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Preface

This introductory textbook on computational physics intended for undergraduates
at the sophomore or junior level who have taken the introductory freshman series of
physics courses to include: introductory classical mechanics, electricity and magnet-
ism, and modern physics. A good understanding of multivariable calculus and linear
algebra is highly encouraged. This text provides an introduction to programming
languages such as FORTRAN 90/95 and covers numerical techniques such as
differentiation, integration, root finding, and data fitting. The textbook also entails
the use of the Linux/Unix operating system, text editors, and python for plotting
data.

This textbook will allow the reader to become a proficient user of the Linux/Unix
operating system. The reader will able to write, compile, and debug computer code
in the FORTRAN programming language. The reader will also be able to apply
computational techniques such as iterative processes, logical conditions, and
memory allocation in addition to applying numerical methods to solve problems
involving differentiation, integration, matrix theory, and root finding. The reader
will able to use the contents of this text and apply them to a variety of science and
engineering applications.
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Chapter 1

The Linux/Unix operating system

1.1 Introduction
The main purpose of this introduction is to make you familiar with the interactive
use of Unix/Linux for day-to-day organizational and programming tasks. Unix/
Linux is an operating system (OS) which we can loosely define as a collection of
programs (often called processes) which manage the resources of a computer for one
or more users. These resources include the CPU, network facilities, terminal
windows, file systems, disk drives and other mass-storage devices, printers, and
many more. During this course, the most common way you will use Unix/Linux is
through a command-line interface; you will type commands to create and manip-
ulate files and directories, start up applications such as text editors or plotting
packages, and compile and run Fortran programs,

When you type commands in Unix/Linux, you are actually interacting with the
OS through a special program called a shell which provides a user-friendly
command-line interface. These command-line interfaces provide powerful environ-
ments for software development and system maintenance. Although shells have
many commands in common, each type has unique features. Over time, individual
programmers come to prefer one type of shell over another. We recommend that you
use the ‘C-shell’ (csh), the ‘tC-shell’ (tcsh), or the ‘bash shell’ (bash) for
interactive use.

All the Unix/Linux commands described below are bash shell features. The bash
shell offers command-history recall and editing via the ‘arrow’ keys (as well as
‘delete’ and ‘backspace’). After you have typed a few commands, hit the ‘up arrow’
key a few times and note how you scroll back through the commands you have
previously issued. In the following, we shall assume that you have at least one active
shell on each system in which to type Unix/Linux commands, and we will often refer
to a window in which a shell is executing commands across the book. as the
terminal. Popular terminal windows on Unix/Linux machines are iTerm, aterm, and
xterm. An example of the latter is shown in figure 1.1. Henceforth, commands typed
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to the shell at the shell prompt (denoted by ‘>’) are shown in red typewriter fonts,
while the shell response is shown in blue typewriter fonts. Here is an example:

↩

↩

− − ↩
−

> pwd
/home/student
> whoami
student
> ps p $$ o comm=""
bash

1.2 Files and directories
There are essentially three types of files in Unix/Linux. These are

• regular files, such as plain text files, source code files, executables, postscript
files;

• directory files, which contain other files and/or directories; and
• special files, such as block files, character device files, named pine files,
symbolic link files, and socket files.

1.2.1 Pathnames and working directories

All Unix/Linux file systems are rooted in the special directory called ‘/’. All files
within the file system have absolute pathnames which begin with ‘/’ and which
describe the path down the file tree to the file in question.

Figure 1.1. The X-terminal window on a machine running Ubuntu Linux.
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Thus

/home/student/sample.txt

refers to a file named sample.txt which resides in a directory with absolute
pathname

/home/student/

which itself lives in directory

/home

which is contained in the root directory, /. In addition to specifying the absolute
pathname, files may be uniquely specified using relative pathnames. The shell
maintains a notion of your current location in the directory hierarchy, known
appropriately enough, as the working directory. The name of the working directory
may be printed using the pwd command:

↩> pwd
/home/student/

If you refer to a filename such as

file.txt

or a pathname such as

dir1/dir2/file.txt

so that the reference does not begin with a ‘/’, the reference is identical to an
absolute pathname constructed by prepending the working directory followed by a
‘/’ to the relative reference. Thus, assuming that your working directory is

/home/student/txt

the two previous relative pathnames are identical to the absolute pathnames

/home/student/txt/file.txt
/home/student/txt/dir1/dir2/file.txt
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Note that although these files have the same filename file.txt, they have different
absolute pathnames and hence are different from each other.

Each user of a Unix/Linux system typically has a single directory called his/her
home directory which serves as the base of his/her personal files. The command cd
(change directory) with no arguments will always take you to your home directory.
On your Linux machine you may see something like this:

↩
↩

> cd
> pwd
/home/student

When using the C-shell, you may refer to your home directory using a tilde (‘∼’).
Thus, assuming the home directory is /home/student, then

∼> cd 

followed by

> cd dir1/dir2

is identical to

> cd /home/student/dir1/dir2

Unix/Linux uses a single period ('.') and two periods ('..') to refer to the
working directory and the parent of the working directory, respectively:

∼ ↩
↩

↩
↩

↩
↩

> cd /student/homework1
> pwd
/home/student/homework1
> cd ..
> pwd
/home/student
> cd .
> pwd
/home/student

Note that

> cd .
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does nothing—the working directory remains the same. However, the ‘/’ notation is
often used when copying or moving files into the working directory. See below for
more details.

1.2.2 Filenames

There are relatively few restrictions on filenames in Unix/Linux. On most systems
(including Linux machines), the length of a filename cannot exceed 255 characters.
Any character except the forward slash (‘/’) and ‘null’ may be used. However, you
should avoid using characters which are special to the shell, such as ‘(’, ‘)’, ‘*’, ‘?’,
‘$’, ‘!’ as well as blanks (spaces). In other words, using upper- and lower-case letters,
numbers and a set of symbols, as shown below, is highly recommended,

a — z, A — Z, 0 — 9, _, ., —

which includes underscores, periods, and dashes. As is the case for other operating
systems, the period is often used to separate the ‘body’ of a filename from an
‘extension’. Examples are shown in table 1.1, where the full filenames are listed in the
left column and the extensions in the right column. Note that unlike some other
operating systems, extensions are not required, and are not restricted to some fixed
length. Several standard Unix/Linux filename extensions are shown in table 1.2. The
underscore and dash sign are often used to create more human readable filenames
such as This_is_better, which is better readable than a file named
Thisisnotsogood.

If one accidentally creates a filename containing characters which are special to
the shell, such as '*' or '?', it is best to rename or move (mv) this file. This is done
by enclosing the file’s name in single forward quotes to prevent shell evaluation.
Below we show an example for a text file which contains an asterisk:

′ ′ ↩> mv bad_file*_name.txt good_file_name.txt

The mv command renames the file specified on the command line. The single quotes
must be forward quotes as backward quotes have a completely different meaning to
the shell.

Table 1.1. Examples of file extensions.

Full file name Extension

program.f .f

program.f90 .f90

paper.tex .tex

document.txt .txt
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1.3 Overview of Unix/Linux commands
Beginning Unix/Linux users are often overwhelmed by the number of commands
they must learn in order to perform tasks. To assist such users, we discuss in this
chapter the most commonly used Unix/Linux commands, which will allow users to
perform many essential operations on Unix/Linux machines. An overview of the
most important commands is provided in table 1.3. The general structure of Unix/
Linux commands is schematically given by

command_name [options] [arguments]

where the square brackets may contain optional parameters. Options to Unix/Linux
commands are frequently single alphanumeric characters preceded by a minus sign
as in this example:

− ↩
− ↩

− ↩

> ls l
> cp R ...
> man k ...

where the ellipses stand for directory names or commands which have been omitted.
They are typically provided as arguments to shell commands, which do not start

Table 1.2. Overview of standard Unix/Linux filename extensions.

File extension Usage

.c C language source code

.cpp C++ language source code

.f Fortran 77 language source code

.f90 Fortran 90 language source code

.o Object code generated by a compiler

.pl Perl language source code

.ps PostScript language source

.tex TEX or LaTeX document

.dvi Device independent output file

.gif Graphic Interchange Format (GIF) graphics file

.jpg Joint Photographic Experts Group (JPE) graphics file

.tar Archive file created with tar

.Z Compressed file created with compress

.tgz Compressed (gzipped) archive file created with tar

.a Library archive file created with ar
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Table 1.3. Summary of essential Unix/Linux commands.

Topic Command Examples

List filenames ls * ls -l .c, ls -a, ls -F, ls -alF
Move files or directories mv mv temp.txt newfile.txt

mv temp.txt ../new/list.txt
Copy files or directories cp cp temp.txt newfile.txt

cp temp.txt ../new/list.txt
Remove a file or directory rm rm temp.txt

rm -i temp.txt
rm -rf directory

Look the MANual pages for a
command

man man rm

The ‘-k’ option searches man pages
for keyword

man -k xterm

Make a directory mkdir mkdir newdir
Remove a directory rmdir rmdir newdir
Change directory cd cd texdir
Print working directory pwd pwd
Send file to a printer lpr, lp lp -Pprintername filename
List content of file cat cat file1

more more file1
less less file1

Print string or variable echo echo $USER
echo “hello, world”

To see list of recent commands history history
Set protection of a file chmod chmod 755 file
Set owner of a file chown chown smith file
Make a link (alias) to a path ln ln -s ∼/classes/phys-317 phys-317
Find out disk quota quota quota -v
Find out disk usage du du
Create archive file tarfile.tar from list

of files (can be a directory)
tar -cvf tar -cvf tarfile.tar list

Create gzipped archive file from list of
files

tar -czvf tar -czvf tarfile.tar.tgz list

Extracts files from archive file tarfile.
tar

tar -xvf tar -xvf tarfile.tar

Extract files from a gzipped tarfile tar -xzvf tar -xzvf tarfile.tar.gz
Zip filename (can be tar file) into

compressed
gzip gzip filename

file filename.gz
Unzip filename from filename.gz gunzip gunzip filename.gz
Another file compression bzip2 bzip2 filename
Decompressing files bunzip2 bunzip2 filename.bz2
Convert text files to PostScript enscript enscript -o file.ps file

(Continued)
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with a ‘-’ symbol in front. Individual arguments are separated by white space, that
is, one or more spaces or tabs:

↩
′ ′ ↩

> cp file1 file2
> grep a string  file

There are two arguments in both of the above examples. Note the use of
single forward quotes needed when supplying the grep command with an argument
(i.e. ‘a string’) which contains spaces. The command

> grep a string file

without quotes has three different arguments rather than just two, and thus has a
completely different meaning.

1.3.1 Executables and paths

In Unix/Linux, a command such as ls or cp is usually a file, which is known to the
system to be executable. To invoke the command, you must either type the absolute
pathname of the executable file or ensure that the file can be found in one of the
directories specified by your path. For the C-shell and bash shell, the current list of
directories which constitute your path is maintained in the shell variable, PATH. To
display the contents of this variable, type

↩> echo $PATH

Format files for printing on a
PostScript printer

a2ps a2ps -o code.ps code.f

Printing and pagination filter for text
files

pr pr program.f90 > program.f90.pr

For transferring files between
computers, use

scp scp yourname@host:file file

‘scp’ (secure copy) or ‘sftp’ (secure ftp)
scp yourname@host:file .
scp file yourname@host:.
scp file yourname@host:file

sftp username@host
pwd, cd subdir, ls, !ls, put, get, quit

To log on remotely, the preferred
protocol is ‘ssh’

ssh yourname@host
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The ‘$’ mechanism is the standard way of evaluating shell variables and
environment variables alike. The resulting output generated by the C-shell may
look something like this,

/home/student/bin:/home/student/local/bin:/usr/local/
sbin

The order in which path components (that is, first /home/student/bin, then
/home/student/local/bin, then /usr/local/sbin) appear in the path is
important. When you invoke a command without using an absolute pathname, as
for example

> ls

the system looks in each directory in your path, in the specified order, until it finds
a file with the appropriate name. If no such file is found, the shell returns an error
message. As an example, say you want to list all files and directories in a given
directory. This is accomplished by typing ls at the shell prompt and hitting the
return button. Instead of ls, however, say you erroneously type list, which
does not exist on your machine. The shell therefore will return an error message
such as

− bash: list: command not found

The path variable is typically set in your ∼/.login file and/or preferably your ∼/.
cshrc or ∼/.bashrc files, which reside in your home directory. Examining ∼/.
cshrc and ∼/.bashrc you should see lines like

export PATH=/usr/local/bin:/home/student/bin:$PATH
set path=($path /usr/local/bin $HOME/bin)

for the bash shell and the C-shell, respectively. These lines add the directories /usr/
local/bin and $HOME/bin to the previous (system default) value of PATH. Also
note the use of parentheses to assign a value containing whitespace to the shell
variable. HOME is an environment variable which stores the name of the home
directory. Thus

set path=($path /usr/local/bin ∼/bin)

will have the same effect as

set path=($path /usr/local/bin $HOME/bin)

Control characters: The control characters CTRL-D, CTRL-C, and CTRL-Z have
special meanings or uses within a shell. Below we shall familiarize ourselves with the
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actions and typical usages of these control characters. We shall use a caret (‘ˆ’) to
denote the CTRL key. Then, for instance,

> ˆD

means pressing the (upper- or lower-case) D-key while holding down the CTRL
(control) key. If you try the above example, you will notice that the shell does not
‘echo’ the ^D. This is typical of control characters. When you type ^D, the operating
system sends all of the current lines that you have typed (but not the ^D itself) to the
program (e.g. mail program, LaTeX) doing the read, which may echo the characters
end-of-transmission (EOT). Other commands such as cat, for instance, will not
echo anything. In almost all cases, however, you should be presented with the shell
prompt. By default, the C-shell and bash shell exit when they encounter an end-of-
file (EOF). So if you type ^D at a the shell prompt, the terminal will close
automatically. This behavior can be changed by adding set ignoreeof to ∼/.
cshrc for the C-shell and export ignoreeof=1 to ∼/.bashrc for the bash
shell.

