ 7 d, corresponding to a jet opening angle of θjet ≈ 3°. The beaming-corrected γ-ray and kinetic energies are EγEK ≈ 3 × 1050 erg. We quantify the uncertainties in our results using a detailed Markov Chain Monte Carlo analysis, which allows us to uncover degeneracies between the physical parameters of the explosion. To compare GRB 120521C to other high-redshift bursts in a uniform manner we re-fit all available afterglow data for the two other bursts at z ≳ 6 with radio detections (GRBs 050904 and 090423). We find a jet break at tjet ≈ 15 d for GRB 090423, in contrast to previous work. Based on these three events, we find that γ-ray bursts (GRBs) at z ≳ 6 appear to explode in constant-density environments, and exhibit a wide range of energies and densities that span the range inferred for lower redshift bursts. On the other hand, we find a hint for narrower jets in the z ≳ 6 bursts, potentially indicating a larger true event rate at these redshifts. Overall, our results indicate that long GRBs share a common progenitor population at least to z ∼ 8.

2

, , , and

Lines of sight with multiple projected cluster-scale gravitational lenses have high total masses and complex lens plane interactions that can boost the area of magnification, or étendue, making detection of faint background sources more likely than elsewhere. To identify these new "compound" cosmic telescopes, we have found directions in the sky with the highest integrated mass densities, as traced by the projected concentrations of luminous red galaxies (LRGs). We use new galaxy spectroscopy to derive preliminary magnification maps for two such lines of sight with total mass exceeding ∼3 × 1015M. From 1151 MMT Hectospec spectra of galaxies down to iAB = 21.2, we identify two to three group- and cluster-scale halos in each beam. These are well traced by LRGs. The majority of the mass in beam J085007.6+360428 (0850) is contributed by Zwicky 1953, a massive cluster at z = 0.3774, whereas beam J130657.5+463219 (1306) is composed of three halos with virial masses of 6 × 1014–2 × 1015M, one of which is A1682. The magnification maps derived from our mass models based on spectroscopy and Sloan Digital Sky Survey photometry alone display substantial étendue: the 68% confidence bands on the lens plane area with magnification exceeding 10 for a source plane of zs = 10 are [1.2, 3.8] arcmin2 for 0850 and [2.3, 6.7] arcmin2 for 1306. In deep Subaru Suprime-Cam imaging of beam 0850, we serendipitously discover a candidate multiply imaged V-dropout source at zphot = 5.03. The location of the candidate multiply imaged arcs is consistent with the critical curves for a source plane of z = 5.03 predicted by our mass model. Incorporating the position of the candidate multiply imaged galaxy as a constraint on the critical curve location in 0850 narrows the 68% confidence band on the lens plane area with μ > 10 and zs = 10 to [1.8, 4.2] arcmin2, an étendue range comparable to that of MACS 0717+3745 and El Gordo, two of the most powerful single cluster lenses known. The significant lensing power of our beams makes them powerful probes of reionization and galaxy formation in the early universe.

3

Using binary evolution with Case-C mass transfer, the spins of several black holes (BHs) in X-ray binaries (XBs) have been predicted and confirmed (three cases) by observations. The rotational energy of these BHs is sufficient to power up long gamma-ray bursts (GRBs) and hypernovae (HNe) and still leave a Kerr BH behind. However, strong magnetic fields and/or dynamo effects in the interior of such stars deplete their cores from angular momentum preventing the formation of collapsars. Thus, even though binaries can produce Kerr BHs, most of their rotation is acquired from the stellar mantle, with a long delay between BH formation and spin up. Such binaries would not form GRBs. We study whether the conditions required to produce GRBs can be met by the progenitors of such BHs. Tidal-synchronization and Alfvén timescales are compared for magnetic fields of different intensities threading He stars. A search is made for a magnetic field range that allows tidal spin up all the way in to the stellar core but prevents its slow down during differential rotation phases. The energetics for producing a strong magnetic field during core collapse, which may allow for a GRB central engine, are also estimated. An observationally reasonable choice of parameters is found (B ≲ 102 G threading a slowly rotating He star) that allows Fe cores to retain substantial angular momentum. Thus, the Case-C mass-transfer binary channel is capable of explaining long GRBs. However, the progenitors must have low initial spin and low internal magnetic field throughout their H-burning and He-burning phases.

4

I have used multi-epoch astrometry from the Wide-field Infrared Survey Explorer to perform a search for a distant companion to the Sun via its parallactic motion. I have not found an object of this kind down to W2 = 14.5. This limit corresponds to analogs of Saturn and Jupiter at 28,000 and 82,000 AU, respectively, according to models of the Jovian planets by Fortney and coworkers. Models of brown dwarfs by Burrows and coworkers predict fainter fluxes at a given mass for the age of the solar system, producing a closer distance limit of 26,000 AU for a Jupiter-mass brown dwarf. These constraints exclude most combinations of mass and separation at which a solar companion has been suggested to exist by various studies over the years.

5

and

We describe our custom processing of the entire Wide-field Infrared Survey Explorer (WISE) 12 μm imaging data set, and present a high-resolution, full-sky map of diffuse Galactic dust emission that is free of compact sources and other contaminating artifacts. The principal distinctions between our resulting co-added images and the WISE Atlas stacks are our removal of compact sources, including their associated electronic and optical artifacts, and our preservation of spatial modes larger than 1fdg5. We provide access to the resulting full-sky map via a set of 430 12fdg5 × 12fdg5 mosaics. These stacks have been smoothed to 15'' resolution and are accompanied by corresponding coverage maps, artifact images, and bit-masks for point sources, resolved compact sources, and other defects. When combined appropriately with other mid-infrared and far-infrared data sets, we expect our WISE 12 μm co-adds to form the basis for a full-sky dust extinction map with angular resolution several times better than Schlegel et al.

6

, , , , , and

We present X-ray observations of the "redback" eclipsing radio millisecond pulsar (MSP) and candidate radio pulsar/X-ray binary transition object PSR J1723–2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variability as a function of orbital phase, with a factor of ∼2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar MSP binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and γ-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723–2837 is consistent with being a γ-ray point source, due to the strong Galactic diffuse emission at its position a definitive association cannot be established. No statistically significant pulsations or modulation at the orbital period are detected. For a presumed detection, the implied γ-ray luminosity is ≲5% of its spin-down power. This indicates that PSR J1723–2837 is either one of the least efficient γ-ray producing MSPs or, if the detection is spurious, the γ-ray emission pattern is not directed toward us.

7

and

For the first time, we statistically study the properties of ephemeral regions (ERs) and quantitatively determine their parameters at the emergence stage based on a sample of 2988 ERs observed by the Solar Dynamics Observatory. During the emergence process, there are three kinds of kinematic performances, i.e., separation of dipolar patches, shift of the ER's magnetic centroid, and rotation of the ER's axis. The average emergence duration, flux emergence rate, separation velocity, shift velocity, and angular speed are 49.3 minutes, 2.6 × 1015 Mx s−1, 1.1 km s−1, 0.9 km s−1, and 0fdg6 minute−1, respectively. At the end of emergence, the mean magnetic flux, separation distance, shift distance, and rotation angle are 9.3 × 1018 Mx, 4.7 Mm, 1.1 Mm, and 12fdg9, respectively. We also find that the higher the ER magnetic flux is, (1) the longer the emergence lasts, (2) the higher the flux emergence rate is, (3) the further the two polarities separate, (4) the lower the separation velocity is, (5) the larger the shift distance is, (6) the slower the ER shifts, and (7) the lower the rotation speed is. However, the rotation angle seems not to depend on the magnetic flux. Not only at the start time, but also at the end time, the ERs are randomly oriented in both the northern and the southern hemispheres. Finally, neither the anti-clockwise-rotated ERs nor the clockwise rotated ones dominate the northern or the southern hemisphere.

8

, , and

Space weather is a matter of practical importance in our modern society. Predictions of forecoming solar cycles mean amplitude and duration are currently being made based on flux-transport numerical models of the solar dynamo. Interested in the forecast horizon of such studies, we quantify the predictability window of a representative, advection-dominated, flux-transport dynamo model by investigating its sensitivity to initial conditions and control parameters through a perturbation analysis. We measure the rate associated with the exponential growth of an initial perturbation of the model trajectory, which yields a characteristic timescale known as the e-folding time τe. The e-folding time is shown to decrease with the strength of the α-effect, and to increase with the magnitude of the imposed meridional circulation. Comparing the e-folding time with the solar cycle periodicity, we obtain an average estimate for τe equal to 2.76 solar cycle durations. From a practical point of view, the perturbations analyzed in this work can be interpreted as uncertainties affecting either the observations or the physical model itself. After reviewing these, we discuss their implications for solar cycle prediction.

