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IOP Concise Physics

Relativistic Many-Body Theory and Statistical Mechanics

Lawrence P Horwitz and Rafael I Arshansky

Chapter 6

Quantum relativistic statistical mechanics, spin
statistics and quantum field theory

In chapter 5, we discussed the classical relativistic statistical mechanics of a many-
body system. In this chapter, we discuss the construction of quantum statistical
mechanics. The development of this theory for the special choice of κ = − Mc1

2
2 was

discussed in [1]. Here we work in the more general framework discussed in section
5.2. We show that much of the analysis given there is applicable to the quantum case
as well.

Quantum mechanics brings with it the notion of many-body systems of indis-
tinguishable particles that appear in nature to occur either symmetrically or
antisymmetrically (Bose–Einstein or Fermi–Dirac statistics) in their quantum
descriptions. The nonrelativistic quantum theory admits the construction of
many-body states with these properties in a very simple way in the construction
of tensor product states [2]. We show in this chapter how a similar method can be
followed for the Stueckelberg, Horwitz and Piron (SHP) relativistic quantum theory,
starting from a generalization of Wigner’s method [3] of describing relativistic spin
which can be applied to many-body quantum theory. We show, in our discussion of
spin and angular momentum, that it is necessary to introduce a covariant time-like
unit vector [4, 5], universal for the system, which foliates spacetime in such a way
that the space-like surfaces orthogonal to this vector admit representations of O(3)
for which one can add angular momenta [6] in a many-body state with the usual
Clebsch–Gordan coefficients and prove a spin-statistics theorem; one can also
construct in a natural way a Pauli–Lubanski operator (in an appendix to this
chapter) which provides a covariant signature of the state of angular momentum.

6.1 Relativistic quantum statistical mechanics
In this section we show how the results of the previous chapter on classical statistical
ensembles can be extended to the quantum case using density matrix methods.
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In the quantum theory the density operator for a quantum state [1] corresponds to
a microcanonical ensemble represented by

ρ κ ψ ψ= κ κ
*E( , ) , (6.1)E E, ,

where ψκ E, are (generalized) eigenfunctions of the total K operator, and E is the value
of the total energy operator (well-defined by translation invariance of the whole
system), as discussed for the classical microcanonical ensemble. The theory, assuming
that the microcanonical shell is specified by a nonrelativistic limit for which κ is chosen
to be precisely κ = −Mc /22 , is treated in detail in [1] and [4]. Here, we follow the more
general approach of section 5.2, where we admit in principle all values of κ
(permissible by the conservation law) in the construction of the quantum canonical
ensemble. We see from this that one can obtain a mass ‘temperature’ and achieve mass
stability of a ‘particle’ constructed from an ensemble of events in the same way as in
the classical case. A mass chemical potential is obtained in the grand canonical
ensemble. We show that there is a high temperature phase transition for which this
mass chemical potential controls the mass of the particle in the resulting transition.

The total number of states in the quantum microcanonical ensemble is given by

κ ρ ψΓ = = κE( , ) Tr , (6.2)E,
2

where Tr is the trace over a complete set (one obtains (6.2) immediately by using the
set ψκ{ }E, ); we have suppressed the additional quantum numbers needed in case of
degeneracy. The entropy is then defined as

κ κ= ΓS E k E( , ) ln ( , ). (6.3)B

The canonical ensemble is defined as for the classical case discussed in chapter 5,
and is given in terms of a partition of the total ensemble into a bath and subsystem,
now assuming that the complete set of states of the subsystem is orthogonal to those
of the bath, forming orthogonal subspaces. As for the classical case, this corresponds
to neglecting interactions between the bath and subsystem particles, so effectively
the Hilbert space for the system becomes a direct product H H⊗b s. The density of
states can then be represented as

∑
∑

ρ κ ψ ψ ψ ψ

ρ ρ

=

= ⊗

κ κ κ κ κ κ

κ κ κ

− ′ − ′ ′ − ′ − ′
*

′ ′
*

− ′ − ′ ′

E( , )

,
(6.4)s E E E E E E

s E E E

, , , ,

, ,

s

s

where we use primed quantities to represent subsystem properties. The total number
of states is then

∑κ κ κ κΓ = Γ − ′ − ′ Γ ′ ′E E E E( , ) ( , ) ( , ). (6.5)
s

b s

This result is exactly of the same form as (5.26) for the classical case, up to (5.41).
Assuming a maximum contribution on both variables to the sum, on this maximum
value,
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κ κ κ κΓ = Γ − ′ − ′ Γ ′ ′E E E E( , ) ( , ) ( , ) , (6.6)b smax max

and as in (5.38) the entropy defined as κ κ= ΓS E E( , ) ln ( , ) is additive, i.e.

κ κ κ κ
κ κ κ

= Γ − ′ − ′ + Γ ′ ′
= − ′ + ′ ′

S E E E E
S S E

( , ) ln ( , ) ln ( , )
( ) ( , ).

(6.7)b s

b s

We may use here the definitions (5.36) and (5.37) as well, i.e.

κ κ
κ κ

= Γ
= Γ

S E E
S E E

( , ) ln ( , )
( , ) ln ( , ),

(6.8)b b

s s

and

κ κ

∂
∂

= ∂
∂

=

∂
∂

= ∂
∂

=
κ

S
E

S
E T

S S
T

1

1
.

(6.9)

b s

b s

Since, as for the classical case, we have

κ κ κ κ≅ Γ − ′ − ′ + Γ ′ ′S E E E E( , ) ln ( , ) ln ( , ) (6.10)b s

so that

κ κΓ − ′ − ′ = κ κ− ′ − ′E E( , ) e . (6.11)b
S E E( , )b

For κ′ and ′E small compared to κ and E,

κ κΓ − ′ − ′ =

≅

=

κ κ

κ κ κ

κ
κ

− ′ − ′

− ′ ∂
∂ − ′ ∂

∂

− ′ − ′
κ

E E( , ) e

e

e e e .

(6.12)

b
S E E

S E
S

E
S
E

S E T
E
T

( , )

( , )

( , )

b

b
b b

b

Integrating over κ′ and ′E (essentially restricted to the neighborhood of the
maximum), we then have

∫κ κ κΓ = ′ ′ Γ ′ ′κ κ κ− ′ ∂
∂ − ′ ∂

∂E E E( , ) d d e e e ( , ). (6.13)S E
S

E
S
E s

( , )b
b b

Recall that, for the quantum case (using the spectral representation of K E,s s),

κ δ κ δΓ ′ ′ = − ′ − ′E K E E( , ) Tr ( ) ( ) (6.14)s s s s

and therefore we may write

κ δ κ δΓ = − ′ − ′

×

=

κ
κ

κ

− ′ − ′

− −

κ

κ

E K E E

Tr

( , ) Tr ( ) ( )

e e e

e e e .

(6.15)

s s s

S E T
E
T

S E
s

K
T

E
T

( , )

( , )

b

b
s s
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The distribution density operator for the N-body canonical ensemble is then (we
drop the subscript s)

ρ = − −
κe e (6.16)

N

K
T

E
T

and define the partition function as

=κ
− −

κQ T T( , ) Tre e . (6.17)
N

K
T

E
T

Let us now define the quantum Helmholtz free energy A by

=κ
β− κQ T T( , ) e , (6.18)N

A T T( , )

so that

=β β− −κTre e 1, (6.19)K A E( )

where β = T1/ and β =κ κT1/ . Differentiating with respect to β one obtains, as for
the classical case,

β
β

= < > − ∂
∂

= < > + ∂
∂

A E
A

E T
A
T

.
(6.20)

It then follows that if we define

= − ∂
∂

S
A
T

, (6.21)

we have

= < > −A E TS, (6.22)

which can, as before, be derived from the grand canonical ensemble.
There is another relation, however, that we can obtain by taking the derivative of

(3.12) with respect to βκ ; one obtains in this way

⎧⎨⎩
⎫⎬⎭β

β

β
β

= − + ∂
∂

= − < > + ∂
∂

β β

κ

β

κ

− − −κ κK
A

K
A

0 Tr e e e

,

(6.23)

K K A E( )

so that

β
< > = ∂

∂
= − ∂

∂κ

κ

κ
K

T
A T

T
A
T

1
. (6.24)

2
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We therefore obtain a mean value for < >K , the effective center-of-mass mass of
the subensemble, which is determined by Tκ and T under the quantum canonical
distribution, corresponding to an equilibrium of both heat and mass, without
exchange of particles with the bath.