The ^C interrupt kills (stops in a non-restartable fashion) commands (processes)
which have been started from the command-line of a terminal window. This is
particularly useful for commands which are taking much longer to execute or
producing much more output to the terminal than anticipated. Many commands
catch interrupts and you may sometimes have to type more than one to stop the
command.

The ^Z interrupt suspends, i.e. stops in a restartable fashion, commands which
have been started from the shell. This is useful as it is often convenient to
temporarily halt execution of a command.

1.3.2 Special files

The following files, all of which reside in your home directory, have special purposes
and you should familiarize yourself with their content. The first one is .cshrc.
Commands in this file are executed each time a new C-shell is started. The second file
to note is .login. Commands in this file are executed after those in .cshrc and
only for login shells. When interacting with Unix/Linux via a window system, it is
easy to start an interactive shell which is not a login shell, but for which you
presumably want the same initialization procedures. Consequently, your .login
should be kept as brief as possible and all your start-up commands should be put in
.cshrc instead. Users using the bash shell rather than the C-shell should put all
their the start-up commands in .bashrc.

Note that files whose name begins with a period ('.') are called hidden files.
They are not shown in a standard listing generated with ls, but can be printed by
adding the -a operand to the listing command, as shown here:

− ↩> ls a
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Listing the names of all files in your home directory is accomplished with

− ↩> cd ; ls a

where we have introduced another piece of shell syntax, namely the ability to type
multiple commands separated by semicolons (‘;’) on a single line. If one wants to list
only the hidden files and hidden directories in a given directory, the following
command is to be executed:

− ↩> ls d .*

where the -d operand guarantees that directories are listed as plain files (not
searched recursively) and the asterisk (‘*’) stands for any number of characters.
Shell aliases: The syntax of many Unix/Linux commands is quite complicated and
furthermore, the bare-bones version of some commands is less than ideal for
interactive use, particularly by novices. The C-shell and bash shell provide a
mechanism called aliasing which allows one to easily remedy these deficiencies in
many cases. The basic syntax for aliasing is

alias name definition

where name is the name (use the same considerations for choosing alias names as for
filenames, i.e. avoid using special characters) of the alias and definition tells the
shell what to do when you type name at the shell prompt, as if it was a command.
The following examples give a basic idea how this works. More details can be found
in the system’s manual pages by typing man csh for the C-shell, and man bash for
the bash shell. A convenient re-definition of the standard listing command, for
instance, is

′ − ′ −
′ − ′

% alias ls ls FC (for the C shell)
> alias ls= ls FC (for the bash shell)

These aliases for the ls command uses the -F and -C options, which are described
in the discussion of the ls command below. Note that single quotes in alias
definitions are essential if the definitions contains white spaces. The commands

′ − ′ ↩
′ − ′ ↩
′ − ′ ↩

% alias rm rm i
% alias cp cp i
% alias mv mv i

define C-shell aliases for rm, cp, and mv which will request confirmation before
attempting to remove, copy, or move each file, regardless of the file’s permissions.
For the bash shell, the above shell commands read
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′ − ′ ↩
′ − ′ ↩
′ − ′ ↩

> alias rm= rm i
> alias cp= cp i
> alias mv= mv i

Making use of aliases is highly recommended for novices and experts alike. To see a
list of all current aliases for a given shell, simply type

↩> alias

Note that aliases defined interactively in a given shell exist only as long as the
terminal session is open. To create aliases permanently, they need to be defined in
∼/.aliases or ∼/.bashrc, which are located in your home directory, or in
profile.local which resides in the /etc/ directory. The aliases are made
available to shells with the source command, by typing

∼ ↩
↩

> source /.aliases
> source /etc/profile.local

at the shell prompt. The source command tells the shell to execute the commands in
the files supplied as arguments.

1.4 Basic commands
The following list is by no means exhaustive, but rather represents what we consider
an essential base set of Unix/Linux commands with which you should familiarize
yourself as soon as possible. Refer to the manual pages (see below) for additional
information about these commands.

1.4.1 Getting help and information

Use man, which is short for manual, to display information about a specific Unix/
Linux command. The -k option may be used in combination with man to display a
list of commands which have something to do with a specific topic or keyword. For
example, typing

− ↩> man k xterm

returns all information found on the system about the X-terminal window. It cannot
be overemphasized how important it is for users to become familiar with this
command. Although the level of intelligibility for commands (especially for novices)
varies widely, most basic commands are thoroughly described in the man pages,
with usage examples in many cases. It helps to develop an ability to scan quickly
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through text looking for specific information you might feel to be of use. Typical
usage examples include:

> man man

to obtain detailed information on the man command itself,

> man cp

for information on cp, and

− ′ ′> man k working directory

to obtain a list of commands having something to do with the topic working
directory. The command apropos, found on most Unix/Linux systems, is
essentially an alias for man -k.

1.4.2 Communicating with other computers

The OpenSSH secure shell client ssh, a remote login program, can be used to
securely login to another computers on the Internet and perform command-line
operations on them interactively. These computers could be physically located
anywhere in the world. ssh is the most common way to access remote Linux and
Unix-like machines. The typical usage of ssh is either

− ↩> ssh remote.host.name l login_name

or, alternatively,

↩> ssh login_name@remote.host.name

which initiates the login of a user named login_name on the remote machine
with the network ID remote.host.name. The -l option specifies the login
name of the user on the remote machine. Let us look at an example. As
login_name we pick student. The login session is then initiated by typing
ssh student@remote.host.name at the shell prompt (>) of the local machine,
as shown below:

′ ↩

> ssh student@remote.host.name (on the local machine)

student@remote.host.name s password: xxxxxx
Login successfull from remote.host.name
student@remote >
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If user student is known on the remote machine, he/she will be asked for the
password. Hereupon the remote machine returns the shell prompt, which allows
student to run programs on the remote machine. If the login attempt fails because
of a wrong password or an incorrect username, a permission denied message will be
printed and the failed login attempt will most likely be recorded on the remote
machine. In the above example, commands processed at the local machine are
shown in red typewriter font, while those processed at the remote machine are shown
in black typewriter font. To leave the remote terminal window session, type exit at
the shell prompt.

The Secure File Transfer Protocol (SFTP) enables secure file transfer capabilities
between networked machines. It also provides remote file system management
functionality, allowing users to list the contents of remote directories and to delete
remote files. Below is an example which illustrates how SFTP is used to copy a file
named thesis.pdf from the remote host remote.host.name to the local host
local.host.name. The user name is again student, who has an account on the
remote host:

′ ↩
↩

↩

↩
↩

↩

↩

↩

↩

> sftp student@remote.host.name (on the local machine)

student@remote.host.name s password: xxxxxx
sftp> pwd
Remote working directory: /home/student
sftp> ls
public temporary numerical_codes Thesis
sftp> cd Thesis
sftp> pwd
Remote working directory: /home/student/Thesis
sftp> ls
thesis.pdf
sftp> get thesis.pdf
Fetching /home/student/Thesis/thesis.pdf to thesis.pdf
/home/student/Thesis/thesis.pdf 100% 910KB 500.6KB/s
sftp> !ls
thesis.pdf
sftp> quit

As in the previous example, the command shown in red is typed on the local
machine, and the commands and messages on the remote machine are in black. The
commands ls, cd, and pwd are used to, respectively, list the files and directories,
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change directories, and print the name of the current directory on the remote
machine. The transfer of a file, thesis.pdf in the current example, from the
remote machine to the local machine is accomplished with the get command.
Conversely, the command put is to be used if a file is sent from the local machine to
the remote machine. The command !ls is used to list the files and directories on the
local machine, without leaving the SFTP session. Similarly lcd and lpwd can be
used to change the working directory and to display the current working directory
on the local server. Submitting the quit command terminates the SFTP session, as
shown in the example above.

The sftp program offers fairly extensive on-line help, which can be retrieved by
typing

↩sftp> help

or by submitting one of the following commands:

↩
↩
↩
↩
↩
↩
↩

sftp> help bin
sftp> help cd
sftp> help lcd
sftp> help put
sftp> help get
sftp> help prompt
sftp> help mget

1.4.3 Creating, manipulating, and viewing files and directories

The text editorswhichwill be considered in this book are ‘vi‘ and ‘Emacs’. The vi editor
(short for visual editor) is a simple screen editor which is available on almost all Unix
systems. ‘Emacs’ belongs to a family of text editors that are characterized by their
enormous extensibility. Either of these two editors is perfectly suited to create,modify,
and view text files at the level required for this course. Both editors are very popular
among programmers, scientists, engineers, students, as well as system administrators.
A brief introduction to vi and emacs is provided in chapter 2. Most often vi, or its
improved version named vim, is started to edit a single file with the commands

↩
↩

> vi filename
> vim filename

Similarly, the command to start an Emacs session at the shell prompt is given by

↩> emacs filename
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The command more is used to view the contents of one or more files one page at a
time. For example, executing the more command as

∼ ↩

−

−

′ − ′
′ − ′
′ − ′

′ − ′

> more /.bashrc
## Source global definitions
if [ f /etc/bashrc ]; then
. /etc/bashrc
fi

## Source local definitions
if [ f /etc/profile.local ]; then
. /etc/profile.local
fi

alias rm= rm i
alias mv= mv i
alias cp= cp i
alias dir= ls aF

displays thefirst page of lines of the.bashrc configurationfile, which is located in the
home directory. The next page of lines (if any) is displayed by hitting the spacebar.
Scrolling backward by one page in is accomplished by typing b. Forward scrolling by
one page is done by typingd∣ and the command q quits viewing a file. Consult theman
pages (man more) for the many other features of the more command.

The commands lp or lpr are used to print files. By default, files are sent to the
system default printer, or to the printer specified in your PRINTER environment
variable. The typical usage is

− ↩> lp d laser print.ps

which prints postcript file print.ps at the printer named laser. If you want to
print a regular text file or the source code of a numerical program such as Fortran or
C++, it is highly recommended to convert these files first to postscript files using the
enscript command. The typical usage is

− ↩
− ↩
− ↩

enscript o print.ps file.txt
enscript o print.ps file.f90
enscript o print.ps file.cpp

For detailed information about this command, type man enscript.
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The commands cd and pwd are used to, respectively, change and display the
current working directory. Below we show a summary of the commands that are
typically used. Note the usage of semicolons to separate distinct Unix/Linux
commands issued on the same line:

↩
↩

∼ ↩

↩

↩

> cd
> pwd
/home/student
> cd ; pwd
/home/fweber
> cd /tmp; pwd
/tmp
> cd ..; pwd
/

Recall that ‘..’ refers to the parent directory of the working directory so that

↩> cd ..

takes you up one level in the file system hierarchy.
The listing command ls is used to list the contents of one or more directories, as

shown for the home directory in this example:

↩
↩

> cd
> ls
Desktop Downloads thesis numerical homework paper.pdf

The listing can be made more explicit by redefining the ls command as

′ − ′ ↩> alias ls= ls F

which causes ls to append special characters, notably ‘*’ for executables, ‘@’ for
links, and ‘/’ for directories, to the names of certain files and directories. Then

↩> ls
Desktop/ Downloads/ thesis/ numerical/ homework/ paper.pdf
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which immediately reveals that Desktop, Downloads, thesis, numerical, and
homework are directories and paper.pdf is a regular file. To display hidden files
in directories, the -a option is to be used:

∼ − ↩> cd ; ls aF
.bashrc .bash_profile .local/ .profile .vim .xemacs

Desktop/ Downloads/ thesis/ numerical/ homework/
paper.pdf

Finally, using ls in combination with the -l option allows one to display file and
directory information in long format:

− ↩
− − −−−

−
− −
− −
− −

> cd /numerical; ls lF
rwxr x  15 student users 409 Aug 21 19:18 data

lrwxrwxrwx 11 student users 817 Mar 22 14:19 f77@ > bu/
drwxr xr x 51 student users 170 Apr 20 12:34 f90/
drwxr xr x 17 student users 130 Aug 20 13:03 f2008/
drwxr xr x 70 student users 990 Feb 22 23:51 cpp/

The output in this case is worthy of a bit of explanation. First, observe that ls
produces one line of output per file and directory listed. The first field in each listing
consists of ten characters (i.e. letters and dashes) which are further subdivided as
follows:

• The first character is either a ‘-’ if the listing refers to a regular file, a ‘d’ for a
directory, and a ‘l’ for a link.

• The next nine characters refer to 3 groups (user, group, other or world) of 3
characters each specifying read (r), write (w), and execute (x) permissions for
the user (owner of the file), users in the owner’s group, and all other users. A
‘-’ in the permission field indicates that the particular permission is denied.

Thus, in the above example, data is a regular file, with read, write, and execute
permissions enabled for the owner (user student), read and execute permissions
enabled for the members belonging to group users, and read, write and execute
denied for all other users. Note that you must have execute as well as read
permissions for a directory in order to be able to change (cd) to this directory.
See chmod below for more information on setting file permissions. Continuing to
decipher the file listing, the next column in the above example lists the number of
links to this file, then comes the name of the user who owns the file and the owner’s
group. This is followed by the size of the file in bytes, the date and time the file was
last modified, and finally the name of the file. If any of the arguments to ls is a
directory, then the contents of the directory is listed. Finally, we note that the -R
option is used to recursively list sub-directories encountered in a given directory
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∼ ↩

− ↩

> cd ; pwd; ls
/home/student
Desktop/ Downloads/ thesis/ numerical/ homework/
paper.pdf
> ls R /homework
instructions.txt
assignment.tex

homework//HW1:
code.f90
code.f90.ps
figures.ps

The command mkdir is used to make (create) directories. The following example
illustrates how to create a directory named tempdir in a user’s home directory:

∼ ↩
↩
↩

> cd 
> mkdir tempdir
> cd tempdir; pwd
home/student/tempdir

If one wants to create a deep directory, i.e., a directory for which one or more parent
directories do not exist, the -p option is to be used in combination with mkdir,
which automatically creates parent directories when needed:

∼ ↩
− ↩

↩

> cd 
> mkdir p dir1/dir2/dir3/dir4
> cd dir1/dir2/dir3/dir4; pwd
home/student/dir1/dir2/dir3/dir4

In this case, the mkdir command creates the ∼/dir1 directory first, followed
successively by ∼/dir1, ∼/dir1/dir2, ∼/dir1/dir2/dir3, and finally
∼/dir1/dir2/dir3/dir4, all residing in the home directory, ∼, of user
student.