9

, , , , , and

Cool cores of some galaxy clusters exhibit faint radio "minihalos." Their origin is unclear, and their study has been limited by their small number. We undertook a systematic search for minihalos in a large sample of X-ray luminous clusters with high-quality radio data. In this article, we report four new minihalos (A 478, ZwCl 3146, RXJ 1532.9+3021, and A 2204) and five candidates found in the reanalyzed archival Very Large Array observations. The radio luminosities of our minihalos and candidates are in the range of 1023–25 W Hz−1 at 1.4 GHz, which is consistent with these types of radio sources. Their sizes (40–160 kpc in radius) are somewhat smaller than those of previously known minihalos. We combine our new detections with previously known minihalos, obtaining a total sample of 21 objects, and briefly compare the cluster radio properties to the average X-ray temperature and the total masses estimated from Planck. We find that nearly all clusters hosting minihalos are hot and massive. Beyond that, there is no clear correlation between the minihalo radio power and cluster temperature or mass (in contrast with the giant radio halos found in cluster mergers, whose radio luminosity correlates with the cluster mass). Chandra X-ray images indicate gas sloshing in the cool cores of most of our clusters, with minihalos contained within the sloshing regions in many of them. This supports the hypothesis that radio-emitting electrons are reaccelerated by sloshing. Advection of relativistic electrons by the sloshing gas may also play a role in the formation of the less extended minihalos.

10

, , , , , , , , and

This article reports on the reliability of 11 radio transients detected in the Nasu sky survey. We derived false detection rates and evaluated the statistical significance of each transient source. A single source, labeled WJN J1443+3439, was statistically significant at the 10−5 significance level; the other 10 sources were insignificant. On the basis of this single detection, the sky surface density of live radio transients was estimated to be $2^{+9}_{-1.9} \times 10^{-6} \,{\rm deg}^{-2}$ at a flux density above 3 Jy and a frequency of 1.42 GHz. Since this result is comparable with other survey results and known transients, WJN J1443+3439 could not be excluded. The sky surface density supported a power-law distribution of source count versus flux density. For transient events, the power-law exponent was approximately −3/2. These results are expected to assist radio variable/transient surveys in next-generation facilities such as the Square Kilometre Array.

11

and

The onset of spiral structure in galaxies appears to occur between redshifts 1.4 and 1.8 when disks have developed a cool stellar component, rotation dominates over turbulent motions in the gas, and massive clumps become less frequent. During the transition from clumpy to spiral disks, two unusual types of spirals are found in the Hubble Ultra Deep Field that are massive, clumpy, and irregular like their predecessor clumpy disks, yet spiral-like or sheared like their descendants. One type is "woolly" with massive clumpy arms all over the disk and is brighter than other disk galaxies at the same redshift, while another type has irregular multiple arms with high pitch angles, star formation knots, and no inner symmetry like today's multiple-arm galaxies. The common types of spirals seen locally are also present in a redshift range around z ∼ 1, namely grand design with two symmetric arms, multiple arm with symmetry in the inner parts and several long, thin arms in the outer parts, and flocculent, with short, irregular, and patchy arms that are mostly from star formation. Normal multiple-arm galaxies are found only closer than z ∼ 0.6 in the Ultra Deep Field. Grand design galaxies extend furthest to z ∼ 1.8, presumably because interactions can drive a two-arm spiral in a disk that would otherwise have a more irregular structure. The difference between these types is understandable in terms of the usual stability parameters for gas and stars, and the ratio of the velocity dispersion to rotation speed.

12

, , , , , , , , , et al

The morphology of galaxies can be quantified to some degree using a set of scale-invariant parameters. Concentration (C), asymmetry (A), smoothness (S), the Gini index (G), the relative contribution of the brightest pixels to the second-order moment of the flux (M20), ellipticity (E), and the Gini index of the second-order moment (GM) have all been applied to morphologically classify galaxies at various wavelengths. Here, we present a catalog of these parameters for the Spitzer Survey of stellar structure in Galaxies, a volume-limited, near-infrared (NIR) imaging survey of nearby galaxies using the 3.6 and 4.5 μm channels of the Infrared Array Camera on board the Spitzer Space Telescope. Our goal is to provide a reference catalog of NIR quantified morphology for high-redshift studies and galaxy evolution models with enough detail to resolve stellar mass morphology. We explore where normal, non-interacting galaxies—those typically found on the Hubble tuning fork—lie in this parameter space and show that there is a tight relation between concentration (C82) and M20 for normal galaxies. M20 can be used to classify galaxies into earlier and later types (i.e., to separate spirals from irregulars). Several criteria using these parameters exist to select systems with a disturbed morphology, i.e., those that appear to be undergoing a tidal interaction. We examine the applicability of these criteria to Spitzer NIR imaging. We find that four relations, based on the parameters A and S, G and M20, GM, C, and M20, respectively, select outliers in morphological parameter space, but each selects different subsets of galaxies. Two criteria (GM > 0.6, G > −0.115 × M20 + 0.384) seem most appropriate to identify possible mergers and the merger fraction in NIR surveys. We find no strong relation between lopsidedness and most of these morphological parameters, except for a weak dependence of lopsidedness on concentration and M20.

13

, , , , , , , , , et al

We present comprehensive multiwavelength observations of three gamma-ray bursts (GRBs) with durations of several thousand seconds. We demonstrate that these events are extragalactic transients; in particular, we resolve the long-standing conundrum of the distance of GRB 101225A (the "Christmas-day burst"), finding it to have a redshift z = 0.847 and showing that two apparently similar events (GRB 111209A and GRB 121027A) lie at z = 0.677 and z = 1.773, respectively. The systems show extremely unusual X-ray and optical light curves, very different from classical GRBs, with long-lasting, highly variable X-ray emission and optical light curves that exhibit little correlation with the behavior seen in the X-ray. Their host galaxies are faint, compact, and highly star-forming dwarf galaxies, typical of "blue compact galaxies." We propose that these bursts are the prototypes of a hitherto largely unrecognized population of ultra-long GRBs, which while observationally difficult to detect may be astrophysically relatively common. The long durations may naturally be explained by the engine-driven explosions of stars of much larger radii than normally considered for GRB progenitors, which are thought to have compact Wolf–Rayet progenitor stars. However, we cannot unambiguously identify supernova signatures within their light curves or spectra. We also consider the alternative possibility that they arise from the tidal disruption of stars by massive black holes and conclude that the associated timescales are only consistent with the disruption of compact stars (e.g., white dwarfs) by black holes of relatively low mass (<105M).

14

, , , , , and

Rapidly rotating neutron stars are the only candidates for persistent high-frequency gravitational wave emission, for which a targeted search can be performed based on the spin period measured from electromagnetic (e.g., radio and X-ray) observations. The principal factor determining the sensitivity of such searches is the measurement precision of the physical parameters of the system. Neutron stars in X-ray binaries present additional computational demands for searches due to the uncertainty in the binary parameters. We present the results of a pilot study with the goal of improving the measurement precision of binary orbital parameters for candidate gravitational wave sources. We observed the optical counterpart of Sco X-1 in 2011 June with the William Herschel Telescope and also made use of Very Large Telescope observations in 2011 to provide an additional epoch of radial-velocity measurements to earlier measurements in 1999. From a circular orbit fit to the combined data set, we obtained an improvement of a factor of 2 in the orbital period precision and a factor of 2.5 in the epoch of inferior conjunction T0. While the new orbital period is consistent with the previous value of Gottlieb et al., the new T0 (and the amplitude of variation of the Bowen line velocities) exhibited a significant shift, which we attribute to variations in the emission geometry with epoch. We propagate the uncertainties on these parameters through to the expected Advanced LIGO-Virgo detector network observation epochs and quantify the improvement obtained with additional optical observations.

15

, , , , , , , and

We report measurements of the vacuum ultraviolet (VUV) emission spectra of a microwave-discharge hydrogen-flow lamp (MDHL), a common tool in astrochemistry laboratories working on ice VUV photoprocessing. The MDHL provides hydrogen Ly-α (121.6 nm) and H2 molecular emission in the 110–180 nm range. We show that the spectral characteristics of the VUV light emitted in this range, in particular the relative proportion of Ly-α to molecular emission bands, strongly depend on the pressure of H2 inside the lamp, the lamp geometry (F type versus T type), the gas used (pure H2 versus H2 seeded in He), and the optical properties of the window used (MgF2 versus CaF2). These different configurations are used to study the VUV irradiation of CO ice at 14 K. In contrast to the majority of studies dedicated to the VUV irradiation of astrophysical ice analogs, which have not taken into consideration the emission spectrum of the MDHL, our results show that the processes induced by photons in CO ice from a broad energy range are different and more complex than the sum of individual processes induced by monochromatic sources spanning the same energy range, as a result of the existence of multistate electronic transitions and discrepancy in absorption cross sections between parent molecules and products in the Ly-α and H2 molecular emission ranges.