The partition function is then, for the ≡N Ns -particle subspace,

=κ
− −

κQ T T Tr( , ) e e , (6.25)
N N

K
T

E
T

where the trace is now taken over a complete set inHs
1. The expectation value of an

operator O (on Hs) is then

O Oρ< > =
Q

Tr ( )
. (6.26)N

N

N

We now turn to the grand canonical ensemble.
The partition function for the grand canonical ensemble is defined as

∑=

× −

κ
β β

κ

=
− −

−

κQ V T T

Q V V T T

( , , ) Tr e e

( , , ),
(6.27)N N

N
s

K E

N N s

0s

s s

s

where s refers to theNs-body subsystem (T and Tκ are equilibrium parameters for the
whole system), and for the bath at each Ns. The normalized density operator is then

ρ Ω =

× −
κ

β β

κ

− −

−

κN
Q V T T

Q V V T T

( , )
1

( , , )
e e

( , , ),
. (6.28)

s s
N

K E

N N s

s s

s

We can now write, as for the classical case (for Ns small compared to N, which can
be arbitrarily large),

− =

≅

κ
β

κ
β

−
− − − −

∂
∂ + ∂

∂ + ∂
∂

κQ V V T T

Q V T T

( , , ) e

( , , )e
. (6.29)

N N s
A V V T T K K N N

N
V A

V
A
K

K A
N

N

( , , , , )
s

s s s

s s s

It then follows that

μ

∂
∂

= −

∂
∂

=

A
V

P

A
N

(6.30)

with the quantum mass chemical potential

μ∂
∂

= − κ
A
K

. (6.31)

1As we discuss below, the N-body states are constructed on the basis of N-fold tensor products of wave
functions in Hs.
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The remainder of the results given in chapter 5 (section 5.5 and 5.6) are exactly the
same for the quantum case, where the integrals over Ωd s are replaced by the trace of
the corresponding operator valued integrands. The conclusions therefore remain the
same for the quantum theory.

6.2 The ideal free quantum gas
In this section we discuss the relativistic version of Boltzmann counting to obtain the
corresponding Bose–Einstein, Boltzmann, and Fermi–Dirac statistics [1]. We shall
explain in our discussion of the spin states in a later section of this chapter how the
spin-statistics theorem emerges in the relativistic quantum theory, and assume its
validity in this section.

For the ideal free quantum gas in a spacetime box of dimension

− ⩽ ⩽ Δ ⩽ ⩽ ΔL x y z L t t t/2 , , /2, /2 /2,

the microcanonical distribution is characterized by the spectrum

= ℏ + + −MK k k k k2 ( ), (6.32)2
1
2

2
2

3
2

0
2

where

π ν
πν

=
Δ

= =k
t

k
L

j
2

,
2

1, 2, 3, (6.33)j
j

0 0

and ν ν = ± ±, 0, 1, 2 ....j0 Then, νπ= ℏ Lp (2 / ) and ε π ν= ℏ Δt(2 / ) 0. The integral
measure is given by

ε π∼ ℏ = Δp
V

V L td d
(2 )

, . (6.34)3
4

(4)
(4) 3

We now compute the Bose–Einstein, Fermi–Dirac, and Boltzmann distributions
in terms of the discrete sums characteristic of kinetic theory. Let

∑

ε μ= ∈
=

=
ε ε

i m
g

n n

pcell around , , ,
number of mass and momentum states in each cell

,
(6.35)i

i p p
,

,

where εnp, is the number of particles with energy momentum εp, . LetW n({ })i be the
number of states associated with the distribution n{ }i . Then, the total number of
states in phase space is

∑Γ =E K W n( , ) ({ }) (6.36)
n{ }

i0

i

with the constraints

∑ ∑ ∑ε= = =E n K K n N n , (6.37)
i

i i
i

i i
i

i0
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where Ki is the average value of εK p( , ) in the ith cell. Taking into account the
constraints (6.37), we wish to find n{ }i such that

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭∑ ∑δ α βε γ− − + =W n n n K nln ({ }) 0, (6.38)

i i

i i i i i i

where α β γ, , are Lagrange parameters implementing the constraints. Permitting up
to gi states in each cell for Fermi–Dirac statistics, and all integer values for Bose–
Einstein statistics, we find the distributions

= Π
+ − !
! − !

–

= Π
!

! − !
–

= Π
!
!

W n
n g

N g
g

n g n
g

n

({ })
( 1)

( 1)
(Bose Einstein)

( )
(Fermi Dirac)

(Boltzmann)

(6.39)

i i
i i

i i

i
i

i i i

i
i

i

and obtain the average occupation number distributions (the sign of Ki is important
in establishing the sign of the second variation)

ζ

ζ
ζ

¯ =
−

–

=
+

–

=

βε

βε

βε

− −

− −

−

n
g

z
g

z
gz

e 1
(Bose Einstein)

e 1
(Fermi Dirac)

e (Boltzmann),

(6.40)

i
i

K

i
K

i
K

1

1

i i

i i

i i

where = αz e and ζ = γe . Using the maximal distributions in (6.38), the entropy is
given by

= ¯S k W nln ({ }) (6.41)B i

Pinching down the size of the cells to obtain continuum distributions, we can write
(taking =g 1i )

ζ

ζ
ζ

¯ =
−

–

= ¯

=
+

–

=

ε ε βε

ε

ε βε

ε βε

− −

− −

−

n
z
n

z

z

1
e 1

(Bose Einstein)

1
e 1

(Fermi Dirac)

e (Boltzmann).

(6.42)

K

K

K

p p

p

p

p

, 1 ( , )

,

1 ( , )

( , )

The parameters β ζz, , are to be determined from

∑
∑

∑

ε

ε

¯ =

¯ =

¯ =

ε ε

ε ε

ε ε

n E

n N

K n Kp

,

( , ) ,

(6.43)

p

p

p

p p

p

,
,

,
,

,
, 0
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where the sums are to be taken over a narrow range of masses Δm. Comparing the
Boltzmann case with the classical grand canonical distributions, we identify
β ζ= = =μβ μ β−z, e , e

k T
1

B
K .

Note that in the Fermi–Dirac distribution we have counted as distinct states the
several values of ε for each p which lie within the admissible widths of the particles.
Although the distributions we have obtained are formally very similar to the usual
one [7] (except for the factor ζ−K ), the usual notion of Fermi–Dirac statistics treats
all of these states the same. The additional multiplicity would cancel out in the
expectation values of observables, so that the results should be very close to those of
the usual distribution functions.

Using Stirling’s approximation for the factorials, one finds that for the Boltzmann
gas,

β ζ= − −S k E K N z/ ln ln . (6.44)B

We now turn to a study of the ideal gas from the point of view of the grand
canonical ensemble.

For Boltzmann statistics, the canonical partition function can be written, in the
quantum version of (5.72) and (5.75) (taking into account a priori normalizations),
as

⎛
⎝⎜

⎞
⎠⎟∑ζ ζˆ =

!
!

Πε ε ϵ

β ε ε−Q V T
N

N
n

( , , )
1

e , (6.45)
n ,

N
E K p

p p

p(4)

, ,

( , ) ( , )

p

where

∑
∑

ε

ε

=

=

ε ε ε

ε ε

E n n

K n K p

({ }) ,

({ }) ( , )
(6.46)

pp p

p p

,
,

,

,
,

and

∑=
ε εN n (6.47)

p p
,

,

as a constraint.
With the constraint (6.47), the sum in (6.45) becomes

∑ζ ζˆ =
! ε

βε ε−( )Q V T
N

( , , )
1

e , (6.48)N
K

N

p
p(4)

,
( , )

and therefore

Q ∑ζ ζ=
ε

βε ε−{ }V z T z( , , , ) exp e . (6.49)K
p

p(4)
,

( , )

The equation of state can then be obtained explicitly by noting that, as in the
classical case,
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Q Q< > = ∂
∂

= =N z
z

PV
k T

ln ln . (6.50)
B

Evaluating the distributions for Bose–Einstein and Fermi–Dirac statistics one
obtains [1]

Q ζ
ζ
ζ

= Π
−

= Π +

ε βε ε

ε
βε ε

−

−

V z T
z

z

( , , , )
1

1 e
(BE)

(1 e ) (FD).
(6.51)K

K

p p

p
p

(4)
, ( , )

,
( , )

The equations of state for the relativistic free quantum gas are

Q ∑

∑

ζ

ζ

= = − −

= +

ε
βε ε

ε
βε ε

−

−

PV
k T

z

z

ln ln(1 e ) (BE)

ln(1 e ) (FD).
(6.52)B p

K

K

p

p
p

,
( , )

,
( , )

The total number of particles is

Q ∑

∑

ζ
ζ

ζ
ζ

= ∂
∂

=
−

=
+

ε

βε ε

βε ε

ε

βε ε

βε ε

−

−

−

−

N z
z

z
z

z
z

ln
e

1 e
(BE)

e
1 e

(FD).

(6.53)

K p

K

K p

K

p p

p p

,

( , )

( , )

,

( , )

( , )

Similarly, by differentiating with respect to βε ε ζ− K p( , ) ln , we find that the
average occupation numbers are given by

ζ
ζ

< > =
∓ε

βε ε

βε ε

−

−n
z

z
e

1 e
. (6.54)

K p

Kp p,

( , )

( , )

Equations (6.53) then correspond to

∑= < >
ε

εN n . (6.55)
p,

p,

6.3 Relativistic high temperature Boson phase transition
The existence of the grand canonical ensemble with this chemical potential enables
us to define a particle mass as a result of a high temperature phase transition. Since
this determination is in a statistical framework, fluctuations nevertheless admit the
development of the off-shell theory for individual particles which provides the
framework for this result.

Haber and Weldon [8] showed, in the usual (mass shell) form of relativistic
quantum mechanics, that taking into account both the particle and antiparticle
distribution functions, a system of bosons can undergo a high temperature phase
transition. The introduction of antiparticles in the theory, by application of the
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arguments of Haber and Weldon, implies the addition of another term in the total
number expectation with a negative sign, carrying an opposite sign for the energy
chemical potential, i.e. formula (6.53) (for the boson case) is written as [9] (dividing
numerator and denominator by the numerator factor)2

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∑=
−

−
−

μ μ

μ μ

− −

+ −

μ
N V

1

e 1

1

e 1

.

