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Preface

In this book, we describe the theory of Stueckelberg, Horwitz and Piron (SHP),
which provides a comprehensive classical and quantum mechanical relativistically
covariant framework for the discussion of many body problems. This theory has the
essential property that the time t of Einstein, which is the time of arrival of an event
as measured on a standard universal clock in an inertial laboratory, corresponding
as well to the variable t occurring in the Maxwell equations, is considered to be an
observable. The time t of the occurrence of an event is subject, as well as the position
of the event x, to equations of motion according to a universal evolution parameter τ
corresponding to Newton’s postulated time. The universality of this parameter
enables us to write both classical and quantum dynamical equations for relativistic
many body systems. We also develop, in this framework, the corresponding
relativistically manifestly covariant quantum field theory.

We first study the two body problem for both bound and scattering states. The
bound state solutions are found to yield a spectrum agreeing with the known
nonrelativistic Schrödinger equation, up to relativistic corrections, when the
coordinates are chosen to be those of a ‘reduced Minkowski space’ (RMS). To
describe the configuration covariantly, we define a spacelike vector as the basic
defining direction of the coordinate system, and use the theory of induced
representations to obtain irreducible representations of the Lorentz group with
functions with support lying in this subspace.

The procedure for calculating cross sections for the scattering sector was worked
out Cross sections, in general, reflect the effective area of interaction orthogonal to
the incoming beam; since this is determined by a spacelike vector, the cross section
would be three dimensional in spacetime. The time dimension corresponds to the
time interval of the interaction (the three dimensional interaction region could be, in
principle, measureable). The time interval may be divided out, resulting in the usual
area formula.

This construction has important consequences for the theory of many body
systems. If the potential functions between all pairs of particles are restricted to lie in
the RMS oriented in the same way, the resulting dynamics would be consistent with
the RMS dynamics of all pairwise subsystems. We show that if the wave functions
describing the state of the system restrict relative distances between all pairs of
particles to be in an RMS relation, as in the two body problem, the potential
function becomes, in any computation with these states, also restricted in this way.
Such calculations would be feasible for few body or well ordered systems, such as the
example of the Stueckelberg string that we give here. We develop in the second part
of the book a relativistic statistical mechanics applicable for a large number of
particles.

For the scattering theory (in the continuous spectrum of the reduced motion of
the two body problem), the standard form of the partial wave expansion is recovered
if the RMS orientation is along the direction of the incoming beam. The treatment of
the resulting partial wave decomposition in terms of analytic continuation of the
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partial wave amplitudes in the orbital angular momentum (as done by Regge) then
becomes accessible, but is not treated in this book. Incorporating the treatment of
relativistic spin given here would generalize such results to resonances with both
orbital and spin angular momentum in a covariant way.

In our general treatment of relativistic formal quantum scattering theory, we give
proof of the Gell-Mann Low theorem. This theorem was developed to provide the
basis for computation of the stationary states of a many body system, such as a
crystal. The idea was to assume that the interactions are turned off in the infinite
future and the infinite past with a cutoff going exponentially to zero on the many
body potential, and then treating it as a scattering system for which interactions
vanish asymptotically.

The theorem states that the energy shift when interactions are turned on is given
by the ratio of two infinite functions in the limit where the cutoff is removed. In
terms of quantum field theory, the numerator contains both disconnected and
connected diagrams, and the denominator just disconnected diagrams; the discon-
nected contributions cancel to give a presciption for which, perturbatively, one
calculates just with connected diagrams.

The theorem was originally proved in the framework of nonrelativistic quantum
field theory. The proof we give here, following the method of Gell-Mann and Low, is
carried out in the framework of the relativistic formal scattering theory. Using the
interaction picture in the framework of the relativistic quantum field theory we
develop here, one could show that the diagrammatic conclusions are true in this
formalism as well, but we do not work out the details in this book. It should be
mentioned in this context that the Haag theorem states that there is no unitary
transformation connecting the free fields to the interacting fields in the standard
theory so that, although formal perturbation calculations give good results, the
interaction picture rigorously does not exist in the usual quantum field theory. E
Seidowitz has shown, however, that the SHP quantum fields admit a rigorous
interaction picture (with the same structure as originally postulated by Feynman).

Our discussion of relativistic statistical mechanics rests strongly on the formula-
tion originally given by Horwitz, Schieve and Piron (HSP). The idea was to consider
a set of events occupying some finite region of spacetime. These events move
according to the equations of motion and trace out world lines which correspond to
particles. It was argued that the statistical mechanics of the set of events is therefore
equivalent to the statistical mechanics of particles.