Copying files is accomplished with the cp command. This command can be used
to create an identical copy of a file, copy one or more files to different directories, or
duplicate an entire directory structure. The simplest usage is

↩> cp file1 file2

which copies the contents of file1 to file2 in the current working directory.
Assuming that cp is aliased to cp -i, which is highly recommended, the aliased
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command returns a prompt to the terminal window before a file will be copied that
would overwrite an existing file. If the user’s response from the terminal is ‘y’ the file
copy is carried out. Typing ‘n’ cancels the file copy. Below is an example of how this
works. Assuming that file2 already exists in the current working directory, the shell
dialog may be as follows:

− ↩
↩

> cp i file1 file2
overwrite file2? (y/n [n])
not overwritten

For many systems, [n] is the default option, as shown above, in which case only a
simple shell return (↩) is required to not overwrite file2. To copy one or more files
to a different directory, the typical command usage is

− ↩> cp i file1 file2 temporary/.

which attempts to copy file1 and file2 to sub-directory temporary. If files with
identical names already exist in temporary, prompts at the terminal window will
be returned which allow the user to either overwrite or cancel the file copy. An
example which overwrites existing files is shown here:

− ↩
↩

↩

> cp i file1 file2 temporary/.
overwrite temporary/./file1? (y/n [n]) y
file1 → temporary/./file1
overwrite temporary/./file2? (y/n [n]) y
file2 → temporary/./file2

Finally, duplicating an entire directory structure is done by adding the '-r'
(recursive) option to cp. This copies the entire directory hierarchy to a new
directory, such as

− ↩> cp ir temporary/. copy_temporary

The command mv is used to rename files or to move files from one directory to
another. Again, let us assume that mv is aliased to mv -i so that the user will be
prompted if an existing file would be clobbered by the move command. Here is an
example illustrating the usage of the mv command:
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↩

↩
↩

> ls
fileA
> mv fileA fileB
> ls
fileB

The following sequence of commands illustrates how files file1, file2, and file2
located in home/student/subdir1/subdir2/subdir3 can be moved up one
level in the directory structure:

↩

↩

↩
↩

↩
↩

↩
↩

↩

> pwd
/home/student/subdir1/subdir2
> ls
subdir3
> cd subdir3
> ls
file1 file2 file3 file4
> mv file1 file2 file3 ../.
> ls
file4
> cd ..
> pwd
/home/student/subdir1/subdir2
> ls
file1 file2 file3 subdir3

The rm command is used to remove (delete) files or directory hierarchies. The use of
the alias rm -i, which requests confirmation (y for yes, n for no) before attempting to
remove files or directories, is highly recommended. Note that once a file or directory
has been removed in Unix/Linux there is essentially nothing you can do to restore
them other than restoring a copy from a backup. In this example

− ↩
↩

> rm i oldStuff.dat
remove oldStuff.dat? y
oldStuff.dat

the remove command is used to delete a data file named oldStuff.dat once the
action is confirmed with yes. The command

↩> rm file1 file2 file3

removes several files at once, and
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− ↩> rm r thisDir

removes the entire content of directory thisDir, including the directory itself. Be
particularly careful when using the -r option as all files and directories will be
irrevocably lost. Using the remove command without the -r option, that is, > rm
thisDir, can not be used to remove thisDir. If submitted at the shell prompt,
Unix/Linux will complain that thisDir is a directory and no action will be taken.

The command chmod is used to modify the permissions (file mode bits) of file. See
thediscussionoflsabove forabrief introduction tofilepermissionsandcheck theman
pages forls andchmod for additional information. Basically, file permissions control
who can dowhat with files. This includes yourself (the user,u), users in your group (g),
and the rest of theworld (the others,o). Thefilemode bits include the read bit (r), write
bit (w), and the execute bit (x). When a user creates a new file, the system sets the
permissions (modebits) of afile todefault valueswhichcanbemodifiedwith theumask
command (seeman umask formore information). The defaultumaskonmanyUnix/
Linux systems is 022, which means that newly created files are readable by everyone
(i.e., the world), but only writable by the owner, as shown below:

↩
− ↩

− − −− −−

> touch newFile
> ls dl newFile
> rw r r  1 student users 0 Aug 25 12:55 newFile

To change the umask setting of the current shell to something else, say 077, run

↩> umask 077

which changes the file mode bits for any newly created file in that shell to
-rw-------. On Unix/Linux machines, the defaults should be such that you
can do anything you want to a file you have created, while the rest of the world
(including fellow group members) normally has only read and, where appropriate,
execute permission. As the man page will tell you, you can either specify permissions
in numeric (octal) form or symbolically. The latter are more intuitive and easier to
remember. Several useful examples are shown below. Let us begin with

− ↩> chmod go rwx file.f90

which removes all permissions from group and others. A file listing therefore
produces on the following terminal window output,

− ↩
− −−−−

> ls dl file.f90
> rw  1 student users 33 Aug 13:09 file.f90

Introduction to Computational Physics for Undergraduates

1-22



To make a file executable by everyone, the a option, which stands for all (i.e. user,
group, and other) can be used,

↩> chmod a+x file.o

To remove this permission from everyone, the a-x option would be used. Finally, as
a last example, the command

− ↩> chmod u w thesis.tex

removes the user’s write permission to a file to prevent accidental modification of
particularly valuable information, such as a thesis. As indicated above, file
permissions are granted by putting a ‘+’ sign after ‘ugo’ or a, and removed by
putting a ‘-’ sign there.

1.5 More on the C-shell
1.5.1 Shell variables

The C-shell (csh) maintains a list of local variables, some of which, such as path,
term, and shell are always defined and serve specific purposes within the shell.
Other variables, such as filec and ignoreeof are optionally defined and
frequently control details of shell operation. Finally, you are free to define your
own shell variables as you see fit, but beware of redefining existing variables. By
convention, shell variables have all-lowercase names. To see a list of all currently
defined C-shell variables, simply type

↩% set

or

∣ ↩% set  more

at the C-shell prompt (%). Using more will display as many lines as fit on the screen
and prompts the shell to wait for user input (i.e.↩) to advance. To print the value of
a particular variable, use the Unix/Linux echo command plus the fact that a $
symbol in front of a variable name causes the evaluation of that variable,

↩% echo $PATH

To set the value of a shell variable use one of the following two ways,
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↩
↩

% set thisvar=thisvalue
% echo $thisvar
thisvalue

or

↩
↩

% set thisvarlist=(value1 value2 value3)
% echo $thisvarlist
value1 value2 value3

Shell variables may be defined without being associated a specific value, as shown
here:

↩
↩

% set somevar
% echo $somevar

The shell frequently uses this ‘defined’ mechanism to control enabling of certain
features. To undefine a shell variable use unset as in

↩
↩

% unset somevar
% echo $somevar
somevar: Undefined variable.

The following is a list of some of the main shell variables (predefined and optional)
and their functions:

• path: Stores the current path for resolving commands.
• prompt: The current shell prompt—what the shell displays when it is
expecting input.

• cwd: Contains the name of the (current) working directory.
• term: Defines the terminal window type. If your terminal is acting strangely,
the command

↩% set term=vt100; resize
COLUMNS=87;
LINES=23;
export COLUMNS LINES;

often provides a quick fix.
• noclobber: When set, prevents existing files from being overwritten via
output re-direction (see below).

• filec: When set, this enables file auto completion. Partially typing a filename,
using an initial sequence which is unique among files in the working directory,
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followed by hitting the TAB button will result in the system doing the rest of
the typing of the filename for you.

• shell: Defines which particular shell you are using.
• ignoreeof: When set, this will disable shell-logout when ^D is typed.

1.5.2 Environment variables

Aside from shell variables discussed in section 1.5.1, Unix/Linux uses another type
of variable, called an environment variable, which is often used for communication
between the shell (not necessarily the C-shell) and other processes. By convention,
environment variables have all-uppercase names. In the C-shell, you can display the
value of all currently defined environment variables by typing

↩% env | more

Some environment variables, such as PATH are automatically derived from shell
variables. Others have their values set, typically in ∼/.cshrc or ∼/.login, using
the syntax

↩% setenv VARNAME value

Note that, unlike the case of shell variables and set, there is no ‘=’ sign in the
assignment. The values of individual environment variables may be displayed using
the commands printenv or echo:

↩

↩

% printenv HOME
/home/student
% echo $HOME
/home/student

It should be noted that, as with shell variables, the ‘$’ sign causes the evaluation of
an environment variable. It is particularly notable that the values of environment
variables defined in one shell are inherited by commands (including C and Fortran
programs, and other shells) which are initiated from that shell. For this reason,
environment variables are widely used to communicate information to Unix/Linux
commands (applications). The DISPLAY environment variable is a canonical
example of an environment variable. It tells X-applications which display (screen)
to use for output. It is typically set on remote machines so that output appears on the
local screen. For example, assuming you are remotely logged into host darwin
from the console of your local machine magic, then, at the darwin prompt, you
may want to type
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↩% setenv DISPLAY darwin:0.0

after which all X-applications started on darwin will be displayed graphically on
the local magic machine. If you encounter problems transporting windows from a
remote machine to your local console, try typing xhost + at a shell prompt on the
local machine. See man xhost for more information.

The HOME variable asks the shell to substitute the environment variable HOME.
For example,

↩% cd $HOME/homework

allows you to change from any (sub) directory directly to homework, provided it
exists in your home directory. Since HOME stand for your home directory ( /), this
command is equivalent to

∼ ↩% cd /homework

The PRINTER variable defines the default printer for use with lpr, lp, or programs
such as enscript, which feed postcript files to a printer via lpr or lp. The default
printers may be designated in ∼/.cshrc by adding setenv PRINTER print-
ername, or in ∼/.bashrc by adding PRINTER=printername; export
PRINTER, which sets the PRINTER variable for the C-shell and bash shell,
respectively.

1.5.3 C-shell pattern matching

The C-shell provides facilities which allow you to concisely refer to one or more files
whose names match a given pattern. The process of translating patterns to actual
filenames or pathnames is known as filename/pathname expansion, or globbing. The
name expansion expands the ‘*’, ‘?’, and a pattern list ‘[...]’ when you type them
as part of a command. For example,

↩% *.ps

lists all postscript files in a given directory, where the ‘*’ acts as a placeholder for any
string of characters. Replacing the asterisk with a question mark in the above
command, that is,

↩% ?.ps

causes the shell to list all postscript files with only one-character filenames, such as
a.ps or 2.ps. Pattern lists [...] are constructed using plain text strings
sandwiched between square brackets, such as
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− ↩% ls [A Z]*.ps

which lists all postscript files that start with any capital letter. If desired, these files
could then be moved from the current working directory to ∼/plots by typing

− ∼ ↩% mv [A Z]*.ps /plots/

The command

− ↩% rm [A Z]*.ps

can be used to remove all files whose names begin with a capital letter. Submitting

↩% mv *.f90 ../f90Codes/

at the Unix/Linux shell prompt moves all files with extension .f90 to directory
f90Codes, where the double period refers to the parent directory of f90Codes, i.e.
the directory that contains f90Codes.

These are not the only forms of wildcards supported by csh or bash. Another
useful wildcard, for instance, is the pattern list [a-z].ps which selects all
postscript files whose names begin with a lower-case letter. The pattern list [^a-
z], which filters out any single character not contained in the specified range, could
be used to list only those files and directories that begin with a capital letter or a
number, and the command

− − ↩% [^b z,A Z]*

will list all files and directories whose names begin with an ‘a’. Everything else would
not be shown. The command

↩% ls ?????
a.pdf

lists all regular (not hidden) files and directories whose names contain precisely five
characters, such as for a.pdf. Last but not least, we mention that the command

% mv *.f *.for

will not rename all files ending with .f to files with the same prefixes, but ending in .
for, as is the case for some other operating systems. This is easily understood by
noting that file expansion occurs before the final argument list is passed along to the
mv command. If there are no .for files in the working directory, *.for will expand
to nothing and the shell command will be identical to
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% mv *.f,

which is something very different from what was intended.

1.5.4 Using the C-shell history and event mechanisms

The C-shell maintains a numbered history of previously entered command lines.
Because each line may consist of more than one distinct command (separated by a
semicolon), the lines are called events rather than simply commands. To view the
shell history, type

↩% history

after entering a few commands at the shell prompt. Although bash, which I assume
you are using, allows you to work back through the command history using the up-
arrow and down-arrow keys, the following event designators for recalling and
modifying events are still useful, in particular if the event number is part of the shell
prompt, as is the case for the initial set-up on many Linux machines. The command

↩% !!

causes the shell to repeat the previous command line, while

↩% !22

will repeat the command with line number 22. Unix/Linux users often refer to an
exclamation point (‘!’) as ‘bang’. To repeat the most recently issued command line
which started with an ‘a’, type

↩% !a

An initial sub-string of length greater than one can be used for more specificity. The
command

↩% !?b

is used to repeat the most recently issued command line which contains ‘b’. Any
string of characters can be used after the question mark.

1.5.5 Standard input, standard output, and standard error

Every program run from a shell automatically opens three files (data streams), which
are standard input (stdin), standard output (stdout), and standard error
(stderr). These files provide the primary means of communications between the
programs. They exist for as long as a given process runs from a shell. The standard
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input file provides a way to send data to a process. As a default, standard input is
read from the terminal keyboard. The standard output provides a means for the
program to output data. As a default, standard output is written to the terminal
display screen. The standard error is where the program reports any errors
encountered during execution. By default, the standard error is written to the
terminal display, too. Below, we use the cat command with no arguments to
illustrate how stdin and stdout work:

↩
↩

↩

% cat
something
something
something else
something else

^D

Here, the command cat run from a shell reads the lines marked red from stdin
(i.e., the terminal window) and writes them, shown in blue, to stdout (also the
terminal window). In other words, every line that is typed by the user is echoed by
the command. A command, such as cat, which reads from stdin and writes to
stdout is known as a filter.