(6.56)

k E m
M

T

E m
M

T

(4)

2
/

2
/

K

K

2

2

As assumed by Haber and Weldon, the total particle number remains unchanged in
the equilibrium state, but the presence of antiparticles implies annihilation and
creation processes. Thus, in counting the total number of particles, the antiparticle
distribution must carry a negative sign, consistent with the interpretation of
Stueckelberg as given in the early chapters of the book. On the other hand, both
the terms in the sum in equation (6.56) must separately be positive, implying the

μ μ

μ μ

− − ⩾

+ − ⩾

m
m
M

m
m
M

2
0,

2
0,

(6.57)
K

K

2

2

resulting in the inequalities representing the nonnegativeness of the discriminants in
the mass quadratic formulas,

μ
μ

μ
− ⩽ ⩽M M

2 2
. (6.58)

K K

The bounds of the intersection of the regions satisfying the inequalities (6.57) are
given by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟μ

μ μ
μ

μ μ
− −

∣ ∣
⩽ ⩽ + −

∣ ∣M
M

m
M

M
1 1

2
1 1

2
, (6.59)

K

K

K

K

which for small μ μ∣ ∣
M

K reduces, as in the no-antiparticle case, to

μ
μ

∣ ∣ ⩽ ⩽m
M2

. (6.60)
K

2 Since the sign of the energy of the antiparticle is opposite to that of the particle, the chemical potential μ must
change sign for the antiparticle, but the mass squared of both particle and antiparticle are positive, and
therefore the sign of μK does not change.
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Replacing the summation in (6.56) by integration, one obtains the formula for the
number density

⎡
⎣⎢

⎤
⎦⎥

∫ ∫π
β β=

×
−

−
−

β μ μ

β μ μ

−∞

∞

− −

+ −

n m m
1

4
d sinh d

1

e 1
,

1

e 1

(6.61)( )

( )

m

m

m m M T

m m M T

3
3 2

cosh /2 /

cosh /2 /

K

K

1

2

2

2

wherem1 andm2 are defined by the bounds (6.59). Integrating out the β variable, one
finds for high temperature μ/T ≪ 1,

⎛
⎝⎜

⎞
⎠⎟π μ

μ
μ μ

≅ −n
M

T
M

1
1

2
. (6.62)

K

K

3

2

For T above a critical value, the range of admissible masses is pinched down to zero,
corresponding to a phase transition where the dispersion

δ = < > − < >m m m2 2

vanishes as −T T ;c a second-order transition corresponding to a ground state with
μ= −μ

μp p M( / )k
2. States with temperature >T Tc correspond to off-shell excitations

of such a ground state.
The phase transition that we have described selects a definite mass for the

particles, but this result is statistical. Although the mean fluctuations vanish, there is
nevertheless sufficient freedom in the phase space for each particle to fulfil the off-
shell requirements for the formulation of the Stueckelberg theory.

This mechanism provides an insight into a possibly more general formulation
which would explain the stability of the asymptotic mass of a particle in the
Stueckelberg theory in the presence of arbitrary number of collisions; the existence
of several solutions could give rise to what appears phenomenologically as mass
spectra of observed particles [10].

6.4 Quantization of the electromagnetic field and black-body
radiation

The existence of quanta of the electromagnetic field and their role in black-body
radiation, through the work of Planck [11] lies at the foundation of the quantum
theory. It is therefore important to understand how this phenomenon can be
understood in the framework of the generalized Maxwell electromagnetism dis-
cussed in chapter 2, which appears to be a necessary consequence of the SHP theory.

As we have explained in chapter 2, the Stueckelberg–Schrödinger equation
implies that the electromagnetic gauge fields are five-dimensional, including both
a Lorentz four-vector field aμ, which compensates the action of the four-derivative
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on the wave function, and a Lorentz scalar a5 field which compensates for the τ
derivative of the evolving wave function. The usual argument for two polarization
states of the four-dimensional Maxwell field is that, of the four degrees of freedom,
there is a gauge condition and the constraint of the Gauss law, leaving two
polarization states. The factor of two on the Bose–Einstein distribution is essential
for the computation of the specific heat of a black body, but the argument of the
existence of two constraints leaves the possibility of three polarization states. In the
following, we show that the observable radiation field of a black body indeed carries
just two polarization states [12].

The canonical quantization of the five-dimensional radiation field was carried out
by Shnerb and Horwitz [13] following the basic ideas of Teitelboim and Henneaux
[14] and Haller [15] using algebraic methods. Taking for this discussion, as in [16],
the signature of the five-dimensional manifold to be σ + − − −[ , , , , ], we write the
action for the interacting fields (in this section we work in the framework of both
quantized gauge fields and quantized wave functions ψ) as

⎡⎣ ⎤⎦

∫ λ
λ

ψ ψ
τ

ψ ψ
τ

ψ ψ

ψ ψ

= − − ∂ +

∂
∂

− ∂
∂

− ∂ − ′ ∂ − ′

+ ′

αβ
αβ α

α

μ μ
μ μ

τ

−∞

∞

†

† †

†

{

}

S x f f G x a x G x

i x
x

M
x

x
M

e a x e a x x

e x a x x

d
4

( )[ ( )]
1
2

( )

( )
( )

1
2

( )
( ) 1

2
[ i ( )] i ( ) ( )

( ) ( ) ( ) ,

(6.63)

5 2

where λ is a quantity with dimensions of length (it will play the role of the τ
correlation length of the wave function in the Maxwell limit). As discussed in
chapter 2, ′e is the coupling constant of the covariant theory, which also has
dimension of length, and G plays the role of an auxiliary field [15] (somewhat
analogous to the Fadeev–Popov ghosts [17] of the path integral approach). The
canonically conjugate momenta are given by

L

L

L

π δ
δ

λ

π δ
δ

σ

π δ
δ ψ

ψ

=
∂

= −

=
∂

= −

=
∂

=

μ

τ μ

τμ

τ

τ τ

ψ
τ

†

( )a
f

a
G

,

( )
,

( )
i .

(6.64)

We now impose equal time (τ) commutation relations

⎡⎣ ⎤⎦π δ δ= − −α
β β

αx a y x y( ), ( ) i ( ) (6.65)

and (we are assuming ψ a boson field for our present purposes)

ψ ψ δ= − −† x y x y[i ( ), ( )] i ( ). (6.66)
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The Hamiltonian (generating unitary evolution in ψ and αa ) then takes the form

⎡⎣ ⎤⎦L∫σ π π ψ ψ= ∂ + ∂ + ∂ −

= + +

μ
τ μ

τ
τ τ τ

γ γ

†K x a a

K K K

d ( ) ( ) i

,
(6.67)

m m

4

where

∫ λ
π π λσ

π π
λ

π π

= − −

+ ∂ − ∂ −

γ
μ

μ
μν

μν

μ
μ

τ τ
μ

μ τ
τ

{
}( ) ( )

K x f f

a a

d
1
2 4

1
2

(6.68)

4

and

⎧⎨⎩ ⎡⎣ ⎤⎦
⎫⎬⎭

∫σ ψ ψ

ψ ψ ψ

ψ ψ

= ∂ ∂

= − ′ − ′ ∂ + ∂

− ′

μ
μ

τ τ
μ

μ μ
μ

μ
μ

†

† †

†

( )

K
M

x

K x e a
e
M

a a

e
M

a a

2
d ,

d
i

2

2
.

(6.69)

m

m

4

4

2

The stability condition on the states for the restriction to the Gauss law

π< ∂ + > =μ
μ τj 0 (6.70)

implies that π< > =τ 0; one can then eliminate the longitudinal part of the field μa .
In case the four vector μk in the Fourier decomposition of the μa field is time-like,

for which theO(4, 1) theory is stable, one can eliminate by a unitary transformation
(as in the Maxwell case) the time component of μa . There remain, except for the
Coulomb term, three space-like polarization components ai, and the Hilbert space
has positive norm.

We will show in our discussion of spin and angular momentum that vector bosons
must lie in a representation of angular momentum with spin 1; as discussed in Jauch
and Rohrlich [18], page 41), these components with canonical commutation
relations provide a representation in any choice of gauge that meets this require-
ment. For the asymptotic photons of the black-body radiation, the components for

μk space-like, for which the stable solutions are representations of O(2, 1) do not
meet this requirement. Furthermore, in the case that μk is light-like, the elimination
of longitudinal modes corresponds exactly to the removal of both a0 and a , leaving
just two polarization states. This limiting case is realized for the asymptotic photons
of the black body when τ → ∞, leaving, by application of the Riemann–Lebesgue
lemma, the ‘massless’ zero mode3. We make this argument explicit in the following.