16

, , , , , , and

The long-timescale behavior of adsorbed carbon monoxide on the surface of amorphous water ice is studied under dense cloud conditions by means of off-lattice, on-the-fly, kinetic Monte Carlo simulations. It is found that the CO mobility is strongly influenced by the morphology of the ice substrate. Nanopores on the surface provide strong binding sites, which can effectively immobilize the adsorbates at low coverage. As the coverage increases, these strong binding sites are gradually occupied leaving a number of admolecules with the ability to diffuse over the surface. Binding energies and the energy barrier for diffusion are extracted for various coverages. Additionally, the mobility of CO is determined from isothermal desorption experiments. Reasonable agreement on the diffusivity of CO is found with the simulations. Analysis of the 2152 cm−1 polar CO band supports the computational findings that the pores in the water ice provide the strongest binding sites and dominate diffusion at low temperatures.

17

, , , , , , , , , et al

We report observations of the acceleration and trapping of energetic ions and electrons between a pair of corotating interaction regions (CIRs). The event occurred in Carrington Rotation 2060. Observed by the STEREO-B spacecraft, the two CIRs were separated by less than 5 days. In contrast to other CIR events, the fluxes of the energetic ions and electrons in this event reached their maxima between the trailing edge of the first CIR and the leading edge of the second CIR. The radial magnetic field (Br) reversed its sense and the anisotropy of the flux also changed from Sunward to anti-Sunward between the two CIRs. Furthermore, there was an extended period of counterstreaming suprathermal electrons between the two CIRs. Similar observations for this event were also obtained with the Advanced Composition Explorer and STEREO-A. We conjecture that these observations were due to a U-shaped, large-scale magnetic field topology connecting the reverse shock of the first CIR and the forward shock of the second CIR. Such a disconnected U-shaped magnetic field topology may have formed due to magnetic reconnection in the upper corona.

18

, , , , , , , , , and

We announce the discovery of a planetary system with seven transiting planets around a Kepler target, a current record for transiting systems. Planets b, c, e, and f are reported for the first time in this work. Planets d, g, and h were previously reported in the literature, although here we revise their orbital parameters and validate their planetary nature. Planets h and g are gas giants and show strong dynamical interactions. The orbit of planet g is perturbed in such a way that its orbital period changes by 25.7 hr between two consecutive transits during the length of the observations, which is the largest such perturbation found so far. The rest of the planets also show mutual interactions: planets d, e, and f are super-Earths close to a mean motion resonance chain (2:3:4), and planets b and c, with sizes below 2 Earth radii, are within 0.5% of the 4:5 mean motion resonance. This complex system presents some similarities to our solar system, with small planets in inner orbits and gas giants in outer orbits. It is, however, more compact. The outer planet has an orbital distance around 1 AU, and the relative position of the gas giants is opposite to that of Jupiter and Saturn, which is closer to the expected result of planet formation theories. The dynamical interactions between planets are also much richer.

19

, , , , , , , , , et al

In recent years, a new generation of space missions has offered great opportunities for discovery in high-energy astrophysics. In this article we focus on the scientific operations of the Gamma-Ray Imaging Detector (GRID) on board the AGILE space mission. AGILE-GRID, sensitive in the energy range of 30 MeV–30 GeV, has detected many γ-ray transients of both galactic and extragalactic origin. This work presents the AGILE innovative approach to fast γ-ray transient detection, which is a challenging task and a crucial part of the AGILE scientific program. The goals are to describe (1) the AGILE Gamma-Ray Alert System, (2) a new algorithm for blind search identification of transients within a short processing time, (3) the AGILE procedure for γ-ray transient alert management, and (4) the likelihood of ratio tests that are necessary to evaluate the post-trial statistical significance of the results. Special algorithms and an optimized sequence of tasks are necessary to reach our goal. Data are automatically analyzed at every orbital downlink by an alert pipeline operating on different timescales. As proper flux thresholds are exceeded, alerts are automatically generated and sent as SMS messages to cellular telephones, via e-mail, and via push notifications from an application for smartphones and tablets. These alerts are crosschecked with the results of two pipelines, and a manual analysis is performed. Being a small scientific-class mission, AGILE is characterized by optimization of both scientific analysis and ground-segment resources. The system is capable of generating alerts within two to three hours of a data downlink, an unprecedented reaction time in γ-ray astrophysics.

20

, , , , , , and

We report the discovery of three planetary-mass companions (M = 6–20 MJup) in wide orbits (ρ ∼ 150–300 AU) around the young stars FW Tau (Taurus-Auriga), ROXs 12 (Ophiuchus), and ROXs 42B (Ophiuchus). All three wide planetary-mass companions (PMCs) were reported as candidate companions in previous binary survey programs, but then were neglected for >10 yr. We therefore obtained followup observations that demonstrate that each candidate is comoving with its host star. Based on the absolute $M_{K^{\prime }}$ magnitudes, we infer masses (from hot-start evolutionary models) and projected separations of 10 ± 4 MJup and 330 ± 30 AU for FW Tau b, 16 ± 4 MJup and 210 ± 20 AU for ROXs 12, and 10 ± 4 MJup and 140 ± 10 AU for ROXs 42B b. We also present similar observations for 10 other candidates that show that they are unassociated field stars, as well as multicolor JHK'L' near-infrared photometry for our new PMCs and for five previously identified substellar or planetary-mass companions. The near-infrared photometry for our sample of eight known and new companions generally parallels the properties of free-floating, low-mass brown dwarfs in these star-forming regions. However, five of the seven objects with M < 30 MJup are redder in K' − L' than the distribution of young free-floating counterparts of similar JK' color. We speculate that this distinction could indicate a structural difference in circumplanetary disks, perhaps tied to higher disk mass since at least two of the objects in our sample are known to be accreting more vigorously than typical free-floating counterparts.

21

, , , , , , , , , et al

Based on high-resolution, spatially resolved data of 10 z ∼ 2 star-forming galaxies from the SINS/zC-SINF survey and LUCI data for 12 additional galaxies, we probe the excitation properties of high-z galaxies and the impact of active galactic nuclei (AGNs), shocks, and photoionization. We explore how these spatially resolved line ratios can inform our interpretation of integrated emission line ratios obtained at high redshift. Many of our galaxies fall in the "composite" region of the z ∼ 0 [N ii]/Hα versus [O iii]/Hβ diagnostic (BPT) diagram, between star-forming galaxies and those with AGNs. Based on our resolved measurements, we find that some of these galaxies likely host an AGN, while others appear to be affected by the presence of shocks possibly caused by an outflow or from an enhanced ionization parameter as compared with H ii regions in normal, local star-forming galaxies. We find that the Mass-Excitation (MEx) diagnostic, which separates purely star-forming and AGN hosting local galaxies in the [O iii]/Hβ versus stellar mass plane, does not properly separate z ∼ 2 galaxies classified according to the BPT diagram. However, if we shift the galaxies based on the offset between the local and z ∼ 2 mass–metallicity relation (i.e., to the mass they would have at z ∼ 0 with the same metallicity), we find better agreement between the MEx and BPT diagnostics. Finally, we find that metallicity calibrations based on [N ii]/Hα are more biased by shocks and AGNs at high-z than the [O iii]/Hβ/[N ii]/Hα calibration.

22

, , , , , , , and

A search for RR Lyrae stars (RRLSs) in ∼840 deg2 of the sky in right ascension 150°–210° and declination −10° to + 10° yielded 1013 type ab and 359 type c RRLS. This sample is used to study the density profile of the Galactic halo, halo substructures, and the Oosterhoff type of the halo over distances (d) from ∼5 to ∼80 kpc. The halo is flattened toward the Galactic plane, and its density profile steepens in slope at galactocentric distances greater than ∼25 kpc. The RRLS in the stellar stream from the Sagittarius dwarf spheroidal (dSph) galaxy match well the model of Law & Majewski for the stars that were stripped 1.3–3.2 Gyr ago, but not for the ones stripped 3.2–5.0 Gyr ago. Over densities are found at the locations of the Virgo Overdensity and the Virgo Stellar Stream. Within 1° of 1220-1, which Jerjen et al. identify as a halo substructure at d ∼ 24 kpc, there are four RRLS that are possibly members. Away from substructures, the RRLS are a mixture of Oosterhoff types I and II, but mostly OoI (∼73%). The accretion of galaxies resembling in RRLS content the most massive Milky Way satellites (LMC, SMC, For, Sgr) may explain this preponderance of OoI. Six new RRLS and three new anomalous Cepheids were found in the Sextans dSph galaxy.