1.5.6 Redirecting input and output

The power and flexibility of the stdin and stdout mechanism becomes apparent
when input and output is redirection, which is implemented in the C-shell and the
bash shell. As the name suggests, redirection means that stdin and/or stdout are
associated with targets other than the terminal display. Input redirection is
accomplished using the ‘<’ (less than) character which is followed by the name of
a file from which the input is to be read or extracted. Thus, the command line

↩% cat < input.dat

causes the contents of the file input.dat to be used as input for the cat command.
If the content of input.dat is given by

↩% more input.dat
1
2
3
4

then feeding these numbers to cat leads to the following terminal display:
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1.5. More on the C-shell

↩% cat < input.dat
1
2
3
4

Output redirection is accomplished by using the ‘>’ (greater than) character, again
followed by the name of a file to which the (standard) output of the command is to
be written. Thus

↩% cat > output.dat

will cause cat to read lines from the terminal window and copy them to the file
output.dat. Care must be exercised when using output redirection since one of
the first things which will happen in the above example is that the file output.dat
will be clobbered. If the shell variable noclobber is set (strongly recommended for
novices), then output will not be allowed to be redirected to an already existing file.
Thus, in the above example, if output.dat already exists, the shell would respond
as follows,

↩% cat > output.dat
output.dat: File exists

and the command would be aborted. The standard output from a command can also
be appended to a file using the two-character sequence ‘>>’ (no intervening spaces).
Thus

↩% cat >> existing_file.dat

will append lines typed at the terminal to the end of existing_file.dat. From
time to time it is convenient to be able to throw away the standard output of a
command. Unix/Linux systems have a special file called /dev/null which is
ideally suited for this purpose. Output redirection to this file, as shown in this
example,

↩% cat input.dat > /dev/null
%

causes the stdout output to disappear entirely from the command line terminal.
Only the shell prompt is returned on the terminal window.
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1.5.7 Pipelines

It is then often possible to combine commands (programs) on the command line so
that the standard output from one command is fed directly into the standard input of
another. In this case we say that the output of the first command is piped into the
input of the other. Here is an example:

− ↩% ls 1 | wc
63 588 3964

The -l option tells the listing command ls to show regular files and directories, one
per line. The command wc (which stands for word count) when invoked with no
arguments, reads stdin until an end-of-file (EOF) is encountered and then prints
three numbers: (1) the total number of lines in the input, (2) the total number of
words in the input, and (3) the total number of characters in the input. For the above
example, these numbers are 63, 588 and 3964, respectively. The pipe symbol ‘∣’ tells
the shell to connect the standard output of ls to the standard input of the wc
command. The entire ls -l ∣ wc construct is known as a pipeline. The first number
(i.e. 63) which appears on the standard output is thus simply the number of regular
files and directories in the current directory, where the listing is being created.

Pipelines can be made as long as desired, and once you know a few Unix/Linux
commands and have mastered the basics of the C-shell history mechanism, you can
easily accomplish some fairly sophisticated tasks by building upmulti-stage pipelines.

A powerful Unix/Linux tool which searches for a matching regular expression
against text in a file, multiple files, or a stream of input is the grep command. It
searches for the pattern of text that is specified on the command line and prints
output for the user. grep, which loosely stands for (g)lobal search for (r)egular (e)
xpression with (p)rint, has the following general syntax,

grep [options] regexp [file1 file2 ...]

where regexp, which stands for regular expression, is a string that is used to
describe several sequences of characters. Invoking grep with just a regular regexp
as the only argument,

↩% grep regexp

will read lines from stdin, usually the terminal window, and echo only those lines
which contain the string regexp. If one or more file arguments are supplied along
with regexp, then grep will search all those files for lines matching regexp, and
print the matching lines to standard output, which is usually the terminal window
again. Thus

↩% grep thesis *
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will print all the lines of all the regular files in the current working directory which
contain the string thesis. Files in subdirectories residing in the working directory
will not be searched, however. Recall that the ‘*’ wildcard represents every string. So
it can be used as the argument file for file causing the shell to search for thesis in
all files in the current directory. A few more useful options to grep are worth
mentioning. The first is -i, which tells grep to perform a case insensitive pattern
matching. By default, grep is case sensitive. Thus

− ↩% grep i thesis mynotes

will print all lines of the text file mynotes which contain ‘thesis’ or ‘Thesis’ or
‘THes’, etc. Second, the -v option instructs grep to print all lines which do not
match the pattern. An example of this is shown here,

− ↩% grep v thesis mynotes

which will print all lines of text of mynotes which do not contain any of the
symbols contained in student. Finally, the -n option tells grep to include a line
number at the beginning of each line that is being printed. Thus

− ↩% grep in thes mynotes
133: Notes regarding my thesis:
325: The date of the thesis defense is still unclear.
910: The thesis committee consists of four members.

searches the file mynotes for the case insensitive pattern thes and prints all lines,
together with line numbers in the first column, which contain the strings ‘thes’,
‘Thes’, ‘tHes’, etc. Note that multiple options can be specified with a single '-' sign
followed by a string of option letters with no intervening blanks.

Nextweshowa few, slightlymorecomplicatedexamplesofhowgrep canbeused to
find strings of text. Note that when supplying a regular expression that contains
characters such as ‘*’, ‘#’, ‘?’, ‘[’, or ‘!’, which are special to the shell, the regular
expression should be surrounded by single quotes to prevent shell interpretation of the
shell characters. In fact, a user will not go wrong by always enclosing the regular
expression in single (or double) quotes, as shown in this example:

− ′ ′ ↩% grep owE ^[[:alnum:]]{7}  mynotes

This will search for, and print on the terminal window, all alphanumeric strings in
mynotes that are exactly seven characters long. The command

′ ′ ′ ′ ↩% grep s  mynotes | grep t
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prints all lines of mynotes which contain at least one ‘s’ and one ‘t’, such as lines
containing ‘student’ or ‘thus’. Note the use of the pipe symbol used to redirect the
stdout from the first grep to the stdin of the second grep. The command

− ′ ′ ↩% grep v ^#  mynotes > output

extracts all lines from file mynotes which do not have a ‘#’ in the first column and
writes them to a file named output. Pattern matching using regular expressions, as
discussed just above, is a powerful tool. But it can be made even more powerful
when combining it with certain extensions. Many of these extensions are imple-
mented in a relative of grep, known as egrep. Details about egrep can be found
in the man pages by typing man egrep.

1.5.8 Usage of quotes

Most shells, including the C-shell and the bash shell, use three different types of
quotes found on every standard keyboard. These are regular quotes (') also known
as forward quotes, single quotes, or just quote, double quotes ("), and backward
quotes (') also referred to as just back quotes. They serve distinct roles on Unix/
Linux machines, which will be discussed here.

Single quotes: We have already encountered several situations where forward
quotes have been used to quote variables. In essence, they inhibit shell evaluation of
special characters and/or constructs. Here is an example. In a terminal session, let us
assign variable a a numerical value of 100 and then print the value of a with the
echo $a command,

↩
↩

% set a=100
% echo $a
100

Next we assign the value of $a to the new variable b,

↩
↩

% set b=$a
% echo $b
100

and use echo $b to verify the value of $b. Now let us repeat the last steps but with
$a put in quotes,

′ ′ ↩
↩

% set b= $a
% echo $b
$a
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which protects $a from shell evaluation. The command echo $b therefore does not
return 100 but rather $a. Single quotes are commonly used to assign a shell variable
a value which contains whitespace(s), or to protect command arguments which
contain characters special to the shell (see the discussion of grep).

Double quotes: Double quotes function in much the same way as forward quotes,
except that the shell looks inside them and evaluates both any references to the
values of shell variables as well as anything sandwiched within back-quotes (see
discussion of backward quotes below). An example is shown here:

↩
↩

↩
↩

′ ′ ↩

% set a = 200
% echo $a
% 200
% set string="The value of a is $a"
% echo $string
The value of a is 200
% set string= The value of a is $a
The value of a is $a

The first line assigns a numerical value to variable a, which is then printed on the
terminal window. This is followed by the set string command line, which
assigns a text message plus a numerical value, carried by a, to string. Thus echo
$string returns the assigned text message but with 200 substituted for $a. As
shown by the last two lines, this is not the case if single quotes are used, in which case
the text message as sandwiched between the single quotes is returned to the terminal.

Backward quotes: The shell uses back-quotes to provide a powerful mechanism
for capturing the standard output of a Unix/Linux command (or, more generally, a
sequence of Unix/Linux commands) as a string which can then be assigned to a shell
variable or used as an argument for another command. Specifically, when the shell
encounters a string enclosed in back-quotes, it attempts to evaluate the string as a
Unix/Linux command, precisely as if the string had been entered at the shell prompt,
and returns the standard output of the command as a string. In effect, the output of
the command is substituted for the string and the enclosing back-quotes. Here are a
few simple examples:

↩

′ ′ ↩
↩

% date
Sat Sep 2 13:16:22 PST 2017
% set current_date_and_time= date
% echo $current_date_and_time
Sat Sep 2 13:16:22 PST 2017

The date command returns the current date and time to the window terminal. The
set command is used to assign the current date and time to the variable
current_date_and_time, which is then echoed back to the terminal.
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Chapter 2

Text editors

All computer programs are written in some sort of text editor. There are many text
editors across multiple platforms. Notepad++ is very popular on Windows, while
‘vi’ is the most widely used text editor on the Linux/Unix operating system. Due to
the ease of the internet, text editors are widely available. Some others which can be
used across multiple platforms include gedit, jedit, and atom, each with their unique
niches. In this text we focus on two of the most versatile and widely used text editors,
‘vi’ or ‘Vim’ (vi Improved) and Emacs.

2.1 Vi
‘vi’ is a widely used text editor for UNIX systems. It is often available when other
editors are not. vi does not make use of a user-interface menu nor does it have on-
line help. You can learn about vi by using the man command. vi is a Unix command
and therefore is case sensitive. Some vi commands are issued in UPPER-CASE. Be
careful to make the distinction between upper-case commands and lower-case
commands to issue the appropriate command. To create a new file or edit an
existing one, you invoke the vi editor by keying: vi filename. The vi editor has two
modes: command mode and insert mode. In command mode you can position the
cursor or issue a vi command. The last line on the screen displays the name and size
of your file.

Command mode allows you to position your cursor or issue a command. To issue
a command in vi you use the ‘:’ (colon) to precede the command. You enter the text
mode by keying either an ‘i’ (insert) or an ‘o’ (open). In text mode you enter your text
into a file. You use the < >ESC key (escape) to exit the text mode. There are several
ways to save files and leave vi. To quit without saving the file key: ‘:q!’. To save the
file and continuing editing key: ‘:w’. To save the file and quit vi key: ‘:wq’. After you
have saved your file, you can also exit vi by keying: ‘:q’. The following list shows
some of the most commonly used vi editing commands.
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Window movements
<CTRL> d scroll down
<CTRL> u scroll up
<CTRL> b page backward
<CTRL> f page forward
1 G go to first line
G go to last line

Cursor movements
H home (upper left corner)
L lower left corner
h back a character
j down a line
k up a line
ˆ beginning of line
$ end of line

Input
a append after cursor
i insert before cursor
o open line below
O open line above

Deletion
dd delete current line
x delete current character

Undo u undo last change
U undo all changes on-line

Rearrangement
yy or Y yank (copy) line to general buffer
yw yank word to buffer
”ap put text from buffer a after cursor
p put general buffer after cursor
J join lines
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2.2 Emacs
‘Emacs′ is an extensible, customizable text editor. Its features include content-sensitive
editingmodes, including syntax coloring, for awide variety offile types including plain
text, source code, and HTML. The following list shows some of the most commonly
used Emacs editing commands (C = Control, M =Meta =Alt| Esc)

Search and replace
/string/ line that contains ‘string′
>% entire file

Basics
C-x C-f find file i.e. open/create a file in buffer
C-x C-s save the file
C-x C-w write the text to an alternative name
C-x C-v find alternative file
C-x i insert file at cursor position
C-x b create/switch buffers
C-x C-b show buffer list
C-x k kill buffer
C-z suspend emacs
C-X C-c close down Emacs

Basic movement
C-f forward char
C-b backward char
C-p previous line
C-n ext line
M-f forward one word
M-b backward one word
C-a beginning of line
C-e end of line
C-v one page up
M-v scroll down one page
M-< beginning of text
M-> end of text
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Editing
M-n repeat the following command n times
C-u repeat the following command four times
C-u n repeat n times
C-d delete a char
M-d delete word
M-Del delete word backwards
C-k kill line
C-Space set beginning mark (for region marking for example)
C-W kill (delete) the marked region region
M-W copy the marked region
C-y yank (paste) the copied/killed region/line
M-y yank earlier text (cycle through kill buffer)
C-x C-x exchange cursor and mark
C-t transpose two chars
M-t transpose two words
C-x C-t transpose lines
M-u make letters upper-case in word from cursor position to end
M-c simply make first letter in word upper-case
M-l opposite to M-u

Important
C-g quit the running/entered command
C-x undo previous action
M-x revert-buffer RETURN undo all changes since last save
M-x recover-file RETURN recover text from an autosave-file
M-x recover-session RETURN if you edited several files

Search/replace
C-s search forward
C-r search backward
C-g return to where search started (if you are still in search mode)
M-% query replace
M-x query–replace–regexp search and replace
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Window commands
C-x 2 split window vertically
C-x o change to other window
C-x 0 delete window
C-x 1 close all windows except the one the cursor is in
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Chapter 3

The Fortran 90 programming language

Fortran [1–3], derived from FORmula TRANslation, is a powerful and widely
used programming language, which was designed specifically for numerical
applications. The language was invented by a team led by John Backus
working for IBM in the early 1950s. Successive versions have added support
for structured programming and processing of character-based data (FORTRAN
77), array programming, modular programming and generic programming
(Fortran 90), high performance Fortran (Fortran 95), object-oriented program-
ming (Fortran 2003) and concurrent programming (Fortran 2008) [4]. These
features expand the Fortran language substantially and allow elaborate code to
be written easily.