The microcanonical ensemble is defined in the nonrelativistic theory in terms of
the volume of phase space in a narrow energy shell, and the entropy S(E) is then
defined as Boltzmann’s constant times the logarithm of this volume; the derivative
with respect to E then defines a temperature, which turns out to be an equilibrium
property of the system with its surroundings in the canonical ensemble. The analog
in the SHP theory would be to compute the volume in the phase space at a given
value of the dynamical generator K. However, this volume is infinite because a finite
value of the generator admits an unbounded phase space along the hyperbolas
associated with each value of this invariant. The density of the microcanonical
ensemble was therefore restricted as well to an energy shell, providing a convergent
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but non-invariant volume. The non-invariance was understood as a reflection of the
fact that a motion of the system relative to the thermometer of the laboratory would
give a false reading of temperature due to the additional velocity of the particles, and
one must therefore choose a frame (say, center of momentum frame).

Since the particle masses are dynamically variable occuring in the generator of
motion K, there is a possibility that after a large number of interactions, the
asymptotic particle mass can drift significantly. We construct a statistical mechan-
ical model of a particle here which provides a mechanism for which a ‘mass
temperature’ and a ‘mass chemical potential’ can stabilize the asymptotic mass of
the ‘particle’ (and in the case of more than one maximum in the Gibbs integral,
provide for several mass states as phases through the Maxwell construction).

We have also discussed the possibility of a high temperature phase transition,
according to the method of Haber andWeldon, which would result in a definite mass
of the system, determined by the chemical potential. The resulting mass value is
determined in a statistical sense, and therefore, in the dispersion width, leaves
sufficient freedom for the full off-shell SHP theory.

In order to deal with particles with spin, we applied the method of induced
representations of Wigner for the description of a relativistic particle with spin
adapted to the requirements imposed by the relativistic quantum theory. The
method requires that the representation be induced on a covariant arbitrary timelike
vector, which we take to be universal for a system of identical particles, instead of the
four-momentum used by Wigner. Each point on the orbit of this timelike vector is
associated with a spin 1/2 representation of the rotation group, its stability subgroup.
Two particles at the same point on their respective orbits then transform, under
rotations in the spacelike surface orthogonal to the timelike vector, with the same
SU(2), and therefore their spins can be added with the usual Clebsch-Gordan
coefficients. This induced representation implies a foliation of the Hilbert space of
states. The pure states are represented by wave functions which transform under
Lorentz transformation, for systems with spin degrees of freedom, under the little
group representing spin, by our construction. This is also true in their coordinate or
momentum representations, for which the generators are the generators of the
Lorentz group projected into this foliation. We discuss this construction in the
appendix to chapter 6, where we constructed a Pauli-Lubanski vector providing an
angular momentum Casimir operator on the orbit.

The existence of the relation between spin and statistics in nature implies that the
fermionic antisymmetry between any pair of identical particles, associated with a π
rotation of the two-body subsystem can be valid only for particles on the same
points of their respective orbits. This result introduces a foliation of the whole Fock
space constructed from the many-body tensor product, and therefore of the
corresponding quantum field theory for both bosons and fermions; we discuss the
correspondence of this foliation with the structure of quantum field theory defined
on a sequence of spacelike surfaces (as, for example, done by Schwinger and
Tomonaga).

One can, moreover, compute the total spin state of a relativistic many-body
system, provided all particles are at the same point on their respective orbits labelled

Relativistic Many-Body Theory and Statistical Mechanics

xi



by the timelike inducing vector, as required for identical particle systems, e.g. nuclei
with particle constituents, hadrons with quark constituents.

Furthermore, as in the proposed experiment of Palacios et al, the spin entangle-
ments induced in this way would exist for particles (such as the electrons in the outer
shell of helium) ejected at equal world time τ, but not restricted, as in standard
nonrelativistic mechanics, to equal time t, and on the same point of their orbit. These
correlations should be seen, according to this theory, for particles at non-equal times
within the support of the Stueckelberg wave functions, of the order of femtoseconds,
as concluded from both the analysis of the Lindner et al experiment and the
proposed experiment of Palacios et al. Both of these groups assumed coherence in
time in the nonrelativisic quantum theory and used time dependent solutions of the
nonrelativistic Schröodinger equation. This treatment is not, however, consistent
with the basic foundations of the quantum theory, but may be expected to provide,
as in the Lindner et al experiment, a good approximation.

The correlations implied by the existence of Cooper pairs, forming the foundation
of the theory of superconductivity, existing, according to the nonrelativistic
quantum theory, only at equal times, are predicted by the SHP theory to be
maintained at unequal times. The theory can therefore be generalized to be
consistent with relativistic covariance. In a similar way, we predict that the
interference phenomena associated with the Josephson effect would be maintained
if the two gates are open at slightly different times, or with a single gate opened at
two times, with a result similar to that of the Lindner et al experiment. Such a result
would be a significant generalization of the Josephson effect.

We finally remark that we study here as well the Boltzmann counting leading to
the relativistic Bose-Einstein and Fermi-Dirac distributions.

Our discussion of the SHP covariant relativistic theory, with emphasis on the
treatment of many body systems, constitutes a basic introduction to a subject with
wide potentialities for further development.