23

, , and

It has recently been suggested that the tidal deformation of a neutron star excites daughter p- and g-modes to large amplitudes via a quasi-static instability. This would remove energy from the tidal bulge, resulting in dissipation and possibly affecting the phase evolution of inspiralling binary neutron stars and hence the extraction of binary parameters from gravitational wave observations. This instability appears to arise because of a large three-mode interaction among the tidal mode and high-order p- and g-modes of similar radial wavenumber. We show that additional four-mode interactions enter into the analysis at the same order as the three-mode terms previously considered. We compute these four-mode couplings by finding a volume-preserving coordinate transformation that relates the energy of a tidally deformed star to that of a radially perturbed spherical star. Using this method, we relate the four-mode coupling to three-mode couplings and show that there is a near-exact cancellation between the destabilizing effect of the three-mode interactions and the stabilizing effect of the four-mode interaction. We then show that the equilibrium tide is stable against the quasi-static decay into daughter p- and g-modes to leading order. The leading deviation from the quasi-static approximation due to orbital motion of the binary is considered; while it may slightly spoil the near-cancellation, any resulting instability timescale is at least of order the gravitational wave inspiral time. We conclude that the p-/g-mode coupling does not lead to a quasi-static instability, and does not impact the phase evolution of gravitational waves from binary neutron stars.

24

, , , , , , , , , et al

We have evaluated the diffuse intracluster light (ICL) in the central core of the galaxy cluster CL0024+17 at z ∼ 0.4 observed with the prime focus camera (Large Binocular Camera) at the Large Binocular Telescope. The measure required an accurate removal of the galaxies' light within ∼200 kpc from the center. The residual background intensity has then been integrated in circular apertures to derive the average ICL intensity profile. The latter shows an approximate exponential decline as expected from theoretical cold dark matter models where the ICL is due to the integrated contribution of light from stars that are tidally stripped from the halo of their host galaxies due to encounters with other galaxies in the cluster cold dark matter (CDM) potential. The radial profile of the ICL over the galaxies intensity ratio (ICL fraction) is increasing with decreasing radius, but near the cluster center it starts to bend and then decreases where the overlap of the halos of the brightest cluster galaxies becomes dominant. Theoretical expectations in a simplified CDM scenario show that the ICL fraction profile can be estimated from the stripped over galaxy stellar mass ratio in the cluster. It is possible to show that the latter quantity is almost independent of the properties of the individual host galaxies but mainly depends on the average cluster properties. The predicted ICL fraction profile is thus very sensitive to the assumed CDM profile, total mass, and concentration parameter of the cluster. Adopting values very similar to those derived from the most recent lensing analysis in CL0024+17, we find a good agreement with the observed ICL fraction profile. The galaxy counts in the cluster core have then been compared with that derived from composite cluster samples in larger volumes, up to the clusters virial radius. The galaxy counts in the CL0024+17 core appear flatter and the amount of bending with respect to the average cluster galaxy counts imply a loss of total emissivity in broad agreement with the measured ICL fraction. The present analysis shows that the measure of the ICL fraction in clusters can quantitatively account for the stellar stripping activity in their cores and can be used to probe their CDM distribution and evolutionary status.

25

, , , , , , , , , et al

The near-Earth object (NEO) population, which mainly consists of fragments from collisions between asteroids in the main asteroid belt, is thought to include contributions from short-period comets as well. One of the most promising NEO candidates for a cometary origin is near-Earth asteroid (3552) Don Quixote, which has never been reported to show activity. Here we present the discovery of cometary activity in Don Quixote based on thermal–infrared observations made with the Spitzer Space Telescope in its 3.6 and 4.5 μm bands. Our observations clearly show the presence of a coma and a tail in the 4.5 μm but not in the 3.6 μm band, which is consistent with molecular band emission from CO2. Thermal modeling of the combined photometric data on Don Quixote reveals a diameter of 18.4$_{-0.4}^{+0.3}$ km and an albedo of $0.03^{+0.02}_{-0.01}$, which confirms Don Quixote to be the third-largest known NEO. We derive an upper limit on the dust production rate of 1.9 kg s−1 and derive a CO2 gas production rate of (1.1 ± 0.1) × 1026 molecules s−1. Spitzer Infrared Spectrograph spectroscopic observations indicate the presence of fine-grained silicates, perhaps pyroxene rich, on the surface of Don Quixote. Our discovery suggests that CO2 can be present in near-Earth space over a long time. The presence of CO2 might also explain that Don Quixote's cometary nature remained hidden for nearly three decades.

26

and

The rotation frequencies of young pulsars are systematically below their theoretical Kepler limit. r-modes have been suggested as a possible explanation for this observation. With the help of semi-analytic expressions that make it possible to assess the uncertainties of the r-mode scenario due to the impact of uncertainties in underlying microphysics, we perform a quantitative analysis of the spin-down and the emitted gravitational waves of young pulsars. We find that the frequency to which r-modes spin-down a young neutron star (NS) is surprisingly insensitive to both the microscopic details and the saturation amplitude. Comparing our result to astrophysical data, we show that for a range of sufficiently large saturation amplitudes r-modes provide a viable spin-down scenario and that all observed young pulsars are very likely already outside the r-mode instability region. Therefore, the most promising sources for gravitational wave detection are unobserved NSs associated with recent supernovae, and we find that advanced LIGO should be able to see several of them. Our analysis shows that despite the coupling of the spin-down and thermal evolution, a power-law spin-down with an effective braking index nrm ⩽ 7 is realized. Because of this, the gravitational wave strain amplitude is completely independent of both the r-mode saturation amplitude and the microphysics and depends on the saturation mechanism only within some tens of percent. However, the gravitational wave frequency depends on the amplitude, and we provide the required expected timing parameter ranges to look for promising sources in future searches.

27

and

Large terrestrial planets are expected to have muted topography and deep oceans, implying that most super-Earths should be entirely covered in water, so-called waterworlds. This is important because waterworlds lack a silicate weathering thermostat so their climate is predicted to be less stable than that of planets with exposed continents. In other words, the continuously habitable zone for waterworlds is much narrower than for Earth-like planets. A planet's water is partitioned, however, between a surface reservoir, the ocean, and an interior reservoir, the mantle. Plate tectonics transports water between these reservoirs on geological timescales. Degassing of melt at mid-ocean ridges and serpentinization of oceanic crust depend negatively and positively on seafloor pressure, respectively, providing a stabilizing feedback on long-term ocean volume. Motivated by Earth's approximately steady-state deep water cycle, we develop a two-box model of the hydrosphere and derive steady-state solutions to the water partitioning on terrestrial planets. Critically, hydrostatic seafloor pressure is proportional to surface gravity, so super-Earths with a deep water cycle will tend to store more water in the mantle. We conclude that a tectonically active terrestrial planet of any mass can maintain exposed continents if its water mass fraction is less than ∼0.2%, dramatically increasing the odds that super-Earths are habitable. The greatest source of uncertainty in our study is Earth's current mantle water inventory: the greater its value, the more robust planets are to inundation. Lastly, we discuss how future missions can test our hypothesis by mapping the oceans and continents of massive terrestrial planets.

28

, , , , and

Doppler-based planet surveys have discovered numerous giant planets but are incomplete beyond several AU. At larger star–planet separations, direct planet detection through high-contrast imaging has proven successful, but this technique is sensitive only to young planets and characterization relies upon theoretical evolution models. Here we demonstrate that radial velocity measurements and high-contrast imaging can be combined to overcome these issues. The presence of widely separated companions can be deduced by identifying an acceleration (long-term trend) in the radial velocity of a star. By obtaining high spatial resolution follow-up imaging observations, we rule out scenarios in which such accelerations are caused by stellar binary companions with high statistical confidence. We report results from an analysis of Doppler measurements of a sample of 111 M-dwarf stars with a median of 29 radial velocity observations over a median time baseline of 11.8 yr. By targeting stars that exhibit a radial velocity acceleration ("trend") with adaptive optics imaging, we determine that 6.5% ± 3.0% of M-dwarf stars host one or more massive companions with 1 < m/MJ < 13 and 0 < a < 20 AU. These results are lower than analyses of the planet occurrence rate around higher-mass stars. We find the giant planet occurrence rate is described by a double power law in stellar mass M and metallicity F ≡ [Fe/H] such that $f(M,F) = 0.039^{+0.056}_{-0.028} M^{0.8^{+1.1}_{-0.9}} 10^{(3.8 \pm 1.2)F}$. Our results are consistent with gravitational microlensing measurements of the planet occurrence rate; this study represents the first model-independent comparison with microlensing observations.