3.1 Compilers
Any source code written in the Fortran programming language needs to be compiled
from another computer program written in some other language. A compiler is a
computer program which transforms source code into a language which the
computer can understand. This is usually known as ‘compiling your source code’.
Your source code when compiled will create another computer program usually
referred to as an ‘executable’. The program user will then ‘run’ the executable
program which in turn will produce the desired results from the source code. Fortran
has several excellent compilers such as

• ifort (Intel Fortran compiler)
• pgi (Portland Group Inc. compiler)
• NAG (Numerical algorithms Group compiler)
• af90 & af95 (Absoft Fortran Compiler)
• gfortran (GNU Fortran compiler)
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where each of these compilers has its own niche and is designed for various purposes.
In this text, we will focus our attention on the ‘gfortran’ open source compiler which
is readily available on multiple platforms and operating systems. The ‘gfortran’
compiler is also one of the more restrictive compilers allowing programmers to write
code which will be compiler independent.

3.1.1 File extensions and compiling commands

The standard file extension for any Fortran 90 program is simply ‘.f90’. Using a text
editor such as Vim, a Fortran program can be easily created in the Linux environ-
ment via the terminal command:

↩> vim filename.f90

Once, you have created and written your Fortran source code. The next step is to
compile and run your program. To compile your Fortran program, the command
requires a few things

• the type of compiler (i.e. gfortran);
• flags (for specifically naming your executable and for optimization purposes);
• executable name (i.e. filename.x); and
• source code (i.e. filename.f90).

The four mentioned items are all typed in one line of your Linux terminal such as

− ↩> gfortran o filename.x filename.f90

The command above will create the executable filename.x, and thus to run this
executable, simply type in the command:

↩> ./filename.x

The flag option ‘-o’ in the example above is specifically for naming conventions of
your executable. The file ‘filename.x’ is the executable you will be creating from your
‘filename.f90’ source code. It is important to note that the name of your executable
can be anything and does not explicitly require a file extension; however, most
programmers will use some sort of extension to distinguish the executable from the
source code.
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If your source code does not need any external libraries or you simply have only one
Fortran file, you can also compile this one Fortran file via the command:

↩> gfortran filename.f90

which will result in an automatically created executable named a.out in the Linux/
Unix environment or a.exe on Windows platforms To run this executable, the
same command applies as before

↩> ./a.out

Every single time you compile, the automatic executables shown here will be
overwritten and thus, one has to mindful of compilations of multiple programs.

The important thing to note is that the Linux compiler supports some
features (not all) that are in the 90 standard, and which are very important
to good programming. In particular, it supports the Fortran 90 structure of a
Do–END DO loop, the type declaration statement with the double colon :: syntax,
and the standard relational operators instead of the Fortran 77 verbose
substitutions.

3.2 Program layout
Programs are usually written by using some text editor. Readability and cohesive
flow throughout a program is not only important to the programmer, but is also
vital for external collaborations with multiple parties. The guidelines listed below
serve as good practice for writing computer programs.

• Start your code with some sort of prologue (describing your code).
• Give compiler directions (i.e. how to compile and run your code).
• Put Fortran key words and intrinsic functions in upper-case or at least have
the starting letter capitalized.

• Put variable names in lower-case.
• Use descriptive variable names.
• Use blank lines to improve readability.
• Use multiple lines to improve readability (i.e. do not use one long line of
code).

• Indent your code when possible.
• Last but not least, have a running commentary describing different parts of
your code.

As you write more computer programs, you will start to have your own unique style
of coding and you may not want to follow these rules explicitly; however, the general
gist of good efficient programming lies within these general guidelines listed above.
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As new text editors have emerged, Fortran 90 has evolved to meet these
standards. A few important improvements include:

• A line may contain up to 132 characters and may contain more than one
Fortran statement provided a semicolon separates each successive pair of
statements.

• Blanks are significant.
• A trailing ampersand & indicates a statement is continued on the next line (a
maximum of 39 continuation lines is allowed). Note that comments therefore
cannot be continued, and a separate exclamation mark (!) must be used for
each comment line.

• Statement labels consist of up to five consecutive digits preceding the
command.

• Comment lines must begin with the exclamation mark !. Also, trailing
comments (after a command) are allowed and also go after !.

The general structure of a Fortran 90 program looks something like this:

Declare Modules

PROGRAM name

!Comments and program information

Variable Declarations and/or External Functions

Body of program

END PROGRAM name

Declarations of user made functions

Two sample Fortran 90 programs are listed below for your reference. The first
program ‘PROGRAM hello’ is a standard program which outputs to terminal ‘Hello
World’. The second program ‘PROGRAM math’ performs some basic mathematical
operations and outputs the results to the terminal.

PROGRAM hello

!This simple program will output "Hello World."

!print statement (output to terminal)

Print*, "Hello World"

END PROGRAM hello
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−

−
− −

−
− −

PROGRAM math
!Simple Fortran program to take in some variables and
!perform basic !mathematical operations.

!Explicitly define all variables:
Implicit None

!Variable declarations:
Real :: x, y, a, f1, f2, f3
Integer :: b,c

!Assign numerical values:
x = 1.1; y = 2.5; a = 5.5; b = 10; c = 3;

!Add, subtract, multiply and divide some numbers:
f1 = (x+y)/y
f2 = (a*b) + (c a)
f3 = (x a)/( a*y)

!Print results to terminal:
Print*,"x=",x
Print*,"y=",y
Print*,"a=",a
Print*,"b=",b
Print*,"c=",c
Print*,"(x+y)/y=",f1
Print*,"(a*b) + (c a)=",f2
Print*,"(x a)/( a*y)=",f3

STOP;
END PROGRAM math

3.3 Variable declaration
Fortran is implicit language and all variables need to be declared. The compiler
needs to know the names, types, and sizes of the variables used in the program in
order to allocate memory and optimize the performance. All variables must be
declared if the IMPLICIT NONE statement is used. Otherwise a type is implied by
the first letter:

• a…h and o…z are REAL
• i,j,k,l,m,n are INTEGER
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It is highly encouraged to explicitly declare all variables by using the Implicit
None statement as shown previously in the sample program math. Explicit
declaration is done with the statement:

type [, attributes] :: variable = [initial value]

3.3.1 Naming conventions

The rules for naming conventions for all variables in Fortran 90 are as follows:
• Names can be up to 31 characters long.
• Allowed symbols are letters …a z, numerals …0, 1, 2, ,9 and the
underscore _.

• First character must be a letter.
• Variables are case insensitive.
• Cannot use reserved words (i.e. EXIT, EXP, SIN).

Table 3.1 shows some example valid and invalid variable names.

3.3.2 Data types

In your programs, you will use a variety of different types of variables such as
integers, floating point numbers, strings of letters, etc. Table 3.2 summarizes
supported Fortran 90 data types.

Integer constants are of the form 1234, real constants are of the form 1234.0
or 1.234E03. The range of integer values is limited, but the exact value depends on
the compiler and machine used. Real*8 constants are of the form 1.234D03 (often
refer to double precision), and complex numbers which are represented by an an
ordered pair of Reals are of the form (3.14,−1E05). Characters are enclosed in
quotes of the form ‘ABab’ or ‘S’. The Character statement requires the length of
the string which is written in a couple of ways:

Character (Len=10) :: position

Character (20) :: acceleration

Table 3.1. Variable names.

Valid variable names Invalid variable names

x,Y,t,a x*y, x+y
temp11 33y, 11temp

delta_x delta y

bsquared _one_two
really_Longname10 sin, log, exp
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In this example above, the variable ‘position’ can hold up to ten strings of
characters. Note, that the keyword Len= is optional and can be omitted. Thus,
the variable ‘acceleration’ can hold up to 20 strings of characters.

Logical constants can have only two values .TRUE. or .FALSE. (note the
opening and closing periods). Sample syntax is provided below:

−Real*8 :: grav=6.67E 11
Real :: pi=3.1415, rho, g = 9.81

Integer :: f = 30, mu, row, col

Fortran 90 attempts to make code more transferable and architecture independ-
ent by allowing the user to specify the length (in words) of the variable through the
KIND attribute (note that this keyword can be omitted):

type([KIND=]kind_num) [, attributes] :: variable list

−
Real (Kind = 8) :: au = 1.5E11
Real (8) :: double_number 2.0D3

The problem is that a word is defined differently on different machines. On most
architectures (such as the PC), for example, a REAL with eight words is double
precision, and with four words is a single precision float. A good programmer will
make one separate record (module) for each of the machines the program runs on,
and make symbolic names for the kinds that will be universal, while changing the
length depending on the machine architecture.

If you are using a ‘constant’ throughout your program, you may want to use the
Parameter statement to define this. Once defined, the value cannot change
throughout your program.

Table 3.2. Fortran 90 data types.

Data type Description

Integer Whole numbers
Real Floating point numbers (∼8 digits)
Real*8 Floating point numbers (∼16 digits)
Character Strings of characters
Logical Two-valued Boolean variables
Complex Complex number
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−
−

Real*8 :: G, pi
Parameter (G=6.67E 11)
Parameter (pi=acos( 1.0))

Generally, you do not have to necessarily define the values of certain variables at
the moment of declaration. You may easily assign numerical values after you have
declared the type of variable. This may be more convenient if you have many
different variables or if the value of the variable will depend on some other external
source. However, all declaration of variables and parameter statements must be
done prior to using those variables.

3.4 Basic expressions
3.4.1 Arithmetic operators and expressions

The most important arithmetic operators are addition +, subtraction −, multi-
plication *, division /, and exponentiation **. For the following examples

− −A+B C; A*( B); A*B/C; Z**I

The order of evaluation is:
1. Parentheses (innermost first)
2. Exponentiation
3. Multiplication and division
4. Addition and subtraction

For example, the expression A*B−C/D is evaluated as if it were written as (A*B)
−(C/D). Where two operators have the same priority, the order of evaluation is left
to right. For example, A/B*C is evaluated as (A/B)*C which is not equivalent to
A/(B*C), of course. It is important to notice that the result of an operation between
floats is a float, between integers is an integer, and between floats and integers is a
float. This means, for instance, that 1/5 gives the integer 0 while 1./5. gives 0.2 in
single precision, and 1D0/5D0 gives 0.2 in double precision. In general if I is an
integer (say 4), use I.0 (4.0) to make it a floating point number.

3.4.2 Relational operators

Many type of programs require the user and the code to make choices. These choices
will depend on certain conditions set by the code. If the conditions are met, certain
outcomes will happen, otherwise other outcomes will happen. These logical
conditions are categorized as:

• equal
• greater or equal to
• greater than
• less than or equal to
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• less than
• not equal to
• not
• and
• or
• equivalent
• not equivalent

Logical operator Fortran 90 syntax for these conditions is described in table 3.3.
For example, (A >= B) is true if the value of the variable A is greater than or equal
to the value of B. Operators can be applied between mixed types, and as with
arithmetic operators, all the arguments are converted to the highest type
( → → →integer real double complex).

3.4.3 Logical expressions

You can combine relational expressions and other ‘true–false’ valued expressions
and variables together to form logical expressions. This is done using the logical
operators shown in table 3.3. Since some of you may not be familiar with Boolean
logic, an overview of Boolean logic is provided in table 3.4 (T stands for true, F for
false).

Table 3.3. Overview of relational operators.

Relational operator Meaning

== equal to
>= greater than or equal to
> greater than
<= less than or equal to
< less than
/= not equal to
.NOT. logical negation
.AND. logical and
.OR. logical inclusive or
.EQV. logical equivalence
.NEQV. logical non-equivalence (exclusive or)

Table 3.4. Overview of Boolean logic.

x y .NOT.x x .AND. y x .OR. y x.EQV. y x .NEQV. y

F F T F F T F
T F F F T F T
F T T F T F T
T T F T T T F
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The only rule that you need to know (in case of doubt use excessive bracketing, if
necessary) is that arithmetic operators take precedence over relational operators
which take precedence over logical operators. Thus, these two lines are equivalent;
however, it is usually safer to use the second line.

x == y .OR. b > pos .AND. acceleration < g

(x == y) .OR. (b > pos) .AND. (acceleration < g)

3.5 Input and output
3.5.1 The READ statement

Most programs require that the user input some data through the keyboard or that
the program prints some result on the monitor. User input is achieved through the
statement READ, with structure(s)

READ*, {input list}

READ ([UNIT=]unit type, [FMT=]format){ input list}

The unit type is a number, for example, a 5 for keyboard, and the format type is *
for a format-free input. For example,

READ (UNIT=5, FMT=*) a, b, c

expects the user to input three numbers separated with commas.

3.5.2 The WRITE statement

Write to the screen (or printer) is done using the command WRITE, which can take
the form:

PRINT *, {output list}

WRITE ([UNIT=unit type], [FMT=]format) { output list}

The unit type is again a number, usually 6 for the monitor. For example,

WRITE (6,*) ’The total is:’, total

prints the message in the quotes and then prints the value of the value total.
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3.5.3 The FORMAT specification

The format can be specified by the user in two different ways. First, the format can
be a number giving the label (in columns 1–5 of the program) of the line in the
program containing the call:

FORMAT(format sequence)

or the format can be a string containing the format sequence, with the syntax

′ ′FMT=( format sequence )

The format sequence is a beast of its own. It is a list of data descriptors and
control functions, which specify what type the data that is being printed is and how it
should be printed and specify things like new lines.

Data descriptors
Table 3.5 gives the data descriptors for various types of data. The capital letters in

table 3.5 have specific meanings and are described below:
I – integers
F – a fixed-point floating number
E – a float in scientific (exponential) notation
G – either F or G, depending on the magnitude of the number
L – logical
A – character

with the lower-case letters meaning:
w – the total field width
m – the minimum number of digits
d – number of digits after the decimal point (precision)
e – number of digits in the exponent

For example,

′ ′ ′ ′WRITE(UNIT=*, FMT=10) The frequency is , f,  Hz
10 FORMAT(1X, A, F10.5, A)

Table 3.5. Data descriptors.