3 It was suggested by Andrew Bennett (private communication) that the concatenated field equations,
corresponding to an integral over τ, would equivalently lead to this result.
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The analog of the radiation gauge (e.g. [19]) for the five-dimensional fields would
correspond to setting the a5 field equal to zero; this corresponds to subtracting the 5-
gradient of the indefinite integral of the a5 field from the aα fields, i.e. for

′ = + ∂ Λa a , (6.71)5 5 5

we can take

∫τ τΛ = − ′ + Λ̃
τ

x a x x( , ) ( , ) ( ). (6.72)5

Then, since the second term is independent of τ, ′ =a 05 . Furthermore, since

′ = + ∂ Λμ μ μa a x( ), (6.73)

it follows that

∫τ τ τ′ = − ∂ ′ ′ + ∂ Λ̃
τ

a a x a x x( , ) ( , )d ( ). (6.74)0 0 0 5 0

Under the assumption that the asymptotic fields are independent of τ, assuming
convergence of the indefinite integral in (6.74) for large τ, we can make ′ =a 00

asymptotically with the choice

∫ ∫ ∫τ τ τΛ̃ = − ′ ′ + ′ ′ ′ ′
τ

x a t t a t tx x( ) ( , , )d ( , , )d d . (6.75)
t t

0 5

The remaining term of the generalized Lorentz gauge ∂ =α
αa 0 is just the

condition ∇ · =a 0, exhibiting the required rotational invariance on the orbit of
the induced representation for the μa field. The longitudinal component along the k
vector must therefore vanish, and we are left with two effective polarization states.

Therefore, with the Gauss law and the additional gauge condition on the five-
dimensional fields, there are three constraints on the fields, leaving two degrees of
freedom.

The remaining degrees of freedom correspond, in the induced representation, to
two polarization states that are directly interpretable as angular momentum states of
the photon in SU(2) on the orbit.

The boson distribution function obtained above with the remaining two degrees
of freedom then gives the usual result for the specific heat for black-body radiation
[4].

We remark that for the relativistic Gibbs ensembles worked out above (section
6.2) we assumed for simplicity that there were no antiparticles (the Boltzmann
counting construction did not make this assumption). The existence of the a5 field
makes possible, as we have seen in chapter 2, the (classical) particle–antiparticle
transition on particle world lines. The analog of the radiation gauge requirement
that we have imposed above as a second gauge condition, resulting in residually two
degrees of freedom for the radiation field, would not admit this mechanism in the
detectors. The presence of pair production [20] (expected to be very small) in the
detector would therefore suggest that there may be this additional degree of freedom

Relativistic Many-Body Theory and Statistical Mechanics

6-14



in the boson gas, with a concomitantly small correction in the black-body radiation
formula.

6.5 Manifestly covariant relativistic Boltzmann equation
In this section, we shall derive a covariant Boltzmann equation with collision terms
obtained from the binary scattering of events as described by relativistic scattering
theory. We give here the basic ideas, and refer the reader to [21] for further details.

We study the case of N identical particles, and for convenience use the formalism
of second quantization. We shall discuss the general construction of the many-body
Fock space and second quantization in detail in the next section, but it will suffice
for our treatment of scalar fields to assume here (6.66) as well, to define annihilation
and creation operators for the boson fields.

The field which annihilates an event at the point =q tq( , ) is related to the
operator which annihilates an event of energy momentum =p E cp( , / ) by the
Fourier transform (ℏ = 1)

∫ψ
π

ψ= ·q d p p( )
1

(2 )
d ( )e . (6.76)p q

2
4 i

An arbitrary operator A on the Hilbert space of events can be represented as

∫∑ ψ ψ ψ ψ=
!

⋯ ˆ ⋯
=

† †A
s

q q q q A q q
1

d ... d ( ) ( ) ( ) ( ), (6.77)
s

N

s s s s1
4

1
4

1 1

where Â are operators acting on the space associated with every s event subspace of
the N event system. The expectation value of such an operator can be expressed in
terms of the trace with the density matrix ρ as

ρ< > =A ATr( ). (6.78)

The Weyl correspondence applies, as in the nonrelativistic theory, to every s event
operator represented as [22]

∫ ∑ˆ = ⋯ · ˆ + · ˆ
={ }A k j k j A k j k j k q j pd d ... d d ( )exp i , (6.79)s s s s s s n

s
n n n n

4
1

4
1

4 4
1 1 1

where the operators ˆ ˆq p,n n satisfy the canonical commutation relations

⎡⎣ ⎤⎦ δˆ ˆ =μ ν μν
′ ′q p g, i . (6.80)n n n n,

There is a corresponding function A q p q p( , ,... )s s s1 1 of the classical variables
containing the same coefficients ⋯A k j k j( )s s s1 1 which is its classical limit. Consider,
in particular, the case s = 1. Then, the quantity < >A1 is given by

∫ ∫ ρψ ψ< > = † · ˆ+ · ˆA q k jA k j q qd d d ( , )Tr( ( )e ( )). (6.81)k q j p
1

4 4 4
1

i( )

The exponential can be factorized to
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· + ∂ = · · ∂ ·k q j k q j k jexp(i ) exp(i )exp( )exp(i /2). (6.82)

Then (6.81) becomes

∫< > =A q pA q p f q pd d ( , ) ( , ), (6.83)W
1

4 4
1 1

where A q p( , )1 is the classical function corresponding to the operator Â1 through the
Weyl correspondence, and we have defined the one particle relativistic Wigner
function

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠⎟

∫

∫
π

ρψ ψ

π
ρψ ψ

= − +

= − +

− · †

· †

( )f q p j Tr q
j

q
j

k Tr p
k

p
k

,
1

(2 )
d e

2 2

1
(2 )

d e
2 2

.

(6.84)

W j p

k q

1 4
4 i

4
4 i

As for the nonrelativistic analog of this procedure, f q p( , )W
1 is not necessarily

positive, and cannot be interpreted as a pointwise probability density. It has the
advantage, as we shall see, that the equations of motion are very analogous to the
classical equations in phase space, and the results are immediately applicable to
classical transport theory. Furthermore, note that

∫ ρψ ψ= ⩾†q f q p p pd ( , ) Tr( ( ) ( )) 0, (6.85)W4
1

and that

∫ ∫ ρψ ψ= †q pf q p q q qd d ( , ) d Tr( ( ) ( )). (6.86)W4 4
1

4

Since

∫ ∫ψ ψ ψ ψ= =† †q q q q p p Nd ( ) ( ) d ( ) ( ) , (6.87)4 4

the number operator for the total absolutely conserved number of the set of events is
a superselection rule for this system, and therefore just a simple classical number,

∫ ρ= =q pf q p N Nd d ( , ) Tr , (6.88)W4 4
1

i.e. a ‘normalization’ for the Wigner function.
We now consider the τ evolution of the one particle distribution function. To do

this in a convenient way, we study the Fourier transform

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠⎟∫ ρψ ψ= = − +· †f k p q f q p p

k
p

k
( , ) d e ( , ) Tr

2 2
. (6.89)W k q W

1
4 i

1

Using the cyclic properties of operators under a trace with the density matrix, it then
follows from the Stueckelberg–Schrödinger evolution that
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⎡
⎣⎢
⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠⎟

⎤
⎦⎥ρψ ψ∂ = − − +τ

†f k p p
k

p
k

K( , ) iTr
2 2

, . (6.90)W
1

We assume that K has the form

= +K K V , (6.91)0

where

∫ ψ ψ= −
∂ ∂μ

μ†K q q
M

qd ( )
2

( ), (6.92)0
4

and

∫ ψ ψ ψ ψ= ′ ″ ′ ″ ′ − ″ ″ ′† †V q q q q V q q q q
1
2

d d ( ) ( ) ( ) ( ) ( ) (6.93)4 4

is the two-body operator (Poincaré invariant) corresponding to a two-event
interaction potential. Carrying out the commutator with this model, one finds
that the time dependence of the one particle Wigner function depends on the two
particle Wigner function, defined by

∫
ρψ ψ

ψ ψ

=

= − −
× + +

− · − ·

† †

f k p k p q q f q p q p

p k p k

p k p k

( , ) d d e ( , )

Tr( ( /2) ( /2)

( /2) ( /2)),

(6.94)

W k q k q W
2 1 1 2 2

4
1

4
2

i i
2 1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

according to

∫ δ

∂ =

+

τf k p L f k p

p k k L f k p k p

( , ) ( , )

d d ( ) ( , ),
(6.95)

W W

W

1 1 1 0 1 1 1

4
2

4
2

4
2 12 2 1 1 2 2

where L0 and L12 are differential operators induced by the commutator with K0.
This procedure may be applied again to every fs

W for =s N1, 2 ... , and results in a
set of equations of precisely the same form as the well-known Bogoliubov–Born–
Green–Kirkwood–Yvon (BBGKY) hierarchy [22] for the nonrelativistic case. One
obtains in this way a relativistically covariant generalization of the BBGKY
hierarchy derived from basic dynamical principles.

The higher order relations invoke higher order correlations, and for a dilute gas of
events, we may assume that truncation at the level of two-body correlations will
suffice. Furthermore, the two-body correlation terms can be represented to fairly
good accuracy, as in the non-relativistic case, by two-body scattering amplitudes
consisting of two basic terms: one scattering events into the quasi-equilibrium
ensemble, and the other scattering events out. The basic ingredients needed are
derived in chapter 4 on scattering theory. The scattering, as for the nonrelativistic
case, induces changes in the distribution function, i.e. the rate of change of f due to
collisions is
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= −+ −D f q p D f q p D f p q( , ) ( , ) ( , ), (6.96)c c c

where δτ−D f p q q p( , )d dc
4 4 is the number of collisions in the interval δτ in which one

of the events is in q pd d4 4 , and δτ+D f p q q p( , )d dc
4 4 is the number of collisions in δτ in

which one of the final events is in q pd d4 4 . Denoting by Ṗ the transition rate derived
from the two-body scattering theory for this potential, we have

∫
∫

= ′ ′ ˙ ′ ′ → ′ ′

= ′ ′ ˙ → ′ ′

+

−

D f q p p p p P p p p p f q p f q p

D f q p p p p P p p p p f q p f q p

( , ) d d d ( ) ( , ) ( , ),

( , ) d d d ( ) ( , ) ( , ).
(6.97)

c

c

4
1

4
1

4
1 1 1

4
1

4
1

4
1 1 1

Furthermore, these results can be put into terms of the experimentally measured
scattering cross sections [23] in the form (we denote −q q1 2 by qr, and −p p( )1

2 1 2 by
pr, = +P p p1 2, and assume a narrow distribution over the mass shifts)

∫π σ∂ + ∂
∂

= ′
∣ ′

′ →

× ′ ′ −

τ

μ

μ

{ }

( )

( )

f q p
p
M q

f q p p p
M p

p p P

f q p f q p f q p f q p

p
( , ) ( , ) 4 d d

d
d

;

( , ) , ( , ) ( , ) .