29

, , , , , , , and

The nearby Sun-like star HD 19467 shows a subtle radial velocity (RV) acceleration of −1.37  ±  0.09 m s−1 yr−1 over a 16.9 yr time baseline (an RV trend), hinting at the existence of a distant orbiting companion. We have obtained high-contrast images of the star using NIRC2 at Keck Observatory and report the direct detection of the body that causes the acceleration. The companion, HD 19467 B, is ΔKs = 12.57 ± 0.09 mag fainter than its parent star (contrast ratio of 9.4 × 10−6), has blue colors JKs = −0.36 ± 0.14 (JH = −0.29 ± 0.15), and is separated by ρ = 1farcs653 ± 0farcs004 (51.1 ± 1.0 AU). Follow-up astrometric measurements obtained over a 1.1 yr time baseline demonstrate physical association through common parallactic and proper motion. We calculate a firm lower-limit of $m\ge 51.9^{+3.6}_{-4.3}M_J$ for the companion mass from orbital dynamics using a combination of Doppler observations and imaging. We estimate a model-dependent mass of $m=56.7^{+4.6}_{-7.2}M_{{\rm Jup}}$ from a gyrochronological age of $4.3^{+1.0}_{-1.2}$ Gyr. Isochronal analysis suggests a much older age of 9 ± 1 Gyr, which corresponds to a mass of $m=67.4^{+0.9}_{-1.5}M_J$. HD 19467 B's measured colors and absolute magnitude are consistent with a late T dwarf [≈T5-T7]. We may infer a low metallicity of [Fe/H] =−0.15 ± 0.04 for the companion from its G3V parent star. HD 19467 B is the first directly imaged benchmark T dwarf found orbiting a Sun-like star with a measured RV acceleration.

30

I develop a new model for changes of cyclotron line energy with luminosity based on changes in polar cap dimensions and the direction of photon propagation as well as a shock height. In X0115+63 and V0332+53, the fundamental cyclotron line energy has been observed to decrease with increasing luminosity. This phenomenon has been interpreted as a change of a shock height with luminosity. However, the rates of the observed changes are quite different, in which the line energy in V0332+53 varies slowly with luminosity compared with that in X0115+63. I demonstrate that a new model successfully reproduces the changes of the fundamental cyclotron line energies with luminosity in both X0115+63 and V0332+53. On the other hand, the cyclotron line energies in Her X−1, GX301−2, and GX304−1 were reported to increase with increasing luminosity. I discuss the positive correlation between the cyclotron line energy and luminosity based on changes in a beam pattern for Her X−1, GX301−2, and GX304−1. In addition, I discuss how a switch of the predominant, observed emission region from pole1 to pole2 influences cyclotron line energy for GX304−1 and A0535+26.

31

, , , , and

We report the discovery of deuterium absorption in the very metal-poor ([Fe/H] = −2.88) damped Lyα system at zabs = 3.06726 toward the QSO SDSS J1358+6522. On the basis of 13 resolved D i absorption lines and the damping wings of the H i Lyα transition, we have obtained a new, precise measure of the primordial abundance of deuterium. Furthermore, to bolster the present statistics of precision D/H measures, we have reanalyzed all of the known deuterium absorption-line systems that satisfy a set of strict criteria. We have adopted a blind analysis strategy (to remove human bias) and developed a software package that is specifically designed for precision D/H abundance measurements. For this reanalyzed sample of systems, we obtain a weighted mean of (D/H)p = (2.53 ± 0.04) × 10−5, corresponding to a universal baryon density 100 Ωb, 0h2 = 2.202 ± 0.046 for the standard model of big bang nucleosynthesis (BBN). By combining our measure of (D/H)p with observations of the cosmic microwave background (CMB), we derive the effective number of light fermion species, Neff = 3.28 ± 0.28. We therefore rule out the existence of an additional (sterile) neutrino (i.e., Neff = 4.046) at 99.3% confidence (2.7σ), provided that the values of Neff and of the baryon-to-photon ratio (η10) did not change between BBN and recombination. We also place a strong bound on the neutrino degeneracy parameter, independent of the 4He primordial mass fraction, YP: ξD = +0.05 ± 0.13 based only on the CMB+(D/H)p observations. Combining this value of ξD with the current best literature measure of YP, we find a 2σ upper bound on the neutrino degeneracy parameter, |ξ| ⩽ +0.062.

32

, , , and

We explore requirements for a solar particle event (SPE) and flare capable of producing the cosmogenic nuclide event of 775 a.d., and review solar circumstances at that time. A solar source for 775 would require a >1 GV spectrum ∼45 times stronger than that of the intense high-energy SPE of 1956 February 23. This implies a >30 MeV proton fluence (F30) of ∼8 × 1010 proton cm−2, ∼10 times larger than that of the strongest 3 month interval of SPE activity in the modern era. This inferred F30 value for the 775 SPE is inconsistent with the occurrence probability distribution for >30 MeV solar proton events. The best guess value for the soft X-ray classification (total energy) of an associated flare is ∼X230 (∼9 × 1033 erg). For comparison, the flares on 2003 November 4 and 1859 September 1 had observed/inferred values of ∼X35 (∼1033 erg) and ∼X45 (∼2 × 1033 erg), respectively. The estimated size of the source active region for a 1034 erg flare is ∼2.5 times that of the largest region yet recorded. The 775 event occurred during a period of relatively low solar activity, with a peak smoothed amplitude about half that of the second half of the 20th century. The ∼1945–1995 interval, the most active of the last ∼2000 yr, failed to witness a SPE comparable to that required for the proposed solar event in 775. These considerations challenge a recent suggestion that the 775 event is likely of solar origin.

33

In an improved model of protostar mass functions (PMFs), protostars gain mass from isothermal cores in turbulent clumps. Their mass accretion rate is similar to Shu accretion at low mass and to reduced Bondi accretion at high mass. Accretion durations follow a simple expression in which higher-mass protostars accrete for longer times. These times are set by ejections, stellar feedback, and gravitational competition, which terminate accretion and reduce its efficiency. The mass scale is the mass of a critically stable isothermal core. In steady state, the PMF approaches a power law at high mass because of competition between clump accretion and accretion stopping. The power law exponent is the ratio of the timescales of accretion and accretion stopping. The protostar luminosity function (PLF) peaks near 1 L because of inefficient accretion of core gas. Models fit observed PLFs in four large embedded clusters. These indicate that their underlying PMFs may be top-heavy compared with the initial mass function, depending on the protostar radius model.

34

, , , , , , and

We measure the evolution of the specific star formation rate (sSFR = SFR/Mstellar) between redshift 4 and 6 to assess the reported "constant" sSFR at z > 2. We derive stellar masses and star formation rates (SFRs) for a large sample of 750 z ∼ 4–6 galaxies in the GOODS-S field by fitting stellar population models to their spectral energy distributions. Dust extinction is derived from the observed UV colors. We evaluate different star formation histories (SFHs, constant and rising with time) and the impact of optical emission lines. The SFR and Mstellar values are insensitive to whether the SFH is constant or rising. The derived sSFR is very similar (within 0.1 dex) in two Mstellar bins centered at 1 and 5 × 109M. The effect of emission lines was, however, quite pronounced. Assuming no contribution from emission lines, the sSFR for galaxies at 5 × 109M evolves weakly at z > 2 (sSFR(z)∝(1 + z)0.6 ± 0.1), consistent with previous results. When emission lines are included in the rest-frame optical bands, consistent with the observed Infrared Array Camera [3.6] and [4.5] fluxes, the sSFR shows higher values at high redshift following sSFR(z)∝(1 + z)1.0 ± 0.1, i.e., the best-fit evolution shows a sSFR ∼2.3 × higher at z ∼ 6 than at z ∼ 2. This is, however, a substantially weaker trend than that found at z < 2 and even than that expected from current models for z > 2 (sSFR(z)∝(1 + z)2.5). Even accounting for emission lines, the observed sSFR(z) trends at z > 2 are still in tension with theoretical expectations.