Data type Data descriptors

Integer Iw, w mI .
Floating point E w d. , w dE . Ee, w dF . , w dG . , w dG . Ee
Logical Lw
Character A, Aw
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displays the value of the frequency variable f with a maximum of 15 digits, 5
decimal digits, an indent of 1 column in the beginning, and a suitable string message.

3.5.4 File input and output (I/O)

One of the areas in which Fortran 90 (besides number crunching) is better than most
other programming languages is file input and output. In most programming
languages, file does not refer just to hard disk files, but to any peripheral device
that one can read from or write data to (keyboard, monitor, printer, disks).
Therefore, file I/O is still done using the READ and WRITE commands (usually),
but with a UNIT number that specifies the device or the file the data is being read
from or written to.

OPEN
To assign specific UNIT numbers to certain files and open (or create) the file, use the
OPEN statement:

′ ′OPEN(UNIT=Integer, FILE= filename , STATUS=literal)

The literal keyword can be ‘NEW’ for new files, ‘OLD’ for existing files, ‘UNKNOWN’ if
you are not sure or ‘SCRATCH’ for temporary files. There is one more important
keyword worth mentioning here. The keyword ACCESS=access which would go
after the STATUS keyword is one of ‘SEQUENTIAL’ or ‘DIRECT’. The distinction is
very important, but beginners should use the default of sequential files, which are
simply files in which the data are written and read from line-by-line.

CLOSE
After we are done using the file, it is highly recommended that the file be closed
using:

CLOSE(UNIT=number, STATUS=status, ...)

where the unit is the number (must be an integer value) of the file, and the default
is ‘KEEP’ to save the file or ‘DELETE’ to delete it.

3.6 Control structures
Control structures determine the program flow—the sequence of execution of the
commands (other than the default ordering in the program file). In Fortran 90 these
are the IF blocks and the DO loops.

3.6.1 IF-blocks

An IF block is a multi-branched control structure which takes the execution to
different branches depending on the value of one or several condition statements.
The general structure of IF blocks is as follows:
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IF(First condition statement) THEN

First sequence of commands

ELSE IF (Second condition statement) THEN

Second sequence of commands

ELSE IF ...
...
ELSE

Alternative sequence of commands
END IF

Any but the first IF can be omitted. The nth (ELSE) IF sequence of statements is
evaluated if its condition statement is true and if none of the preceding conditions
were true. In other words, once a condition statement is found true, its sequence of
commands is evaluated and the IF-block is exited. The ELSE sequence of
commands is evaluated if none of the condition statements are true. For example,
to find the sign of a number ( =xsignum( ) 1 for >x 0, −1 for <x 0, and 0 for x = 0)
we can use the following construction:

−

IF (number < 0) THEN

signum= 1

ELSE IF (number > 0) THEN

signum=1

ELSE

signum=0

END IF

Many IF statements are one-liners and more clarity and less typing are achieved
using an abbreviated IF one-liner:

IF (Condition statement) Statement to be executed

which simply omits the THEN and END IF in the usual conditional IF-block. The
following is a sample program which illustrates the If–Then–Else structure:

Program TryIf
write(*,100)
Read(*,*) X
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If (X < 0) Then
write(*,*) X, 'is a negative number'
elseif (X > 0) Then
write(*,*) X, 'is a positive number'
else
write(*,*) 'X is 0'
endif

100 format('Please input a number: ',$)
end program TryIf

3.6.2 DO loops

Loops are blocks of commands to be repeated as illustrated below:

Do i = start, finish, increment

Executable Statements

End Do

where imust be an integer value and is called the control variable. The increment
keyword is optional. If it is specifically not listed, the default increment is 1. For
example,

Do i = 1, 10

Print*, i**2

End Do

the loop variable i will start at i = 1 and print 1*1 = 1, then the loop variable will
go to the next value determined by the increment, (in this case, the increment is 1)
which is i = 2 and print 2*2 = 4 and thus will continue to the value of 10.

Instead of incrementing of values of 1, what if the increment is some other non-
integer value such as 0.5? This requires a little bit of thought. Having this increment
be implemented correctly in the loop control structure is a very important part of
iterating correctly. There are a few important concepts to think about here:

1. First, If we are going to increment in units of ‘0.5’ we are going to have to
somehow declare that, this is commonly known as a ‘step-size’.

2. Second, since we are incrementing half a unit, we are going to need to double
our iterations.

3. Lastly, we are going to need some expression that will allow us to print out
the correct results.
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The sample code below illustrates these three important concepts:

Program loops
Implicit None

Real :: dn, f
Integer :: n

dn=0.5

Do n=1,20
f=dn*n
Print*, f**2
End Do
Stop

End Program loops

In the sample code above, dn is our step-size and the variable f is our function
which is defined by our step-size times the loop variable n. Our last entry

= = = * =f( (0.5)(20) 10 10 10 100)20 just as before. All we have changed is the
increment and thus the ‘amount’ of data generated.

You may be wondering, why did we apply these certain extra steps? Could we not
simply just add our increment such as:

Do i = 1, 10, 0.5

Executable Statements

End Do

and obtain the same results with fewer lines of code? The problem with the above
example program is that it will only work for certain compilers which will not
distinguish between Reals and Integers as loop control statements. As men-
tioned earlier in this chapter, good and efficient programming should always be
compiler independent—that is the sample full program shown previously which we
explicitly declared our ‘step-size′ will compile using any compiler, while if we used
Do i = 1, 10, 0.5 instead it would only work on certain compilers.
The Do While loop
You can loop over quantities with a condition as well by using the Do While
statement:

Do While (Condition)

Executable Statements

End Do
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This loop will execute as long as the condition stays true. A sample program is
provided for your reference

Program dowhile
Implicit None

Real :: none
Integer :: counter

counter = 0
Do While (counter < 10)
counter = counter + 1
Print*, counter

End Do
Stop; End Program dowhile

In this sample program, we are iterating the variable counter as long as the counter
variable is less than 10. The first iteration, the counter is zero, thus the variable then
equals = + =counter 0 1 1. The second iteration would be = + =counter 1 1 2
and so on and so forth as long as the condition of counter < 10. Once the the
counter reaches a value which is equal or greater than 10, the program will stop and
end.

3.6.3 Nested loops

Just as single loops described in the previous section, control structures with loops
can be nested as well. The standard statements for nested loops are as follows:

Do i = 1, 10

Do j = 1, 10

Executable Statements

End Do

End Do

Nested loops start ‘inner’ and go ‘outer’. For example

Do i = 1, 10

Do j = 1, 10

Print*, i*j

End Do

End Do
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the program is iterating the loop variable j then i. More specifically, our
iterations will be as described by the expressions in equations 3.1 and 3.2.

= = ⇒ · =
= = ⇒ · =
= = ⇒ · =

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
= = ⇒ · =

i j i j
i j i j
i j i j

i j i j

1, 1 1
1, 2 2
1, 3 3

1, 10 10

(3.1)

= = ⇒ · =
= = ⇒ · =
= = ⇒ · =

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
= = ⇒ · =

i j i j
i j i j
i j i j

i j i j

2, 1 1
2, 2 2
2, 3 6

2, 10 20

(3.2)

3.7 Modular programming
3.7.1 Intrinsic functions

There is a library of intrinsic functions available to any Fortran program. These
functions are invoked by using the function name followed by its parenthesized list
of parameters:

function name({list of parameters})

A function is said to return a value based on the values passed to it through the
arguments. Some of the more important intrinsic functions are ABS, ACOS, COS,
DOT_PRODUCT, EXP, INT, LEN, LOG, SIN, and SQRT. See appendix A for a fuller
list and details. Many intrinsic functions are generic in the sense that the functions
may be used with different (but not mixed) data types as parameters to the function
(e.g. ABS, COS, MAX, and MIN). Some functions, however, like the float-valued
functions SQRT, SIN, and LOG, accept only certain types of arguments. For
instance, SQRT(4) is invalid; one needs to type SQRT(4.0) instead. Some
functions have different versions for different types of arguments (see appendix
A), and the generic function calls these specialized functions depending on the
types of the arguments. For example, to compute the square root of a given integer
or any floating point number (even complex), we simply write root=SQRT
(1.0*number).

3.7.2 Intrinsic subroutines

Subroutines are very similar to functions, but there is an important distinction.
Functions return one value and are not recommended to change the values of their
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parameters. Subroutines do not return a value explicitly, but execute a well-defined
group of statements (activity) and can freely change the values of their parameters.
They should also be used when we wish to return more than one value. Subroutines
are invoked using a CALL statement,

CALL name({list of arguments})

Some of the intrinsic subroutines include DATE_AND_TIME, MVBITS,
RANDOM_NUMBER, RANDOM_SEED, and SYSTEM_CLOCK.

3.7.3 External functions

You can define your own functions, usually after the END of the program. The
layout for functions is

type FUNCTION name({dummy arguments})
local variable declaration
name = expression
body of function continued if need ...

END FUNCTION name

The type of the name identifies the type of the result that will be returned by the
function. The result of the function is the value of the function that is assigned to the
name of the function within the body of the function. The function therefore must
contain at least one assignment of a value to the name of the function. The dummy
arguments are a list of constants, variables and even procedures which are
accessible from within the body of the function. When the function is used, it will
have corresponding actual arguments that must be of the same type and length as
the dummy arguments, but not necessarily the same names. No type checking is
done during compilation or run time, and you will get very weird errors if the types
do not match. All arguments are passed using ‘call by reference’ (like VAR arg in
Pascal or & arg in C++). Changing the value of an argument in the subroutine
changes the value of the corresponding variable in the calling program. For
example, to define a function that computes the gravitational force between two
bodies, we define a function NEWTON as follows:

−

−

REAL FUNCTION Newton(m1, m2, r)
REAL (Kind=8) :: gamma=6.672E( 11), r
REAL :: m1, m2
Newton = gamma*m1*m1/r**2

END Newton
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A sample code illustrating the use of external functions is provided for your
reference. In this program, the code reads in three real numbers and calculates the
average. The user defined function ave returns a value to VAL.

PROGRAM Average

IMPLICIT NONE
REAL :: TEST1, TEST2, TEST3, ave, VAL
PRINT*, 'Enter three numbers, separated by a comma'
READ *, TEST1, TEST2, TEST3
VAL = ave(TEST1,TEST2,TEST3)
PRINT *, VAL
STOP
END PROGRAM Average

FUNCTION ave(X,Y,Z)
IMPLICIT NONE
REAL :: X, Y, Z, ave

ave = (X + Y + Z) / 3.0
RETURN
END FUNCTION ave

3.7.4 External subroutines

The structure of a subroutine is

SUBROUTINE name({dummy arguments})
local variable declaration
body of subroutine ...

END SUBROUTINE name

Subroutines are accessed by using the CALL statement, and are in most respects
similar to functions. When a subroutine is called, the dummy arguments in the
subroutine become alias names for the actual arguments in the calling statement, i.e.
they represent the same physical location in memory. Thus, if the dummy arguments
are modified within the subroutine, then so are the actual arguments in the calling
statement.

The sample program provided earlier illustrating functions can be easily modified
to include an external subroutine. See below for the full program which includes an
external subroutine.
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PROGRAM Average

IMPLICIT NONE
REAL :: TEST1, TEST2, TEST3, VAL
PRINT*, 'Enter three numbers, separated by a comma'
READ*, TEST1, TEST2, TEST3
CALL AVG(TEST1,TEST2,TEST3, VAL)
PRINT *, VAL
STOP
END PROGRAM Average

SUBROUTINE AVG(X,Y,Z,V)
IMPLICIT NONE
REAL :: X, Y, Z, V
V = (X + Y + Z) / 3.0

RETURN
END SUBROUTINE AVG

All well-defined functions should have a single-point entry and a single-point exit,
but in some situations there may be a need to terminate a procedure (e.g. in case of
error). This is done by simply calling RETURN, which stops the execution of the
function and returns control to the calling routine.

After the function is finished, the values of the local variables are lost. If they are
to be used in a later call of the function, this should be made clear by saving the
values of these between function calls (static allocation):

SAVE {of values to be saved}

When a function is passed on as an argument to another function, and in some
circumstances when we wish to link a named block data subprogram into the final
executable, the function has to be declared as either intrinsic or external, via the
following statements:

INTERNAL {list of function names}

EXTERNAL {list of function names}

3.7.5 Program units

Each program consists of program units, called scoping units. These can be the main
program, subprograms, procedures, etc. The important thing to notice is that each
scoping unit is independent in terms of its variable space, so that it is good to try to
put well-defined and more or less isolated groups of statements into separates units.
This way, you can invoke that unit from various programs, without worrying about
possible variable conflicts.
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Any unit that is placed (defined) within another unit is a sub-unit and has access to all
the variables in the unit it is a part of. Therefore, procedures that interact with the main
program variables should be placed inside the PROGRAM, using the CONTAINS
command. These are internal procedures, as contrasted to external procedures, which
are defined outside the PROGRAM unit and have their own variable workspace. The
communication,or interface, between themainprogramorsubprogramandtheexternal
procedure is done through the argument list. Data are copied from actual arguments to
dummy arguments upon the invocation of the procedure (this is not always true), and
from dummy argument to actual argument upon exiting the procedure.

Another way of sharing data between procedures is the usage of modules, which
are new units introduced in Fortran 90, facilitating global variables and procedures.
We now describe in more detail some of the new features of the Fortan 90 standard.

3.7.6 Internal procedures

Internal procedures should be placed after the CONTAINS command. They can be a
part of anyprogramunit, like themainprogram,a subprogramoraprocedure (usually
nomore than 2–3 levels of nesting). For example, here is how tomake a procedure that
quickly zeros all the integer counters that we use in the main program:

PROGRAM counters
INTEGER :: i, j, k, l, m, n
CALL Zero_counters ! Zero all the counters
CONTAINS

SUBROUTINE Zero counters
i = 0; j = 0; k = 0; l = 0; m = 0; n = 0;

END SUBROUTINE Zero_counters

END PROGRAM counters

3.7.7 External procedures

As already explained, external procedures are usually placed outside the main
program (in a separate file, a module, the same file, etc). When the compiler
compiles the program, it can detect a great deal more errors if it is told what the
procedure’s interface (argument list) is. This is done with the INTERFACE block,
which contains the declarations of the external functions (it can be placed inside the
main program or in a separate module). Also, the compiler can be told what the
intention of the arguments of a subroutine is, using the INTENT data attribute with
one of the following arguments:

• IN for arguments that should not be altered in the subroutine, but only pass
data to the procedure.