(6.98)
r r

r
exp

r
r r

3 3
3

1 1

With this final form of the Boltzmann equation, we can discuss the relativistic H
theorem. Defining the functional [7]

∫τ τ τ τ= ≡ −H q pf q p f q p S k( ) d d ( , , )ln ( , , ) ( )/ , (6.99)B
4 4

where τS( ) is the entropy. Then, the derivative of τH ( ) is

⎛
⎝⎜
⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

∫τ
= ′ − ′ ′

× ′ ˙ −
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′ − ′

H
q p p p f q p f q p f q p f q p

f q p f q p f q p P
p p p p

P

d
d

1
64

d d d d [ln ( , ) ( , ) ln ( , ) ( , )]

{ ( , ) ( , ) ( , )}
2 2

; .
(6.100)

4 4 4
1

4
1 1 1

1
1 1

Since ′˙ → ⩾P p p P( : ) 0,r r and the remaining factor in the integrand is non-positive,
we obtain

τ
τ

⩽Hd ( )
d

0, (6.101)

the relativistic H theorem.
This result implies that the entropy τS( ) is monotonically increasing as a function

of τ, but not necessarily in t, since the directions of t and τ for the antiparticle are
opposite. In the nonrelativistic limit, the standard H theorem is recovered, since t
and τ become identical.

Relativistic Many-Body Theory and Statistical Mechanics

6-18



6.6 Spin, statistics and correlations
We shall discuss in this chapter the basic idea of a relativistic particle with spin,
based on Wigner’s seminal work [3]. The theory is adapted here to be applicable to
relativistic quantum theory; in this form, Wigner’s theory together with the
requirements imposed by the observed correlation between spin and statistics in
nature for identical particle systems make it possible to define the total spin of a state
of a relativistic many-body system.

Furthermore, we shall show that a generalization of the construction of Wigner
yields, in the framework we shall present here, a representation for tensor operators
corresponding to an invariant decomposition in terms of irreducible representations
of SO(3); this procedure may be applied as well to spinorial valued operators, such
as Rarita–Schwinger fields [24].

6.6.1 Introduction

The spin of a particle in a nonrelativistic framework corresponds to the lowest
dimensional nontrivial representation of the rotation group; the generators are the
Pauli matrices σi divided by two, the generators of the fundamental representation of
the double covering of SO(3). The self-adjoint operators that are the generators of
this group measure intrinsic angular momentum and are associated with magnetic
moments [25].

In the nonrelativistic quantum theory, the spin states of a two or more particle
system are defined by combining the spins of these particles at equal time using
appropriate Clebsch–Gordan coefficients [2] at each value of the time. The
restriction to equal time follows from the tensor product form of the representation
of the quantum states for a many-body problem [2]. This correlation at equal time in
the nonrelativistic quantum theory is the source of the famous Einstein–Podolsky–
Rosen discussion [26] and provides an important model for quantum information
transfer. In the SHP theory, as we shall see below, these correlations persist for not
precisely equal times.

The standard Pauli description of a particle with spin is not, however, relativisti-
cally covariant, but Wigner [3] has shown how to describe this dynamical property
of a particle in a covariant way. The method developed by Wigner has provided the
foundation for what is now known as the theory of induced representations [27],
with very wide applications including a very powerful approach to finding the
representations of noncompact groups.

The formulation of Wigner [3] is, however, not appropriate for application to
quantum theory, since it does not preserve the covariance of the expectation value of
coordinate operators. We first briefly review Wigner’s method in its original form,
and show how the difficulties arise. We then review the extension of Wigner’s
approach necessary to describe the spin of a particle in the framework of the
manifestly covariant SHP theory [7]. We then show that the observed correlation of
spin and statistics for identical particles necessitates a structure for which the Hilbert
space of states of a many-body system of identical particles is represented as a direct
integral over all values of a (normalized) time-like vector, a structure called foliation.
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The relativistic many-body system then admits the description of total spin (in
general, total angular momentum) states through computation with Clebsch–
Gordan coefficients as in the nonrelativistic case, and implies correlations between
the spins of the particles much in the same way (although not necessarily at precisely
equal times).

We have shown here (see also [1]) that relativistically covariant canonical
ensembles can be constructed in the framework of the SHP theory [7] as well as a
corresponding Boltzmann transport theory [21]. The results that we achieve here
admit an extension to particles with spin; the results obtained in the previous section
may be embedded in the foliation implied by the accommodation of spin.

The foliation universally induced in the representation for physical many-body
systems applies both to fermion and boson sectors of the full Fock space, and
therefore to the quantum fields.

As Wigner [3] has shown (see also the detailed discussion in [28, 29]), constructing
a representation of the Lorentz group by inducing a representation on the stability
group of the (time-like) four-momentum, one obtains a representation ψ σp( , ) with
the transformation property

ψ σ ψ σ′ = Λ ′ Λσ σ
−

′p p D p( , ) ( , ) ( , ), (6.102)1
,

under the action of the Lorentz group, taking into account the spin degrees of
freedom of the wave function, where the matrix transformation factor (Wigner’s
‘little group’ [3]) is constructed of the 2 × 2 matrices of SL C(2, ).

The presence of the p-dependent matrices representing the spin of a relativistic
particle in the transformation law of the wave function, however, destroys the
covariance in a relativistic quantum theory of the expectation value of the
coordinate operators [30] in states transforming as in (6.102). To see this, consider
the expectation value of the dynamical variable μx , i.e.

∫∑ ψ σ ψ σ< > = ∂
∂

μ
σ

μ

†x p p
p

pd ( , ) i ( , ). (6.103)4

A Lorentz transformation would introduce the p-dependent 2 × 2 unitary
transformation on the function ψ σp( , ), and the derivative with respect to momen-
tum would destroy the covariance property that we would wish to see of the
expectation value < >μx .

In this framework, it is also not possible to form wave packets of definite spin by
(four-dimensional) Fourier transform over the momentum variable, since this would
add functions over different parts of the orbit, with a different SU(2) at each point.

These problems were solved [30] by inducing a representation of the spin on a
time-like unit vector, say μn in place of the four-momentum.

Using a representation induced on a time-like vector μn , which is independent of
μx or μp 4 permits the linear superposition of momentum eigenstates to form wave

4Note that the resulting Stueckelberg type wave functions ψ σx( , )n are local [12] and do not have the non-local
properties discussed by Newton and Wigner [31].
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packets of definite spin, and admits the construction of definite spin states for many-
body relativistic systems. In the following, we show how such a representation can
be constructed, and discuss some of its dynamical implications.

6.6.2 Induced representation on a time-like vector μn

We briefly review here the construction given in [11] in order to make clear the
nature of the resulting foliation of the Hilbert space. Let us define

σ σ> ≡ >n x U L n n x, , ( ( )) , , , (6.104)0

where we may admit a dependence on x (or, through Fourier transform, on p). Here,
we distinguish the action ofU L n( ( )) from the general Lorentz transformation ΛU ( );
U L n( ( )) acts only on the manifold of μn{ }. Its infinitesimal generators are given by

⎛
⎝⎜

⎞
⎠⎟= − ∂

∂
− ∂

∂
μν μ

ν

ν

μ
M n

n
n

n
i , (6.105)n

while the generators of the transformations ΛU ( ) act on the full space of both μn and
μx (as well as μp ); its generators are given by

= + −μν μν μ ν ν μM M x p x p( ). (6.106)n

The two terms of the generator commute, and therefore the full group is a (diagonal)
direct product.