35

, , , , , , , , , and

Many photometric time-domain surveys are driven by specific goals, such as searches for supernovae or transiting exoplanets, which set the cadence with which fields are re-imaged. In the case of the Palomar Transient Factory (PTF), several sub-surveys are conducted in parallel, leading to non-uniform sampling over its ∼20,000 deg2 footprint. While the median 7.26 deg2 PTF field has been imaged ∼40 times in the R band, ∼2300 deg2 have been observed >100 times. We use PTF data to study the trade off between searching for microlensing events in a survey whose footprint is much larger than that of typical microlensing searches, but with far-from-optimal time sampling. To examine the probability that microlensing events can be recovered in these data, we test statistics used on uniformly sampled data to identify variables and transients. We find that the von Neumann ratio performs best for identifying simulated microlensing events in our data. We develop a selection method using this statistic and apply it to data from fields with >10 R-band observations, 1.1 × 109 light curves, uncovering three candidate microlensing events. We lack simultaneous, multi-color photometry to confirm these as microlensing events. However, their number is consistent with predictions for the event rate in the PTF footprint over the survey's three years of operations, as estimated from near-field microlensing models. This work can help constrain all-sky event rate predictions and tests microlensing signal recovery in large data sets, which will be useful to future time-domain surveys, such as that planned with the Large Synoptic Survey Telescope.

36

, , and

We studied the distributions of metal abundances and metal-mass-to-light ratios in the intracluster medium (ICM) of four galaxy groups, MKW 4, HCG 62, the NGC 1550 group, and the NGC 5044 group, out to ∼0.5 r180 observed with Suzaku. The iron abundance decreases with radius and is about 0.2–0.4 solar beyond 0.1 r180. At a given radius in units of r180, the iron abundance in the ICM of the four galaxy groups was consistent with or smaller than those of clusters of galaxies. The Mg/Fe and Si/Fe ratios in the ICM are nearly constant at the solar ratio out to 0.5 r180. We also studied systematic uncertainties in the derived metal abundances, comparing the results from two versions of atomic data for astrophysicists (ATOMDB) and single- and two-temperature model fits. Since the metals have been synthesized in galaxies, we collected K-band luminosities of galaxies from the Two Micron All Sky Survey catalog and calculated the integrated iron-mass-to-light-ratios (IMLR), or the ratios of the iron mass in the ICM to light from stars in galaxies. The groups with smaller gas-mass-to-light ratios have smaller IMLR values and the IMLR is inversely correlated with the entropy excess. Based on these abundance features, we discussed the past history of metal enrichment processes in groups of galaxies.

37

, , , , , , , , , et al

We present multiwavelength observations of the afterglow of GRB 130427A, the brightest (in total fluence) gamma-ray burst (GRB) of the past 29 yr. Optical spectroscopy from Gemini-North reveals the redshift of the GRB to be z = 0.340, indicating that its unprecedented brightness is primarily the result of its relatively close proximity to Earth; the intrinsic luminosities of both the GRB and its afterglow are not extreme in comparison to other bright GRBs. We present a large suite of multiwavelength observations spanning from 300 s to 130 days after the burst and demonstrate that the afterglow shows relatively simple, smooth evolution at all frequencies, with no significant late-time flaring or rebrightening activity. The entire data set from 1 GHz to 10 GeV can be modeled as synchrotron emission from a combination of reverse and forward shocks in good agreement with the standard afterglow model, providing strong support to the applicability of the underlying theory and clarifying the nature of the GeV emission observed to last for minutes to hours following other very bright GRBs. A tenuous, wind-stratified circumburst density profile is required by the observations, suggesting a massive-star progenitor with a low mass-loss rate, perhaps due to low metallicity. GRBs similar in nature to GRB 130427A, inhabiting low-density media and exhibiting strong reverse shocks, are probably not uncommon but may have been difficult to recognize in the past owing to their relatively faint late-time radio emission; more such events should be found in abundance by the new generation of sensitive radio and millimeter instruments.

38

An analysis of more than 3000 galaxies resolved at better than 114 h−1 pc at z = 0.62 in a "LAOZI" cosmological adaptive mesh refinement hydrodynamic simulation is performed and insights are gained on star formation quenching and color migration. The vast majority of red galaxies are found to be within three virial radii of a larger galaxy at the onset of quenching, when the specific star formation rate experiences the sharpest decline to fall below ∼10−2–10−1 Gyr−1 (depending on the redshift). Thus, we shall call this mechanism "environment quenching," which encompasses satellite quenching. Two physical processes are largely responsible: Ram pressure stripping first disconnects the galaxy from the cold gas supply on large scales, followed by a longer period of cold gas starvation taking place in a high velocity-dispersion environment, in which during the early part of the process, the existing dense cold gas in the central region (⩽10 kpc) is consumed by in situ star formation. On average, quenching is found to be more efficient (i.e., a larger fraction of galaxies being quenched) but not faster (i.e., the duration being weakly dependent on the environment) in a denser environment. Throughout this quenching period and the ensuing one in the red sequence, galaxies follow nearly vertical tracks in the color–stellar mass diagram. In contrast, individual galaxies of all masses grow most of their stellar masses in the blue cloud, prior to the onset of quenching, and progressively more massive blue galaxies with already relatively older mean stellar ages continue to enter the red sequence. Consequently, correlations among observables of red galaxies—such as the age–mass relation— are largely inherited from their blue progenitors at the onset of quenching. While the color makeup of the entire galaxy population strongly depends on the environment, which is a direct result of environment quenching, physical properties of blue galaxies as a subpopulation show little dependence on the environment. A variety of predictions from the simulation are shown to be in accordance with extant observations.

39

, , and

High-dimensional, large-sample astrophysical databases of galaxy clusters, such as the Chandra Deep Field South COMBO-17 database, provide measurements on many variables for thousands of galaxies and a range of redshifts. Current understanding of galaxy formation and evolution rests sensitively on relationships between different astrophysical variables; hence an ability to detect and verify associations or correlations between variables is important in astrophysical research. In this paper, we apply a recently defined statistical measure called the distance correlation coefficient, which can be used to identify new associations and correlations between astrophysical variables. The distance correlation coefficient applies to variables of any dimension, can be used to determine smaller sets of variables that provide equivalent astrophysical information, is zero only when variables are independent, and is capable of detecting nonlinear associations that are undetectable by the classical Pearson correlation coefficient. Hence, the distance correlation coefficient provides more information than the Pearson coefficient. We analyze numerous pairs of variables in the COMBO-17 database with the distance correlation method and with the maximal information coefficient. We show that the Pearson coefficient can be estimated with higher accuracy from the corresponding distance correlation coefficient than from the maximal information coefficient. For given values of the Pearson coefficient, the distance correlation method has a greater ability than the maximal information coefficient to resolve astrophysical data into highly concentrated horseshoe- or V-shapes, which enhances classification and pattern identification. These results are observed over a range of redshifts beyond the local universe and for galaxies from elliptical to spiral.

40

, , , , , , , and

We report on the discovery of seven low-metallicity stars selected from the Hamburg/ESO Survey, six of which are extremely metal-poor (EMP, [Fe/H] ⩽ −3.0), with four having [Fe/H] ⩽ −3.5. Chemical abundances or upper limits are derived for these stars based on high-resolution (R ∼ 35,000) Magellan/MIKE spectroscopy, and are in general agreement with those of other very and extremely metal-poor stars reported in the literature. Accurate metallicities and abundance patterns for stars in this metallicity range are of particular importance for studies of the shape of the metallicity distribution function of the Milky Way's halo system, in particular for probing the nature of its low-metallicity tail. In addition, taking into account suggested evolutionary mixing effects, we find that six of the program stars (with [Fe/H] ⩽ −3.35) possess atmospheres that were likely originally enriched in carbon, relative to iron, during their main-sequence phases. These stars do not exhibit overabundances of their s-process elements, and hence may be, within the error bars, additional examples of the so-called CEMP-no class of objects.