• OUT for arguments that need to be assigned values in the subroutine.
• INOUT for arguments that pass data both in and out of the procedures.

Introduction to Computational Physics for Undergraduates

3-21



For example, here is an interface to a subroutine that returns the time in seconds
given the time in hours, minutes, and seconds:

INTERFACE
SUBROUTINE convert_time(hour,minute,second,time)

INTEGER, INTENT(IN):: hour, minute, second
INTEGER, INTENT(OUT):: time

END SUBROUTINE convert_time
END INTERFACE

3.7.8 Modules

Modules are a new program unit in Fortran 90. They are mostly used to enclose data
(global variables) and INTERFACE declarations of functions that several other
program units need to share. One can also put full procedure bodies inside a module
(so called module programs). The modules are defined as

MODULE name
Global variable declarations
INTERFACE blocks
...
...

END MODULE name

If we want a program unit to have access to the variables and procedures defined in
the module, we use the USE command. If we have lots of procedure interfaces in the
module (for example, a subroutine library) but would want to use only a few of these
procedures, we specify this with the ONLY attribute (this is also a way to make some
global variablesnot accessible to all programunits and is goodprogrammingpractice):

USE module name [, ONLY: {procedure names}]

For example, we can store the total number of floating-point operations (flops) in
a program in a module,

MODULE flops
INTEGER(KIND=8) :: flops_count

END MODULE flops

and then update this number from any program unit that contains the statement

USE flops
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3.8 Arrays
Arrays are collections of data of the same type. They are themost important data type
in scientific computing where we usually deal with a great number of data (points).

3.8.1 Declaration of arrays

Arrays are declared in the same way as ordinary variables, with lower and upper
bounds along with important attributes

type [,attributes] array({Lower bound:Upper bound})

These attributes are:
• DIMENSION(Lower bound:Upper bound) which enables the dimension
to be specified, and the lower and upper count can now be actual workspace
variables, thus enabling the existence of automatic arrays in procedures, which
come to existwithdifferent dimensions each time theprocedure is called.Also, it
is very important to note that the dimensions do not have to be specified at
compile time, in which case they are substituted with the ellipse symbol. If the
dimensions of an array argument to a procedure are not specified, the procedure
must have an INTERFACE block in the calling unit, so that the compiler knows
that the array has to be passed along with its dimensions.

• ALLOCATABLE which identifies the array as allocatable.
• TARGET which identifies the array as a target for pointers.

For example, to declare an array used to store your income for several years and all
the months in each year, one can use

REAL, DIMENSION(12,1995:1999) :: income

3.8.2 Vectors

Vectors are one-dimensional arrays which are mainly used to access sub-arrays of a
given array (see next subsection). It differs from an array only in the way it is
assigned a value by using constructors:

vector = (/{lower:upper:step],.../})

where the list may be a list of values of the appropriate type, namely, a variable
expression, array expression, implied DO loop or any combination of these. Here is
an example of a vector that has the value vector = (1, 3, 5, 7, 9, 6, 2, 4,,8,16):

INTEGER :: vector(6)=(/1:9:2,6, (2**i,i = 1,4)/)
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3.8.3 Using arrays

Arrays in Fortran 90 can be accessed on an element-by-element basis, in addition to
access of whole sections by the following construct:

array({start:end:step})

array(vector)

Any of the starting, ending, and step values for the indices can be omitted, so long as
there is one ellipse. Examples are illustrated in the following:

−−
−−

−

REAL :: array(50,50), vector(3)=(/1 7 37/)

!This accesses the section of the array from rows 1 20
!and columns 5 10, returning an array of size [20,5]
!WRITE(*,*) array(1:20,5:10)

!This accesses all the even numbered rows
WRITE(*,*) array(2:50:2,:)

!And this accesses the elements at the intersection of
!rows 1, 7 and 37 with columns 1, 7 and 37
WRITE(*,*) array(vector,vector)

3.8.4 Array operations

A very important new feature in Fortran 90 is the idea of array–array operations
between conformable arrays. Two arrays are said to be conformable if they have the
same size (not necessarily the same row or column numbering), or if one of the two
arrays is a scalar. An operation between two conformed arrays is carried between
the elements of the two arrays individually. For example,

REAL, DIMENSION(20,20) :: A, B, C
C=A+B

assigns to each element in C the value of the sum of the corresponding elements of A
and B. Thus, you may say that this is equivalent to a DO loop like

DO i=1,20
DO j=1,20
C(i,j)=A(i,j)+B(i,j)
END DO

END DO
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But this is not quite true, and it is important to understand the difference. The matrix
statement C = A+B does not span in time—it spans in space. In other words, as far
as summing two matrices goes, the order in which the summation is done is
arbitrary. On the other hand, the double DO-loop structure spans in time, not in
space. Therefore, the double loop is an unnatural translation of the matrix state-
ment. The reason that nested looping is the traditional way of performing matrix
operations is that until recently most computer people used so-called von Neuman
sequential machines, in which there is a single processor that does things in a time-
ordered fashion. However, today the concept of parallel, or multi-processor
machines is an essential one, so that nested do loops should be avoided whenever
an equivalent array–array (vectorized) statement exists. When the compiler sees a
statement C=A+B for matrices, it automatically optimizes the process for the specific
machine using the fact that the operation is not sequential. How it does that is
fortunately not our concern. It may use several processors to do that if the machine
has more than one, it may access the elements column- or row-wise, use pointers
(those that are more experienced know that one of the fastest operations is the
incrementation of a pointer, not an integer, by one, so that an array can be accessed
most quickly with a sweeping pointer), etc. The lesson from all this is that you
should always try to formulate your code in vectorized statements.

3.8.5 Elemental functions

To continue the previous discussion, let us assume we need to take the sine of all the
elements of the array A. Again, this is not a time-ordered operation, and Fortran 90
offers a very effective way of doing this. We can simply use SIN(A) to perform this
operation, because SIN, like most other numerical functions in Fortran 90, is an
elemental procedure—acting on each element of an array. Thus a statement like

C(5:10,:) = SIN(A(2:10:2,:)) + 2.0 * B(5:10,:)

performs the very complicated matrix operation of assigning the fifth to tenth
rows of C the sum of the sine of the elements of A in the even rows of A up to the 10th
row and the doubled value of the elements of the matrix B in columns 5–10.

3.8.6 The WHERE statement

The WHERE construct is a very useful control structure for performing an operation
only on certain elements of an array that satisfy a given condition. The structure is as
follows:

WHERE (array condition)
Body of structure

END WHERE
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For example, the following operation

DO j = 1,3
DO i = 1,4
IF(array(i,j) > 0) array(i,j) = LOG(array(i,j))
END DO

END DO

can be done much more cleanly using the WHERE construct:

WHERE (array > 0) array = LOG(array)

Another example is

REAL, DIMENSION(20,20) :: A, B, C
WHERE (B>0.0)

C=A/B
END WHERE

which assigns each element of thematrixC the quotient of the corresponding elements of
matricesAandB, so longas the elementofB is non-zero. It shouldbenotedagain that the
WHEREconstruct isnotequivalent toaDO loopwithanestedIF statement, sinceaWHERE
loop is not time-ordered and canbeperformed inparallel.Amajor limitationofFortran
90 is that WHERE constructs cannot be nested. This is corrected in Fortran 95, where
WHERE and FORALL structures can be nested at any level.

The last example full program shown below assigns given values to a matrix,
array. The values are either 1 or -9.999 999, depending on whether eval has the
value ‘true′ of ‘false′:

PROGRAM WHERE_Example

IMPLICIT NONE
REAL, DIMENSION(2,3) :: array = (/0, -1, 2, -3, 4, -5/)
LOGICAL, DIMENSION(2,3)::eval=(/.true.,.false.,.true.,
&
.true.,.false.,.false./)

WHERE (eval)
array = 1
ELSEWHERE
array = -9.999 999
END WHERE
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WRITE (*,'(3F15.6)') array

END PROGRAM WHERE_Example

The result is

1.000000 -9.999999 1.000000
1.000000 -9.000000 -9.999999

3.8.7 FORALL (Fortran 95)

The FORALL structure is essentially a more general version of the WHERE construct.
It may also be considered as a space-spanning equivalent to nested DO loops that
perform complicated operations whose time execution must be arbitrary. The
format of the FORALL statement is

FORALL (index=lower bound:upper bound:increment)
statement

Two full sample programs are shown below for your reference:

program where_construct
implicit none

integer, dimension(5) :: a = (/ 1, 2, 3, 4, 5 /)
integer :: i

forall(i = 1:4, a(i) >2) a(i) = 0

write(*, *) a

end program where_construct

The result is

1 2 0 0 5

program where_construct
implicit none

integer, dimension(5) :: a = (/ 1, 2, 3, 4, 5 /)
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integer :: i

forall(i = 1:5:2) a(i) = -1.

write(*, *) a
end program where_construct

The result is

-1 2 -1 4 -1

3.8.8 Array intrinsic functions

Fortran 90 contains a lot of new intrinsic functions for arrays. It is beyond the scope
of this text to explain all them in detail. However, here we have just a brief list of
some of them and what they do, so you know what to look for when you need them:

• SIZE(array,[dimension]) is probably the most important inquiry
function for array which finds the rank of an array along the specified
dimension (or total number of elements). Use SHAPE(array) to obtain the
shape of the array as an array to integer ranks.

• SUM(array,[dimension]) and PRODUCT(array,[dimension])
return the sum or product of the elements of an array along the specified
dimension.

• MINVAL(array,[dimension]) and MAXVAL(array,[dimension])
give the minimum and maximum value of an array along the specified
dimension.

• MATMUL(first array, second array) is a very important function that
returns the matrix product of two arrays (optimized for parallelization when
possible).

• DOT_PRODUCT(first vector, second vector) finds the dot product
of two vectors.

• TRANSPOSE(matrix) gives the transpose of a two-dimensional matrix.

3.8.9 Allocatable arrays

An essential improvement in Fortran 90 is memory management and the introduc-
tion of allocatable arrays, specified with the ALLOCATABLE attribute. These arrays
do not have a specified dimension and are allocated or deallocated using the
following commands

ALLOCATE(array({dimensions}))
DEALLOCATE(array)

For example,
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REAL, DIMENSION(:,:), ALLOCATABLE :: array
ALLOCATE(array(10,40))
EALLOCATE(array)

first reserves memory for a 10 by 40 array, and then frees the memory to the memory
pool.

A full sample program illustrating dynamic memory allocation is provided below.
In this program, you can create a one-dimensional vector of size dim_size. The
program user then will fill in the particular entries of the vector and the program will
print out the size of the vector and its entries.

Program Testalloc
Implicit None

Integer :: i, dim_size
Integer, Allocatable,Dimension(:):: vec

Print *,'Enter the number of elements in the vector:'
Read *,dim_size

Allocate(vec(dim_size))
Print *,'The size of your vector is:',dim_size
Print*,"******"
Print*,'Enter each entry of your vector:'

Do i=1,dim_size
Read *,vec(i)
End Do

Print *,'This is your vector'

Do i=1,dim_size
Print *,vec(i)
End do

Deallocate(vec)
End Program Testalloc

3.8.10 Pointers

A pointer can be understood as a variable that points to a memory location (or
locations). In particular, a pointer can point to a block of memory that we want to
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use to store data, or, more importantly, it can point to the memory location of
another variable, called the target of the pointer. A pointer is assigned a target via

pointer=>target variable of array

When a pointer is declared, it is born in an undefined status, when it is assigned a
target it becomes associated, and to avoid inadvertent misuse we can make it
disassociated with

NULLIFY(pointer)

For example,

REAL, DIMENSION(:), POINTER :: one_row
REAL, DIMENSION(50,50), TARGET :: array
one_row=>array(5,:)
NULLIFY(one_row)

associates the pointer to the fifth row of the array. This is a useful construction
because it is more efficient and easy to manipulate, than, say, keeping in mind the
number 5 to know which row we want to reference.
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Chapter 4

Numerical techniques

4.1 Curve fitting—method of least squares
The method of least squares assumes that the best-fit curve of a given type is the
curve that minimizes the sum of the deviations squared from a given set of data. Let
us suppose that the data points are x y( , )1 1 , x y( , )2 2 , …, x y( , )n n , where xi is the
independent variable and yi is the dependent variable and = …i n1, , , where
N denotes the number of data points. The fitting curve f(x) has the deviation (error)
di from each data point yi, that is, = −d y f x( )1 1 1 , = −d y f x( )2 2 2 , …,

= −d y f x( )N N N . According to the method of least squares, the best fitting curve
is determined by the condition that Π ≡ + + ⋯ +d d dN1

2
2
2 2 is a minimum.

Mathematically, this can be expressed as

∑ ∑Π ≡ = − =
= =

( )d y f x( ) minimum, (4.1)
i

N

i

N

1 1
i i i
2 2

which leads to a system of coupled linear equations for the unknown coefficients
contained in the ansatz for f(x). The simplest choices for f(x) are a straight line, as
shown in figure 4.1, or a parabola. Both cases will be discussed next.