We believe that there are new theoretical developments that may flow from this
theory, posing as well interesting crucial experiments to be carried out as the
technology develops.
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Chapter 1

Introduction

In 1941, E C G Stueckelberg wrote a paper [1] based on ideas of V Fock [2] that
established the foundations of a theory that could covariantly describe the classical
and quantum relativistic mechanics of a single particle. Horwitz and Piron [3]
extended the applicability of this theory—later named the Stueckelberg, Horwitz
and Piron (SHP) theory—to the many-body problem. It is the purpose of this book
to explain this development and provide examples of its applications.

Stueckelberg’s basic idea [1] (see [4] for an extended discussion) was that the
familiar particle worldline, representing the position in space as a function of time,
consists of a sequence of events, spacetime points along a curve generated by a single
point whose motion is guided by the dynamics of the system (figure 1.1). Thus, a free
particle undergoing no interactions would generate a straight worldline on a
spacetime diagram, with slope equal to its velocity. Under the influence of a small
force, the event generating the worldline would no longer follow a straight path, but
move along a more general, slightly different curve. He then imagined that a
stronger force could turn the curve generated in this way to a direction running
backwards in time (see figure 1.1).

As observed in the laboratory (all points along the curve represent the outcome of
measurements made in the observer’s laboratory, x corresponding to measuring
sticks in the laboratory, and t corresponding to the detection of the particle’s
presence as recorded on the laboratory clock at the moment of observation), one sees
a sequence developing forward in time according to the advance of the laboratory
clock, even though the underlying dynamics leads the generating event monotoni-
cally along the path. The concepts underlying this statement are indeed not at all
simple to grasp, but form the basis of the SHP theory, allowing the construction of a
consistent covariant classical and quantum mechanics [4].

The interpretation of the segment of the curve running backwards in time was
taken to be that of an antiparticle, known at that time [5] to correspond to a particle
under time-reversed motion. One sees this in a very simple way by taking the
complex conjugate of the Schrödinger equation (for a real valued Hamiltonian); the
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result is the identical Schrödinger equation for the complex conjugate wave function
evaluated at −t( ). In the presence of an electromagnetic field, the gauge-invariant
quantity p − eA, for p the particle momentum, e the electric charge and A the vector
potential, is altered to the form p + eA (which enters quadratically in the
nonrelativistic theory) due to the fact that p is represented as − ∂

∂
i

x
. This is consistent

with the idea that −p is the time reversal of p.
However, the phenomenon that Stueckelberg described was completely classical;

his construction, taking the interpretation from known results in quantum theory,
therefore amounted to the description of pair production in classical mechanics.

He observed that due to the double valued property of this curve on the variable t,
one must introduce a new invariant parameter along the curve to describe the
motion in a single valued way. This new parameter, which he called τ, could then be
used to construct a covariant dynamics by defining a Hamiltonian K with Hamilton
equations (μ = 0, 1, 2, 3; we take the signature to be − + + +( , , , ), in the diagonal
metric μνg , with, for some four-vector =μ μν

νa g a )1

∂
∂

∂
∂

˙ =

˙ = −

μ μ

μ

μ

x
K
p

p
K
x

(1.1)

For example, for the free particle,

=
μ

μK
p p

M2
, (1.2)

whereM is an intrinsic dimensional scale parameter of units of mass (not necessarily
the measured mass of the particle), the Hamilton equations lead to

˙ =μ
μx

p

M
, (1.3)

Figure 1.1. Stueckelberg’s construction. Reprinted/adapted by permission from [4].

1 Here =μx ct x x x( , , , )1 2 3 and =μp E c p p p( / , , , );1 2 3 we shall take the velocity of light c = 1, unless
otherwise indicated.
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with ˙ =μp 0. It follows from this result that

=x
t

p
Ec

d
d

, (1.4)
i i

2

the well-known result of Einstein’s kinematics [6].
Stueckelberg was then in a position to postulate the quantum form of the theory

by assuming commutation relations

= ℏμ ν μ νx p g[ , ] i (1.5),

and what has become known as the Stueckelberg–Schrödinger equation

∂
∂τ

ψ ψℏ =τ τx K xi ( ) ( ), (1.6)

where ψτ x( ) is a scalar wave function normalizable on integration over xd4 (an
element of a Hilbert space over R4), and here K is the operator form of the
Hamiltonian.

As in Feynman’s later discussion of covariant path integrals [7], one might
imagine up to this point in our development that each particle may have its own τ.
However, Horwitz and Piron [3] postulated that, in order to construct many-body
theories, there is just one universal τ, in complete accordance with Newton’s
postulate [8] of a universal time. One can then proceed, as we shall do here, to
formulate the many-body problem in this framework.

In the next chapter, we discuss the classical relativistic two-body problem and
formulate the classical N-body problem. We also discuss the basis for electro-
dynamics in this framework. We discuss the quantum mechanical N-body problem
in chapter 3, as well as further properties of the associated gauge fields and second
quantization. We then discuss classical and quantum statistical mechanics, and some
results and applications of the theory.
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