41

, , , and

We present a Chandra and XMM-Newton study of the supernova remnant (SNR) Kes 73 hosting the anomalous X-ray pulsar 1E 1841−045. The Chandra image reveals clumpy structures across the remnant with enhanced emission along the western rim. The X-ray emission fills the radio shell and spatially correlates with the infrared image. The global X-ray spectrum is described by a two-component thermal model with a column density NH = 2.6$^{+0.4}_{-0.3}\times$1022 cm−2 and a total luminosity of LX = 3.3$^{+0.7}_{-0.5}\times$1037 erg s−1 (0.5–10 keV, at an assumed distance of 8.5 kpc). The soft component is characterized by a temperature kTs = 0.5$^{+0.1}_{-0.2}$ keV, a high ionization timescale, and enhanced Si and S abundances, suggesting emission that is dominated by shocked ejecta. The hard component has a temperature kTh = 1.6$^{+0.8}_{-0.7}$ keV, a relatively low ionization timescale, and mostly solar abundances suggesting emission that is dominated by interstellar/circumstellar shocked material. A spatially resolved spectroscopy study reveals no significant variations in the spectral properties. We infer an SNR age ranging between 750 yr and 2100 yr, an explosion energy of 3.0$^{+2.8}_{-1.8}\times$1050 erg and a shock velocity of (1.2 ± 0.3)×103 km s−1 (under the Sedov phase assumption). We also discuss the possible scenario for Kes 73 expanding into the late red-supergiant wind phase of its massive progenitor. Comparing the inferred metal abundances to core-collapse nucleosynthesis model yields, we estimate a progenitor mass ≳20 M, adding a candidate to the growing list of highly magnetized neutron stars proposed to be associated with very massive progenitors.

42

, , , , , , , , , et al

Some supernovae (SNe) may be powered by the interaction of the SN ejecta with a large amount of circumstellar matter (CSM). However, quantitative estimates of the CSM mass around such SNe are missing when the CSM material is optically thick. Specifically, current estimators are sensitive to uncertainties regarding the CSM density profile and the ejecta velocity. Here we outline a method to measure the mass of the optically thick CSM around such SNe. We present new visible-light and X-ray observations of SN 2010jl (PTF 10aaxf), including the first detection of an SN in the hard X-ray band using NuSTAR. The total radiated luminosity of SN 2010jl is extreme—at least 9 × 1050 erg. By modeling the visible-light data, we robustly show that the mass of the circumstellar material within ∼1016 cm of the progenitor of SN 2010jl was in excess of 10 M. This mass was likely ejected tens of years prior to the SN explosion. Our modeling suggests that the shock velocity during shock breakout was ∼6000 km s−1, decelerating to ∼2600 km s−1 about 2 yr after maximum light. Furthermore, our late-time NuSTAR and XMM spectra of the SN presumably provide the first direct measurement of SN shock velocity 2 yr after the SN maximum light—measured to be in the range of 2000–4500 km s−1 if the ions and electrons are in equilibrium, and ≳ 2000 km s−1 if they are not in equilibrium. This measurement is in agreement with the shock velocity predicted by our modeling of the visible-light data. Our observations also show that the average radial density distribution of the CSM roughly follows an r−2 law. A possible explanation for the ≳ 10 M of CSM and the wind-like profile is that they are the result of multiple pulsational pair instability events prior to the SN explosion, separated from each other by years.

43

, , and

We use Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) high-resolution imaging and spectroscopy observations from ∼6 to 100 keV to determine the statistical relationships between measured parameters (temperature, emission measure, etc.) of hot, thermal plasma in 37 intense (GOES M- and X-class) solar flares. The RHESSI data, most sensitive to the hottest flare plasmas, reveal a strong correlation between the maximum achieved temperature and the flare GOES class, such that "super-hot" temperatures >30 MK are achieved almost exclusively by X-class events; the observed correlation differs significantly from that of GOES-derived temperatures, and from previous studies. A nearly ubiquitous association with high emission measures, electron densities, and instantaneous thermal energies suggests that super-hot plasmas are physically distinct from cooler, ∼10–20 MK GOES plasmas, and that they require substantially greater energy input during the flare. High thermal energy densities suggest that super-hot flares require strong coronal magnetic fields, exceeding ∼100 G, and that both the plasma β and volume filling factor f cannot be much less than unity in the super-hot region.

44

, , and

Stellar mass M, radius R, and gravity g are important basic parameters in stellar physics. Accurate values for these parameters can be obtained from the gravitational interaction between stars in multiple systems or from asteroseismology. Stars in a cluster are thought to be formed coevally from the same interstellar cloud of gas and dust. The cluster members are therefore expected to have some properties in common. These common properties strengthen our ability to constrain stellar models and asteroseismically derived M, R, and g when tested against an ensemble of cluster stars. Here we derive new scaling relations based on a relation for stars on the Hayashi track ($\sqrt{T_{\rm eff}} \sim g^pR^q$) to determine the masses and metallicities of red giant branch stars in open clusters NGC 6791 and NGC 6819 from the global oscillation parameters Δν (the large frequency separation) and νmax (frequency of maximum oscillation power). The Δν and νmax values are derived from Kepler observations. From the analysis of these new relations we derive: (1) direct observational evidence that the masses of red giant branch stars in a cluster are the same within their uncertainties, (2) new methods to derive M and z of the cluster in a self-consistent way from Δν and νmax, with lower intrinsic uncertainties, and (3) the mass dependence in the Δν – νmax relation for red giant branch stars.

45

, , and

Coalescing black hole (BH) binaries forming in the dense core of globular clusters (GCs) are expected to be one of the brightest sources of gravitational wave (GW) radiation for the next generation of ground-based laser interferometers. Favorable conditions for a merger are initiated by the Kozai resonance in which the gravitational interaction with a third distant object, typically another BH, induces quasi-periodic variations of the inner BH binary eccentricity. In this article we perform high precision three-body simulations of the long-term evolution of hierarchical BH triples and investigate the conditions that lead to the merging of the BH binary and the way it might become an observable source of GW radiation. We find that the secular orbit average treatment, which was adopted in previous works, does not reliably describe the dynamics of these systems if the binary is orbited by the outer BH on a highly inclined orbit at a moderate distance. We show that 50% of coalescing BH binaries driven by the Kozai mechanism in GCs will have eccentricities larger than 0.1, with 10% of them being extremely eccentric, (1 − e) ≲ 10−4, when they first chirp in the frequency band of ground-based laser interferometers. This implies that a large fraction of such GW sources could be missed if conventional quasi-circular templates are used for analysis of GW detector data. The efficient detection of all coalescing BH binaries in GCs will therefore require template banks of eccentric inspiral waveforms for matched-filtering and dedicated search strategies.

46

, , and

In view of recent efforts to probe the physical conditions in the pulsar current sheet, we revisit the standard solution that describes the main elements of the ideal force-free pulsar magnetosphere. The simple physical requirement that the electric current contained in the current layer consists of the local electric charge moving outward at close to the speed of light yields a new solution for the pulsar magnetosphere everywhere that is ideal force-free except in the current layer. The main elements of the new solution are as follows: (1) the pulsar spindown rate of the aligned rotator is 23% larger than that of the orthogonal vacuum rotator; (2) only 60% of the magnetic flux that crosses the light cylinder opens up to infinity; (3) the electric current closes along the other 40%, which gradually converges to the equator; (4) this transfers 40% of the total pulsar spindown energy flux in the equatorial current sheet, which is then dissipated in the acceleration of particles and in high-energy electromagnetic radiation; and (5) there is no separatrix current layer. Our solution is a minimum free-parameter solution in that the equatorial current layer is electrostatically supported against collapse and thus does not require a thermal particle population. In this respect, it is one more step toward the development of a new standard solution. We discuss the implications for intermittent pulsars and long-duration gamma-ray bursts. We conclude that the physical conditions in the equatorial current layer determine the global structure of the pulsar magnetosphere.

47

and

We study the time dependent propagation of sub-ankle ultra high energy cosmic rays (UHECRs) originating from point-like Galactic sources. We show that drift in the Galactic magnetic field (GMF) may play an important role in the propagation of UHECRs and their measured anisotropy, particularly when the transport is anisotropic. To fully account for the discreteness of UHECR sources in space and time, a Monte Carlo method is used to randomly place sources in the Galaxy. The low anisotropy measured by Auger is not generally characteristic of the theoretical models, given that the sources are distributed in proportion to the star formation rate, but it can possibly be understood as (1) intermittency effects due to the discrete nature of the sources or, with extreme parameters, (2) a cancellation of drift current along a current sheet with outward radial diffusive flux. We conclude that it is possible to interpret the Galactic sub-ankle CR flux as being due entirely to intermittent discrete Galactic sources distributed in proportion to star formation, but only with a probability of roughly 35%, of which the spectrum is in accord with observations about 30% of the time. An alternative explanation for the low anisotropy may be that they are mostly extragalactic and/or heavy.