We now investigate the properties of a total Lorentz transformation, i.e. as in
Wigner’s procedure [3],

σ σΛ ∣ > = Λ Λ Λ ∣ >− − − − −U n x U L n U L n U U L n n x( ) , , ( ( )( ( ( )) ( ) ( ( ))) , , . (6.107)1 1 1 1 1
0

Now, consider the conjugate of (6.107),

σ σ< ∣ Λ = < ∣ Λ Λ Λ− − − −n x U n x U L n U U L n U L n, , ( ) , , ( ( ( )) ( ) ( ( ))) ( ( )). (6.108)0
1 1 1 1

The operator in the first factor (in parentheses) preserves n0, and therefore
corresponds to an element of the little group associated with μn which may be
represented by the matrices of SL C(2, ). Due to the factor ΛU ( ) (for which the
generators are those of the Lorentz group acting both on n and x (or p)), it also takes

→ Λ−x x1 in the conjugate ket on the left. Taking the product on both sides with ψ∣ >,
we obtain

σ ψ σ ψ< Λ > = < Λ ′ Λ ∣ > Λσ σ
− −

′n x U n x D n, , ( ) , , ( , ), (6.109)1 1
,

or [30]

ψ ψ′ = Λ Λσ σ σ σΛ ′
−

′−x x D n( ) ( ) ( , ), (6.110)n n, ,
1

,1

where

Λ = Λ Λ− −D n L n L n( , ) ( ) ( ), (6.111)1 1
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with Λ and L n( ) the corresponding 2 × 2 matrices of SL C(2, ).
It is clear that, with this transformation law, one may take the Fourier transform

to obtain the wave function in momentum space, and vice versa. The matrix ΛD n( , )
is an element of SU(2), and therefore linear superpositions over momenta or
coordinates maintain the definition of the particle spin for each μn , and interference
phenomena for relativistic particles with spin may be studied consistently.
Furthermore, if two or more particles with spin are represented in representations
induced on μn , at the same value of μn on their respective orbits, and therefore in the
same SU(2) representation, their spins can be added by the standard methods with
the use of Clebsch–Gordan coefficients. This method therefore admits the treatment
of a many-body relativistic system with spin, as in the proposed experiment of [32]
(see also [33]).

Our assertion of the unitarity of the n-dependent part of the transformation has
assumed that the integral measure on the Hilbert space, to admit integration by
parts, is of the form n xd d4 4 , where the support of the wave functions on μn is in the
time-like sector. The action of the generator of Lorentz transformations on μn
maintains the normalization of μ

μn n , which we shall take to be −1 in our discussion
of the Dirac representation for the wave function. Although the time-like vector μn
in many applications is degenerate, it carries a probability interpretation under the
norm, and may play a dynamical role (for example, as for the space-like inducing
vector for the two-body bound state problem in the covariant Zeeman formulation
of [34]).

There are two fundamental representations of SL C(2, ) which are inequivalent
[29, 30]. Multiplication of a two-dimensional spinor representing one of these by the
operator σ · p, expected to occur in any dynamical theory, results in an object
transforming like the other representation, and therefore the state of lowest
dimension in spinor indices of a physical system should contain both representa-
tions. As we shall emphasize, however, in our treatment of more than one particle
system, for the rotation subgroup, both of the fundamental representations yield the
same SU(2) matrices up to a unitary transformation, and therefore the Clebsch–
Gordan decomposition of the product state into irreducible representations may be
carried out independently of which fundamental SL C(2, ) representation is asso-
ciated with each of the particles. This is therefore true for the Dirac representation,
incorporating both fundamental representations, constructed as follows [30].

As in [30], one finds the Dirac spinor [35]

⎜ ⎟
⎛
⎝

⎞
⎠
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ψ

ψ

ϕ
=

−
ˆ
ˆx

L n x

L n x
( )

1

2
1 1
1 1

( ) ( )

( ) ( )
, (6.112)n

n

n

which transforms as

ψ ψ′ = Λ ΛΛ
−

−x S x( ) ( ) ( ), (6.113)n n
1

1

where ΛS( ) is a (nonunitary) transformation generated infinitesimally, as in the

standard Dirac theory (see, for example, [19]), by γ γ∑ ≡μν μ ν[ , ]i
4

.
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Following the arguments of [30], one can construct in the presence of a U(1)
gauge field the covariant Hamiltonian

∑= − + −
μν

μνK
M

p eA
e
M

F x eA
1

2
( )

2
( ) , (6.114)

n
2

5

where

∑ ∑= + −
μν

μν
μ ν ν μK n K n , (6.115)

n

and = ∑μ μν
νK n . The A5 field arises as a compensation field for the τ derivative in the

Stueckelberg–Schrödinger equation [36]. In general, in this framework, the μA and
A5

fields may depend on τ, since they correspond to gauge compensation fields for
the local gauge transformation ψ τ ψ→ Λτ τx x x( ) exp i ( , ) ( ). The τ-independent
Maxwell fields correspond to the zero mode of the μA fields used here [36]. The
currents constructed from the Lagrangian associated with (6.114) are according to
(6.112) also foliated, and therefore the fields μA A, 5 generated by these currents will
be foliated as well.

The expression (6.114) is quite similar to that of the second-order Dirac
operator; it is, however, Hermitian and has no direct electric coupling to the
electromagnetic field in the special frame for which =μn (1, 0, 0, 0) in the minimal
coupling model we have given here (note that in his calculation of the anomalous
magnetic moment [19], Schwinger puts the electric field to zero; a non-zero electric
field would lead to a non-Hermitian term in the standard Dirac propagator, the
inverse of the Klein–Gordon square of the interacting Dirac equation). Note that
in the derivation of the anomalous magnetic moment given by Bennett [20], this
restriction is not necessary since the generator of the interacting motion is
intrinsically Hermitian.

The matrices ∑μν
n are, in fact, a relativistically covariant form of the Pauli

matrices.
To see this [30], we note that the quantities μK and ∑μν

n satisfy the commutation
relations

⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∑
∑

∑ ∑ ∑ ∑

∑ ∑

= −

= − + − +

= − + − +

− + + +

μ ν μν

μν λ νλ ν λ μ μλ μ λ ν

μν λσ νλ ν λ μσ σμ σ μ λν

μλ μ λ νσ σν σ ν λν

K K

K g n n K g n n K

g n n g n n

g n n g n n

[ , ] i

, i[( ) ( ) ],

, i ( ) ( )

( ) ( ) .

(6.116)

n

n

n n n n

n n

Since = ∑ =μ
μ μ

μνK n n 0, there are only three independent μK and three ∑μν
n . The

matrices ∑μν
n are a covariant form of the Pauli matrices, and the last of (6.116) is the

Lie algebra of SU(2) in the space-like surface orthogonal to μn . The three
independent μK correspond to the non-compact part of the algebra which, along
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with the ∑μν
n , provide a representation of the Lie algebra of the full Lorentz group.

The covariance of this representation follows from

∑ ∑Λ Λ Λ Λ =
μν

μ
λ

ν
σ λσ−

Λ
S S( ) ( ) . (6.117)

n n
1

In the special frame for which =μn (1, 0, 0, 0),∑n
ij become the Pauli matrices σ1

2
k

with i j k( , , ) cyclic, and ∑ = 0n
j0 . In this frame there is no direct electric interaction

with the spin in the minimal coupling model (6.114). We remark that there is,
however, a natural spin coupling which becomes pure electric in the special frame
[30], given by (in gauge covariant form)

γ= − −μ ν ν μ
μνK K e K n K n Fi[ , ] i ( ) . (6.118)T L

5

Note that the matrices

γ γ π=μ
λ

λμ, (6.119)n

with the projection

π = +λμ λμ λ μg n n , (6.120)

appearing in (6.116), play an important role in the description of the dynamics in the
induced representation. In (6.115), the existence of projections on each index in the
spin coupling term implies that μνF can be replaced by μνFn , a tensor projected into
the foliation subspace. As we shall see, this foliation induced by the spin has a
profound effect on the tensor products (and therefore on the full Fock space) of
identical particle systems, both in the boson and fermion sectors5.

6.6.3 The many-body problem with spin, and spin statistics

As in the nonrelativistic quantum theory, one represents the state of an N-body
system in terms of a basis given by the tensor product of N one-particle states, each
an element of a one-particle Hilbert space. The general state of such an N-body
system is given by a linear superposition over this basis [38]. Second quantization
then corresponds to the construction of a Fock space, for which the set of all N-body
states, for all N, are embedded in a large Hilbert space for which operators that
change the number N are defined [2]. We shall discuss this structure in this section,
and show with our discussion of the relativistic spin given in the previous section that
the spin of a relativistic many-body system can be well-defined and, furthermore,
that the quantum fields associated with the particles of the system carry the induced
foliation structure.

In order to construct the tensor product space corresponding to the many-body
system, we consider, as for the nonrelativistic theory, the product of wave functions
which are elements of isomorphic Hilbert spaces. In the nonrelativistic theory, this

5Note that for the SO(1, 1) covariant generalization of one-dimensional systems treated, for example, by
methods utilizing the Bethe ansatz [37], the relation between spin and statistics is not so direct, and therefore
this problem requires a separate discussion.

Relativistic Many-Body Theory and Statistical Mechanics

6-24



corresponds to functions at equal time; in the relativistic theory, the functions are at
equal τ. Thus, in the relativistic theory, there are correlations at unequal t, within the
support of the Stueckelberg wave functions. Moreover, for particles with spin we
argue, as a consequence of the spin-statistics relation, that in the induced repre-
sentation, these functions must be taken at identical values of μn , i.e. taken at the
same point on the orbits of the induced representation of each particle:

Statement: Identical particles must be represented in tensor product states by wave
functions not only at equal τ but also at equal μn .

This statement follows from the observation that the spin-statistics relation
appears to be a universal fact of nature. The elementary proof of the spin-statistics
theorem, for example, for a system of two spin 1/2 particles, is that a π rotation of the
system introduces a phase factor of

π
ei 2 for each particle, thus introducing a minus

sign for the two-body state. However, the π rotation is equivalent to an interchange
of the two identical particles. This argument rests on the fact that each particle is in
the same representation of SU(2), which can only be achieved in the induced
representation with the particles at the same point on their respective orbits. We
therefore see that identical particles must carry the same value of μn , and the
construction of the N-body system must follow this rule6. It therefore follows that
the two-body relativistic system can carry a spin computed by use of the usual
Clebsch–Gordan coefficients, and entanglement would follow even at unequal time
(within the support of the equal τ wave functions), as in the proposed experiment
in [12]. This argument can be followed for arbitrary N, and therefore the Fock
space of the quantum field theory carries the properties usually associated with
fermion (or boson) fields with the entire Fock space foliated over the orbit of the
inducing vector μn .

Although, due to the Newton–Wigner problem [31] noted above, the solutions of
the Dirac equation are not suitable for the covariant local description of a quantum
theory, the functions constructed in (6.112) can form the basis of a consistent, local
(off-shell) covariant quantum theory.

To show how the many-body Fock space develops, we start by constructing a
two-body Hilbert space in the framework of the relativistic quantum theory. The
states of this two-body space are given by linear combinations over the product wave
functions, where the wave functions are given by Dirac functions of the type
described in (6.112), i.e. temporarily suppressing the indices τn, ,

ψ ψ ψ= ⊗x x x x( , ) ( ) ( ), (6.121)ij i j1 2 1 2

where ψ x( )i 1 and ψ x( )j 2 are elements of the one-particle Hilbert space H. Let us
introduce the notation, often used in differential geometry, that

ψ ψ ψ= ⊗x x x x( , ) ( , ), (6.122)ij i j1 2 1 2

6Note that symmetrization and antisymmetrization can, of course, be carried out with factors in the tensor
product on any sequence in n, but the symmetry properties would not then correspond to the phases associated
with spin.
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identifying the arguments according to a standard ordering. Then, without specify-
ing the spacetime coordinates, we can write

ψ ψ ψ= ⊗ , (6.123)ij i j

formally, an element of the tensor product space H H⊗1 2. The scalar product is
carried out by pairing the elements in the two factors according to their order, since
it corresponds to integrals over x x,1 2, i.e.

ψ ψ ψ ψ ψ ψ=( , ) ( , )( , ). (6.124)ij k ℓ i k j ℓ,

For two identical particle states satisfying Bose–Einstein or Fermi–Dirac sta-
tistics, according to our argument given above we must write

ψ ψ ψ ψ ψ= ⊗ ± ⊗1

2
[ ]. (6.125)ijn jn jnin in

This expression has the required symmetry or antisymmetry only if both functions
are on the same points of their respective orbits in the induced representation.
Furthermore, they transform under the same SU(2) representation of the rotation
subgroup of the Lorentz group, and thus for spin 1/2 particles, under a π spatial
rotation (defined by the space orthogonal to the time-like vector μn ) they both
develop a phase factor

π
ei 2 . The product results in an overall negative sign. As in the

usual quantum theory, this rotation corresponds to an interchange of the two
particles, but here with respect to a ‘spatial’ rotation around the vector μn . The
spacetime coordinates in the functions are rotated in this (foliated) subspace of
spacetime, and correspond to an actual exchange of the positions of the particles in
spacetime, as in the formulation of the standard spin-statistics theorem. It therefore
follows that the interchange of the particles occurs in the foliated space defined by

μn . For identical bosonic particles, the π rotation produces a positive sign. These
conclusions are valid for unequal times that lie in support of the SHP wave functions
(at equal τ). We therefore have the following:

Statement: The antisymmetry of identical half-integer spin (fermionic) particles
remains at unequal times (within the support of the wave functions). This is true for
the symmetry of identical integer spin (bosonic) particles as well.

Furthermore, the construction we have given enables us to define the spin of a
many-body system, even if the particles are relativistic and moving arbitrarily with
respect to each other. Since all particles with representations on a common μn of
their orbits transform in the space-like submanifold orthogonal to μn under the same
SU(2), it is also true that

Statement: The spin of an N-body system of identical particles is well-defined,
independent of the state of motion of the particles of the system, by the usual laws of
combining representations of SU(2), i.e. with the usual Clebsch–Gordan coefficients,
since the states of all the particles in the system are in induced representations at the
same point of the orbit μn .

Thus, for example, in the quark model for hadrons, the total spin of the hadron
can be computed from the spins (and orbital angular momenta projected into the
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foliated space) of the individual quarks using the usual Clebsch–Gordan coefficients
even if they are in significant relative motion within the same SU(2); a similar
conclusion would be valid for nucleons in a nucleus even at high excitation. The
validity of spin assignations in high energy scattering would provide an important
example of such quantum mechanical correlations.

In the course of our construction, we have seen that the foliation of the spacetime
follows from the arguments based on the representations of a relativistic particle
with half-integer spin. However, as we have remarked, our considerations of the
nature of identical particles, and their association with the spin-statistics properties
observed in nature, require that the foliation persists in the bosonic sector as well,
where a π rotation, exchanging two particles, must be in a definite representation of
the rotation group, specified by the foliation vector μn , to achieve a positive sign.
Since there is no extra phase (corresponding to integer representations of SU(2)) for
the Bose–Einstein case, the boson symmetry can then be extended to a covariant
symmetry with important implications; for example, for the statistical mechanics of
relativistic boson systems in Bose–Einstein condensation.

We remark in this connection that the Cooper pairing [39] of superconductivity
must be between electrons on the same point of their induced representation orbits,
so that the superconducting state is defined on the corresponding foliation of
spacetime as well. The resulting (quasi-)bosons have identical particle properties
inferred from our discussion of the boson sector. As remarked above, the two
electrons of the Cooper pair may not be at equal time, a result which may be
accessible to experiment. A similar remark applies to the Josephson effect [40]
(where a single gate may be opened at two successive times, as in [41]).

These results have important implications in atomic and molecular physics; for
example, for the construction of the exchange interaction.

6.6.4 Quantum fields

We now extend our argument for the finite Fock space to the general structure of
quantum field theory.

The N-body state of Fermi–Dirac particles can be written as (the N-body boson
system should be treated separately since the normalization conditions are different,
but we give the general result below)

∑ ψ ψ ψΨ =
!

− ⊗ ⊗ ⋯−N
P

1
( ) , (6.126)nN

P
nN nN n1 1

where the permutations P are taken over all possibilities, and no two functions are
equal. By the arguments given above, any pair of particle wave functions in this set
has the Fermi–Dirac symmetry properties. We may now think of such a function as
an element of a larger Hilbert space, the Fock space, which contains all values of the
number N. On this space, one can define an operator that adds another particle (in
the tensor product), performs the necessary antisymmetrization, and changes the
normalization appropriately. This operator is called a creation operator, which we
shall denote by ψ†

+a ( )nN 1 and has the property that
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ψ Ψ = Ψ†
+ +a ( ) , (6.127)nN nN nN1 1

now to be evaluated on the manifold + −x x x x( , , ... )N N N1 1 1 . Taking the scalar product
with some +N 1 particle state Φ +nN 1 in the Fock space, we see that

ψ ψΦ Ψ ≡ Φ Ψ+
†

+ + +a a( , ( ) ) ( ( ) , ), (6.128)nN nN nN nN nN nN1 1 1 1

thus defining the annihilation operator ψ +a( )nN 1 .
The existence of such an annihilation operator, as in the usual construction of the

Fock space (see e.g. [2]) implies the existence of an additional element in the Fock
space, the vacuum, or the state of no particles. The vacuum defined in this way lies in
the foliation labeled by μn . The covariance of the construction, however, implies
that, since all sectors labeled by μn are connected by the action of the Lorentz group,
this vacuum is a vacuum for any μn , i.e. the vacuum Ψ{ }n0 over all μn is Lorentz
invariant.

The commutation relations of the annihilation–creation operators can be easily
deduced from a low dimensional example, following the method used in the
nonrelativistic quantum theory [2]. Consider the two-body state (6.125) (we use
the antisymmetric form here), and apply the creation operator ψ†a ( )n3 to create the
three-body state

ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ ψ

Ψ =
!

⊗ ⊗ + ⊗ ⊗

+ ⊗ ⊗ − ⊗ ⊗
− ⊗ ⊗ − ⊗ ⊗

( , , )
1

3
{

}.

(6.129)
n n n n n n n n n

n n n n n n

n n n n n n

3 2 1 3 2 1 1 3 2

2 1 3 2 3 1

1 2 3 3 1 2

One then takes the scalar product with the three-body state

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

Φ =
!

⊗ ⊗ + ⊗ ⊗

+ ⊗ ⊗ − ⊗ ⊗

− ⊗ ⊗ − ⊗ ⊗

( , , )
1

3
{

}.

(6.130)

n n n n n n n n n

n n n n n n

n n n n n n

3 2 1 3 2 1 1 3 2

2 1 3 2 3 1

1 2 3 3 1 2

Carrying out the scalar product term by term, and picking out the terms
corresponding to the scalar product of some function with the two-body state

ψ ψ ψ ψ⊗ − ⊗1

2
{ }, (6.131)n n n n2 1 1 2

one finds that the action of the operator ψa( )n3 on the state ϕ ϕ ϕΦ( , , )n n n3 2 1 is given by

ψ ϕ ϕ ϕ ψ ϕ ϕ ϕ
ψ ϕ ϕ ϕ ψ ϕ ϕ ϕ

Φ = ⊗
− ⊗ + ⊗

a( ) ( , , ) ( , )

( , ) ( , ) ,
(6.132)n n n n n n n n

n n n n n n n n

3 3 2 1 3 3 2 1

3 2 3 1 3 1 3 2

i.e. the annihilation operator acts like a derivation with alternating signs due to its
fermionic nature; the relation of the two- and three-body states we have analyzed
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has a direct extension to the N-body case. The action of boson annihilation–creation
operators can be derived in a similar way.