48

, , and

Relativistic, magnetized jets are observed to propagate to very large distances in many active galactic nuclei (AGNs). We use three-dimensional relativistic MHD simulations to study the propagation of Poynting flux-driven jets in AGNs. These jets are already assumed to be being launched from the vicinity (∼103 gravitational radii) of supermassive black holes. Jet injections are characterized by a model described in Li et al., and we follow the propagation of these jets to ∼parsec scales. We find that these current-carrying jets are always collimated and mildly relativistic. When α, the ratio of toroidal-to-poloidal magnetic flux injection, is large the jet is subject to nonaxisymmetric current-driven instabilities (CDI) which lead to substantial dissipation and reduced jet speed. However, even with the presence of instabilities, the jet is not disrupted and will continue to propagate to large distances. We suggest that the relatively weak impact by the instability is due to the nature of the instability being convective and the fact that the jet magnetic fields are rapidly evolving on Alfvénic time scales. We present the detailed jet properties and show that far from the jet launching region, a substantial amount of magnetic energy has been transformed into kinetic energy and thermal energy, producing a jet magnetization number σ < 1. In addition, we have also studied the effects of a gas pressure supported "disk" surrounding the injection region, and qualitatively similar global jet behaviors were observed. We stress that jet collimation, CDIs, and the subsequent energy transitions are intrinsic features of current-carrying jets.

49

, , , and

Among the kinetic microinstabilities, the firehose instability is one of the most efficient mechanisms to restrict the unlimited increase of temperature anisotropy in the direction of an ambient magnetic field as predicted by adiabatic expansion of collision-poor solar wind. Indeed, the solar wind proton temperature anisotropy detected near 1 AU shows that it is constrained by the marginal firehose condition. Of the two types of firehose instabilities, namely, parallel and oblique, the literature suggests that the solar wind data conform more closely to the marginal oblique firehose condition. In the present work, however, it is shown that the parallel firehose instability threshold is markedly influenced by the presence of anisotropic electrons, such that under some circumstances, the cumulative effects of both electron and proton anisotropies could describe the observation without considering the oblique firehose mode.

50

and

We studied the magnetic flux density carried by solar wind to various locations in the heliosphere, covering a heliospheric distance range of 0.3–5.4 AU and a heliolatitudinal range from 80° south to 80° north. Distributions of the radial component of the magnetic field, BR, were determined over long intervals from the Helios, ACE, STEREO, and Ulysses missions, as well as from using the 1 AU OMNI data set. We show that at larger distances from the Sun, the fluctuations of the magnetic field around the average Parker field line distort the distribution of BR to such an extent that the determination of the unsigned, open solar magnetic flux density from the average 〈|BR|〉 is no longer justified. We analyze in detail two methods for reducing the effect of fluctuations. The two methods are tested using magnetic field and plasma velocity measurements in the OMNI database and in the Ulysses observations, normalized to 1 AU. It is shown that without such corrections for the fluctuations, the magnetic flux density measured by Ulysses around the aphelion phase of the orbit is significantly overestimated. However, the matching between the in-ecliptic magnetic flux density at 1 AU (OMNI data) and the off-ecliptic, more distant, normalized flux density by Ulysses is remarkably good if corrections are made for the fluctuations using either method. The main finding of the analysis is that the magnetic flux density in the heliosphere is fairly uniform, with no significant variations having been observed either in heliocentric distance or heliographic latitude.

51

and

The Zeeman effect on lines in the (0, 0) A2Π–X2Σ+ band system of a cold molecular beam sample of magnesium hydride, MgH, has been recorded at high resolution (FWHM ≅60 MHz) and analyzed. The lines associated with the lowest rotational levels are detected for the first time. The field-free spectrum was analyzed to produce spectroscopic parameters for the A2Π (v = 0) state. The experimentally observed magnetic tuning of the low-rotational spectral features at field strengths comparable to those found in sunspots is accurately modeled by assuming that the electronic spin and orbital magnetic g-factors, gS and gL, of the A2Π and X2Σ+ states are 2.002 and 1.000, respectively, and gl is −0.0023 for the X2Σ+.

52

and

The Oort cloud remains one of the most poorly explored regions of the solar system. We propose that its properties can be constrained by studying a population of dust grains produced in collisions of comets in the outer solar system. We explore the dynamics of μm-sized grains outside the heliosphere (beyond ∼250 AU), which are predominantly affected by the magnetic field of the interstellar medium (ISM) flow past the Sun. We derive analytic models for the production and motion of small particles as a function of their birth location in the cloud and calculate the particle flux and velocity distribution in the inner solar system. These models are verified by direct numerical simulations. We show that grains originating in the Oort cloud have a unique distribution of arrival directions, which should easily distinguish them from both interplanetary and interstellar dust populations. We also demonstrate that the distribution of particle arrival velocities is uniquely determined by the mass distribution and dust production rate in the cloud. Cometary collisions within the cloud produce a flux of μm-sized grains in the inner solar system of up to several m−2 yr−1. The next generation dust detectors may be sensitive enough to detect and constrain this dust population, which will illuminate the Oort cloud's properties. We also show that the recently detected mysterious population of large (μm-sized) unbound particles, which seems to arrive with the ISM flow, is unlikely to be generated by collisions of comets in the Oort cloud.

53

and

Organic haze plays a key role in many planetary processes ranging from influencing the radiation budget of an atmosphere to serving as a source of prebiotic molecules on the surface. Numerous experiments have investigated the aerosols produced by exposing mixtures of N2/CH4 to a variety of energy sources. However, many N2/CH4 atmospheres in both our solar system and extrasolar planetary systems also contain carbon monoxide (CO). We have conducted a series of atmosphere simulation experiments to investigate the effect of CO on the formation and particle size of planetary haze analogues for a range of CO mixing ratios using two different energy sources, spark discharge and UV. We find that CO strongly affects both number density and particle size of the aerosols produced in our experiments and indicates that CO may play an important, previously unexplored, role in aerosol chemistry in planetary atmospheres.

54

and

We present the results of simulations on the detectability of O2 in the atmosphere of Earth twins around nearby low mass stars using high resolution transmission spectroscopy. We explore such detectability with each of the three upcoming Extremely Large Telescopes (ELTs), i.e., GMT, TMT, and E-ELT, and high resolution spectrographs, assuming such instruments will be available in all ELTs. With these simulations we extend previous studies by taking into account atmospheric refraction in the transmission spectrum of the exo-Earth and observational white and red noise contributions. Our studies reveal that the number of transits necessary to detect O2 in the atmosphere of an Earth twin around an M dwarf is by far higher than the number of transits estimated by Snellen et al. In addition, our simulations show that, when accounting for typical noise levels associated with observations in the optical and near-infrared, the O2A band at 760 nm is more favorable for detecting the exoplanetary signal than the O2 band at 1268 nm for all the spectral types, except M9V. We conclude that, unless unpredicted instrumental limitations arise, the implementation of pre-slit optics such as image slicers appears to be key to significantly improving the yield of this particular science case. However, even in the most optimistic cases, we conclude that the detection of O2 in the atmosphere of an Earth twin will only be feasible with the ELTs if the planet is orbiting a bright close by (d ⩽ 8 pc) M dwarf with a spectral type later than M3.

55

, , , , , , , , , and

We have obtained a deep, subarcsecond resolution X-ray image of the nuclear region of the luminous galaxy merger NGC 6240 with Chandra, which resolves the X-ray emission from the pair of active nuclei and the diffuse hot gas in great detail. We detect extended hard X-ray emission from kT ∼ 6 keV (∼70 MK) hot gas over a spatial scale of 5 kpc, indicating the presence of fast shocks with a velocity of ∼2200 km s−1. For the first time, we obtain the spatial distribution of this highly ionized gas emitting Fe xxv, which shows a remarkable correspondence to the large-scale morphology of H2(1–0) S(1) line emission and Hα filaments. Propagation of fast shocks originating in the starburst-driven wind into the ambient dense gas can account for this morphological correspondence. With an observed L0.5–8 keV = 5.3 × 1041 erg s−1, the diffuse hard X-ray emission is ∼100 times more luminous than that observed in the classic starburst galaxy M82. Assuming a filling factor of 1% for the 70 MK temperature gas, we estimate its total mass (Mhot = 1.8 × 108M) and thermal energy (Eth = 6.5 × 1057 erg). The total iron mass in the highly ionized plasma is MFe = 4.6 × 105M. Both the energetics and the iron mass in the hot gas are consistent with the expected injection from the supernovae explosion during the starburst that is commensurate with its high star formation rate. No evidence for fluorescent Fe i emission is found in the CO filament connecting the two nuclei.