Applying these operators to N and +N 1 particle states, one finds directly their
commutation and anticommutation relations

ψ ϕ ψ ϕ=†
∓a a[ ( ), ( )] ( , ), (6.133)n n n n

where the ∓ sign, corresponds to commutator or anticommutator for the boson or
fermion operators. If the functions ψ ϕ,n n belong to a normalized orthogonal set
ϕ{ }nj , then

ϕ ϕ δ=†
∓a a[ ( ), ( )] . (6.134)ni nj ij

Let us now suppose that the functions ϕnj are plane waves in spacetime, i.e. in terms
of functions

ϕ
π

= − μ
μx( )

1
(2 )

e , (6.135)np
p x

2
i

so that

ϕ ϕ δ= − ′′ p p( , ) ( ). (6.136)np np
4

The quantum fields are then constructed as follows. Define

∫ϕ ϕ≡ μ
μx pa( ) d ( )e . (6.137)n np

p x4 i

It then follows that, by the commutation (anticommutation) relations (6.133), these
operators obey the relations

ϕ ϕ δ′ = − ′†
∓x x x x[ ( ), ( )] ( ), (6.138)n n

4

corresponding to the commutation relations of boson and fermion fields (we
suppress the spinor indices here, arising from the spinor form which must be used
for (6.135)). Under Fourier transform, one finds the commutation relations in
momentum space

ϕ ϕ δ′ = − ′†
∓p p p p[ ( ), ( )] ( ). (6.139)n n

4

The relation of these quantized fields with those of the usual on-shell quantum field
theories can be understood as follows. Let us suppose that the fourth component of
the energy momentum is = +E mp2 2 , where m2 is close to a given number, the

on-shell mass of a particle. Then, noting that =Ed m
E

d
2

2
, if we multiply both sides of

(6.139) by Ed and integrate over the small neighborhood of m2 occurring in both E
and ′E , the delta function δ − ′E E( ) on the right-hand side integrates to unity. On
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the left-hand side, there is a factor of m Ed /22 , and we may absorb md 2 in each of
the field variables, obtaining (with φ ϕ≡ dm pp( ) ( )n n

2 on-shell)

φ φ δ′ = − ′†
∓ Ep p p p[ ( ), ( )] 2 ( ), (6.140)n n

3

the usual formula for on-shell quantum fields.
We remark that these algebraic results have been constructed in the foliation

involved in the formulation of a consistent theory of relativistic spin. They therefore
admit the action of the SU(2) group (in the Dirac representation (6.113), ΛS( ) has
the form ω∑μν

μνei n for ωμν parameters corresponding to the SU(2) subgroup leaving μn
invariant) for a many-body system, applicable for unequal times, within the support
of the Stueckelberg wave functions at equal τ.

We have discussed here the construction of quantum fields as they emerge from
the structure of a Fock space. Local observables can be formed from the Hermitian
operators built with these fields. According to the methods generally attributed to
Schwinger [42] and Tomanaga [43] (see the book of Jauch and Rohrlich [44], for
example, for a discussion of the ideas and additional references), a quantum state is
defined by assigning values to the spectra of a complete set of such local observables
which necessarily commute, according to the causal nature of measurements, if they
are associated with a space-like surface. The sequence of space-like surfaces then
forms a parametrization of the evolution of such states (the basis of the Schwinger–
Tomonaga equation); it follows from our considerations that, for states of identical
particles, the set of local observables is defined on the foliation provided by the
inducing parameter μn , and therefore the Schwinger–Tomonaga state lies on this
foliation as well. Furthermore, since the local fields in the Heisenberg picture evolve
unitarily in τ, and the corresponding space-like surfaces are isomorphic, a corre-
spondence can be established between τ and an invariant parameter labeling the
sequence of space-like surfaces. Moreover, it is clear from (6.116) that the action of
the operators ∑μν

n , due to the occurrence of the projections +νλ ν λg n n in the
coefficients of the Lie algebra, correspond to rotations in the space-like surface
orthogonal to the time-like vector μn (as we have remarked, in the frame for which

=μn (1, 0, 0, 0), these operators reduce to the ordinary Pauli matrices). Together
with the operators μK , they constitute a representation of the Lorentz group,
forming the fundamental representation of a group oriented with its maximal
compact subgroup, corresponding to the SU(2) little group of Wigner, acting on the
wave functions, and the corresponding quantum fields, as a rotation in the space-like
surface orthogonal to μn . We may therefore identify the space-like surfaces on which
the quantum fields are defined with the space-like surfaces on which the little group
induces rotations (as in the nonrelativistic theory). Local variations in the space-like
surfaces, contemplated by Schwinger and Tomonaga, then correspond as well to
local variations in the orbit of the induced representation, clearly preserving the
local commutation and anticommutation relations.

The correlations imposed by the existence of the universal time-like vector permit
us to construct the spin states of many-body systems through direct product of spin 1

2

Relativistic Many-Body Theory and Statistical Mechanics

6-30



states (with appropriate Clebsch–Gordan coefficients) as well as higher spin states of
a particle [45].

Appendix: Pauli–Lubanski vector
In this appendix we discuss a covariant Pauli–Lubanski vector μW n [6] which, in the
rest frame of the particle, carries the physical internal angular momentum of the
particle, and for which the invariant μ μW Wn

n serves as the second Casimir operator
for the Poincaré group. The angular momentum operator embedded in this
definition generates rotations in the hyperplane orthogonal to the stability vector

μn labeling the point on the orbit of the induced representation.
The operator μνM n acts as an SU(2) rotation in a space-like plane perpendicular

to the time-like vector μn , which is identified with the physical angular momentum of
the particle [14]. To demonstrate this property we first compute

= − + + +
− + + +

μν λσ νλ ν λ μσ σμ σ μ λν

μλ μ λ νσ σν σ ν λμ

M M g n n M g n n M

g n n M g n n M

[ , ] i{( ) ( )

( ) ( ) }
(6A.1)n n n n

n n

In the special frame for which =μn (1, 0, 0, 0), equation (6A.1) becomes the
equation for the algebra of ordinary three-dimensional angular momentum; the
operator μνM n is therefore a covariant form of the Lie algebra of SU(2), valid also
for the spin 1/2 representation [21]7.

Since μν
νM nn is identically zero, it is clear that μνM n rotates the vector λx in a

plane perpendicular to nν, but it is of some interest to see the action of this
infinitesimal transformation. Computing μν λM x[ , ]n explicitly, one finds

= − +
+ +

− ·

μν λ νλ ν λ μ

μλ μ λ ν

μλ ν νλ μ

M x g n n x

g n n x

g n g n x n

[ , ] i( )
i( )

i( )( ).

(6A.2)
n

This form is orthogonal to the vector nν, so the infinitesimal shift in λx is in a space-
like plane orthogonal to n.

We now define the Pauli–Lubanski [6] vector in our context

ϵ=μ μνλσ
λσ νW M p . (6A.3)n

n

We may easily demonstrate that this operator is Hermitian. Moreover, since the
commutator of λσM n with μp has precisely the same form as with μx (as in (6A.2),
with μp replacing μx ), and since ϵμνλσ is totally antisymmetric, it follows that

ϵ =μνλσ
λσ νM p[ , ] 0. (6A.4)n

We can therefore define the ‘Casimir’ on the orbit as

≡ μ μC W W . (6A.5)n
n n

7Note that the projection +μν ν μg n n brings the metric into a three-dimensional space with a metric equivalent
to +++( ) by the operation + + = +μν ν μ

νλ
λγ λ γ μγ μ γg n n g g n n g n n( ) ( ) .
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This operator commutes with the first Poincaré Casimir μ
μp p , corresponding to

the mass of the particle (not necessarily a constant of the motion in the relativistic
dynamics of SHP). If the momentum of the particle takes on a value parallel to μn ,
the Pauli–Lubanski operator that we have defined then coincides with the covariant
relativistic generalization of the intrinsic physical angular momentum on the orbit.
In this case, a Lorentz transformation to the frame for which =μn (1, 0, 0, 0) (then
coinciding with the rest frame of the particle) brings μνM n explicitly to the form of a
generator of SU(2). Note that in an asymptotic state with well-defined wave packet,
if μn and μp coincide in the sense that ≅μ μn p m/ (for = − μ

μm p p ), the derivative of
the little group factor due to Lorentz transformation would be proportional to

⎛
⎝⎜

⎞
⎠⎟

∂
∂

= +
μ

ν
μν

μ νn
p m

g
p p
m

1
, (6A.6)

2

a vector approximately orthogonal to ∼μ μx p . The state of this wave packet, on
which we can expect its modulation by the action of the little group and its derivative
to have only a small effect on the result, then forms in the construction of < >μx an
(approximate) expectation value of the operator (6A.6). In such an asymptotic state,
for which the momentum is fairly sharp, the expected value of this operator would
be very small. In this way, the approximate alignment of μp and μn would retain the
required covariance of the expectation value of μx 8.

Thus, the vector μn could be thought of as defining a frame (for example, for the
Stern–Gerlach measurement of the spin of an asymptotic state; we thank Y
Aharonov for a discussion of this point) in which the intrinsic angular momentum,
corresponding to the physical angular momentum of the particle as it occurs
explicitly in the induced representation, can be directly measured in the laboratory.
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