4.1.1 The linear least-squares approximation

The linear least-squares method uses a straight line, = +y a bx, to approximate a
given set of data, x y( , )1 1 , x y( , )2 2 , …, x y( , )N N , where ⩾N 2. From (4.1) it then
follows that the best-fit straight line f(x) has the least-squares error

∑ ∑Π ≡ − = − +
= =

( ) ( )y f x y a bx( ) ( ) , (4.2)
i

N

i

N

1 1
i i i i

2 2

which is to be minimized. Note that here a and b are unknown coefficients while all
the data points xi and yi are given. The coefficients are found by minimizing Π of
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(4.2), which leads to the conditions ∂Π ∂ =a 0 and ∂Π ∂ =b 0. From (4.2), these
partial derivatives are given by

∑∂Π
∂

= − + =
=

( )
a

y a bx2 ( ) 0, (4.3)
i

N

1
i i

∑∂Π
∂

= − + =
=

( )
b

x y a bx2 ( ) 0. (4.4)
i

N

1

i i i

Expanding equations (4.3) and (4.4), we obtain the following set of coupled
equations (linear in a and b),

∑ ∑ ∑= +
= = =

y a b x1 , (4.5)
i

N

i

N

i

N

1 1 1
i i

∑ ∑ ∑= +
= = =

x y a x b x . (4.6)
i

N

i

N

i

N

1 1 1

i i i i
2

Solving for a and b leads to

∑ ∑ ∑ ∑

∑ ∑
=

−

−

= = = =

= =

⎛
⎝
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⎞
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N x x

, (4.7)i

N

i

N

i

N

i

N

i

N

i

N

1 1 1 1

1 1

i i i i i

i i

2
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∑ ∑ ∑

∑ ∑
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⎟⎟

b

N x y x y

n x x

, (4.8)i

N

i

N

i

N

i

N

i

N

1 1 1

1 1

i i i i

i i
2

2

which are easy to evaluate numerically.

Figure 4.1. Experimental data points x y( , )i i fitted by a straight line f(x). The quantity di defines the deviation
of each data point yi from the best-fit straight line f x( )i at each data point i, that is, = −d y f x( )i i i .
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4.1.2 The quadratic least-squares approximation

The quadratic least-squares method uses a second-degree polynomial (i.e. a
parabola) = + +y a bx cx2 to approximate a given set of data, x y( , )1 1 , x y( , )2 2 ,
…, x y( , )N N , where ⩾N 3. From (4.1) it now follows that the best-fit polynomial f(x)
has the least-squares error

∑ ∑Π ≡ − = − + + =
= =

( )( )( )y f x y a bx cx( ) minimum. (4.9)
i

N

i

N

1 1
i i i i i

2 2 2

For a parabola, a, b, and c are the unknown coefficients and all xi and yi data are
given as for the straight-line case. To find the three unknown coefficients, we need to
evaluates the three first-order derivatives

∑∂Π
∂

= − + + =
=

( )( )
a

y a bx cx2 0, (4.10)
i

N

1
i i i

2

∑∂Π
∂

= − + + =
=

( )( )
b

x y a bx cx2 0, (4.11)
i

N

1

i i i i
2

∑∂Π
∂

= − + + =
=

( )( )
c

x y a bx cx2 0. (4.12)
i

N

1
i i i i
2 2

Expanding equations (4.10) through (4.12), we have

∑ ∑ ∑ ∑= + +
= = = =

y a b x c x1 , (4.13)
i

N

i

N

i

N

i

N

1 1 1 1
i i i

2

∑ ∑ ∑ ∑= + +
= = = =

x y a x b x c x , (4.14)
i

N

i

N

i

N

i

N

1 1 1 1

i i i i i
2 3

∑ ∑ ∑ ∑= + +
= = = =

x y a x b x c x . (4.15)
i

N

i

N

i

N

i

N

1 1 1 1
i i i i i
2 2 3 4

The unknown coefficients a, b, and c are thus given as solutions of the three coupled,
linear equations (4.13)–(4.15).

4.2 Numerical differentiation
Derivatives of smooth, well-behaved functions can be approximated in several ways.
The most basic ones are discussed in this section. We begin with the Taylor series
expansion of a function f(x),
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+ Δ = + ′ Δ + ″
!

Δ + ‴
!

Δ + ⋯f x x f x f x x
f x

x
f x

x( ) ( ) ( )
( )

2
( )

3
, (4.16)2 3

where Δ ≪x x. Evaluating the Taylor expansion (4.16) at + Δx x and − Δx x
leads to

+ Δ ≈ + ′ Δ + ″
!

Δ + ‴
!

Δf x x f x f x x
f x

x
f x

x( ) ( ) ( )
( )

2
( )

3
, (4.17)2 3

− Δ ≈ − ′ Δ + ″
!

Δ − ‴
!

Δf x x f x f x x
f x

x
f x

x( ) ( ) ( )
( )

2
( )

3
. (4.18)2 3

Subtracting (4.18) from (4.17) gives

+ Δ − − Δ ≈ ′ Δ + ‴
!

Δf x x f x x f x x
f x

x( ) ( ) 2 ( ) 2
( )

3
, (4.19)3

so that

′ ≈ + Δ − − Δ
Δ

f x
f x x f x x

x
( )

( ) ( )
2

, (4.20)

which is known as leap-frog (central difference) differentiation. A less accurate way
of numerical differentiation is the so-called Euler forward differentiation, which
follows from (4.17) as

′ ≈ + Δ −
Δ

f x
f x x f x

x
( )

( ) ( )
. (4.21)

Finally, we mention Euler backward differentiation, which follows from (4.18) as

′ ≈ − − Δ
Δ

f x
f x f x x

x
( )

( ) ( )
. (4.22)

A frequently used expression to compute the second-order derivative of a function f
(x) is obtained by adding (4.17) and (4.18) together. This leads to the three-point rule
formula

″ ≈ + Δ − + − Δ
Δ

f x
f x x f x f x x

x
( )

( ) 2 ( ) ( )
. (4.23)

2

Similarly, the five-point rule formula for the second derivative of f(x) is given by

″ ≈ − + + + − + − − −
f x

f x h f x h f x f x h f x h
h

( )
( 2 ) 16 ( ) 30 ( ) 16 ( ) ( 2 )

12
. (4.24)

2

4.3 Numerical integration
There are several excellent methods that can be used to numerically compute the
value w of a definite integral of the form
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∫=w f x dx( ) . (4.25)
a

b

Here f(x) is a smooth, well-behaved function defined for x-values in the range
⩽ ⩽a x b, as illustrated in figure 4.2. A large class of numerical integration

(quadrature) schemes can be derived by constructing interpolating functions which
are easy to integrate.

4.3.1 The trapezoidal rule

In the simplest case, the functions used to interpolate f(x) are polynomials of degree
one, that is, linear functions, which are used to approximate the area under a
function f(x) for x-values between xi and +xi 1 by N trapezoids, as shown in figure 4.3.
Here N is an integer which can be even or odd. Defining

= + = − = …x a kh h b a N k N, where ( ) , ( 0, 1, , ) (4.26)k

shows that the difference between two successive grid points on the x-axis is given by
− =+x x hi i1 . Since the area of each individual trapezoid is

+ −+hf x h f x f x( ) ( ( ) ( )) 2k k k1 , the total area covered by f(x) follows as

∫ ∑ ∑≈ + −
=

−

=

−

+f x dx hf x h f x f x( ) ( )
1
2

( ( ) ( )). (4.27)
k

N

k

N

0

1

0

1

a

b

k k k1

This expression can be written in the more compact form

∫ ∑ ∑≈ + −
=

−

=

−

+( )f x dx hf h f f( )
1
2

, (4.28)
k

N

k

N

0

1

0

1

a

b

k k k1

Figure 4.2. Graphical illustration of the value w (shaded area) of the integral of (4.25).

Figure 4.3. The the trapezoidal rule, the area covered by f(x) is approximated by a sequence of vertical
trapezoids of width −+x xi i1 .
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where ≡f f x( )k k and ≡+ +f f x( )k k1 1 . Next, we re-write the summations in (4.28) as
follows,

∑ ∑ ∑ ∑ ∑+ − = + + −
=

−

=

−

=

−

=

−

=

−

+ +( )hf h f f hf h f
h

f
h

f
1
2 2 2

, (4.29)
k

N

k

N

k

N

k

N

k

N
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1

0

1

1

1

0

1

0

1

k k k k k k1 0 1

and furthermore

∑ ∑= +
=

−

=

−

+f f f , (4.30)
k

N

k

N

0

1

1

1

k k N1

∑ ∑= +
=

−

=

−

f f f . (4.31)
k

N

k

N

0

1

1

1

k k0

This allows us to write the expression for the integral in (4.28) as

∫ ∑≈ + +
=

−⎛
⎝
⎜⎜

⎞
⎠
⎟⎟f x dx

h
f f f( )

2
2 , (4.32)

k

N

1

1

a

b

a k b

with ≡f f a( )a , ≡f f b( )b , and xk and h defined in (4.26). Equation (4.32) is known
as the trapezoidal rule. The sample code below illustrates how the trapezoidal rule
can be implemented in a numerical code:

h=(b a)/FLOAT(N)
sum=0.
DO k=1,N 1

x_k=a+h*FLOAT(k)
sum=sum+f(x_k)

END DO
trap = h * (f(a)+f(b)+2.*sum) / 2.

−

−

4.3.2 Simpson’s rule

The second numerical integration technique considered in this text is Simpson’s rule,
which is often more accurate than the trapezoidal rule, since it uses a second-order
polynomial (i.e. a parabola) = + +P x Ax Bx C( ) 2 rather than a linear function to
approximate f(x) between grid points xi and +xi 2. The situation is illustrated
graphically in figure 4.4. The quantities A, B, and C are constants which can be
determined by integrating P(x) from x1 to +xi 2,

∫ = − + + + + ++
+ + +

+ ⎛
⎝⎜

⎞
⎠⎟P x dx

x x
A x x x x B x x C( )

3
( )

3
2

( ) 3 . (4.33)
x

x
i i

i i i i i i
2

2
2

2
2

2
i

i 2
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With a little bit of algebra, equation (4.33) can be written as

∫ = − + + ++ +
+

+
⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟P x dx

x x
P x P

x x
P x( )

6
( ) 4

2
( ) . (4.34)

x

x
i i

i
i i

i
2 2

2
i

i 2

Now let us suppose that the integration interval a b[ , ] is split up into N sub-intervals,
where N is an even integer. Then, by applying the rule derived in (4.33) to integrate
f(x) over the first two intervals a x, 2 (see figure 4.3) leads to ≡ + +w f f f( 4 ) 32 0 1 2 ,
where h denotes the width of the interval, that is, = −h x a2 . Repeating this step for
all subsequent pairs of adjacent intervals leads for the integral to

∫ ≈ + + + + + + + +

+ ⋯+ + +− −

( ) ( ) ( )

( )

f x dx
h

f f f
h

f f f
h

f f f

h
f f f

( )
3

4
3

4
3

4

3
4 ,

(4.35)a

b

N N N

0 1 2 2 3 4 4 5 6

2 1

which can be written as

∫ ≈ + + + + + ⋯ + +

+ + + + ⋯ +

−

−

( ) ( )

( )

f x dx
h

f f
h

f f f f f

h
f f f f

( )
3 3

2 2 2

3
4 4 4 4 .

(4.36)a

b

N N N

N

0 0 2 4 2

1 3 6 1

One sees that the fk values are multiplied by a factor of 2 or 4 depending on whether
the grid point is even or odd, respectively. This is different for the trapezoidal rule of
(4.32), where all fk values are multiplied by the same weight factor. In summary,
Simpson’s rule is given by

∫ ∑ ∑≈ + + +
=

−

=

−

↑ ↑

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
f x dx

h
f f f f( )

3
2 4 , (4.37)

k

N

k

N

2

2

1

1

a

b

a k k b

even odd

where ≡f fa 0 and ≡f fb N . This formula can also be written as

Figure 4.4. Simpson’s rule can be derived by approximating the integrand f(x) by a quadratic interpolant P(x)
between grid points xi and +xi 2.
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∫ ∑ δ δ≈ + + +
=

−

− + − −

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )f x dx

h
f f f( )

3
2 4 , (4.38)

k

N

1

1

a

b

k N0 ( 1) , 1 ( 1) , 1k k

where the Kronecker delta has been used to specify the corresponding weight factor.
The Kronecker δk l, has a value of 1 if k = l and 0 if ≠k l . As for the trapezoidal rule
(see (4.26)), the grid points are given by = +x a khk , where = … −k N N0, 1, , 1, ,
and = −h b a N( ) . The sample code below shows how Simpson’s rule can be
implemented in a numerical code:

h=(b a)/FLOAT(N)
sum=0.
DO k=1,N 1

x_k=a+h*FLOAT(k)
weight=4.
sign=( 1)**k
if(sign > 0) weight=2.
sum=sum+weight*f(x_k)

END DO
simp = h * (f(a)+f(b)+sum) / 3.

−

−

−

4.4 Matrix operations
In this section we briefly review key matrix definitions and basic matrix operations.
These are transposition, multiplication of two matrices, and multiplication of a
matrix with a vector.

Transposition: Let A be a N × N matrix, such as

=
⋯
⋯

⋯ ⋯ ⋯ ⋯
⋯

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟A

a a a
a a a

a a a
. (4.39)

N

N

N N NN

11 12 1

21 22 2

1 2

The transpose, AT, of A is obtained by mapping →a ajk kj for all j and k values from
… N1, , , that is,

=
⋯
⋯

⋯ ⋯ ⋯ ⋯
⋯

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟A

a a a
a a a

a a a
(4.40)T

N

N

N N NN

11 21 1

12 22 2

1 2

Multiplication of two matrices: Let A and B be two N × N matrices. Then their
product A × B is given by the N × N matrix

≡
⋯
⋯

⋯ ⋯ ⋯ ⋯

⋯

⋯ ⋯ ⋯

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
C

a a a
a a a

a a a a

b b b
b b b b

b
b b b b

, (4.41)
N

N

NN

N

N

N

NN

11 12 1

21 22 2

41 42 43

11 12 1

21 22 23 2

3

41 42 43
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with the individual matrix elements cjk of C given by

∑=
=

c a b . (4.42)
l

N

1

jk jl lk

Multiplication of a matrix with a vector: Let A be a N × N matrix, and x be a
column vector with N elements. Then A x leads to a new column vector y, according
to

⋯
⋯

⋯ ⋯ ⋯ ⋯ ⋯ = ⋯

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

a a a
a a a

a a a a

x
x

x

y
y

y

. (4.43)
N

N

N N N NN N
N

11 12 1

21 22 2

1 2 3

1

2
1

2

Algebraically, this system of equations can be written as

∑ = = …
=

a x y i N, for 1, , . (4.44)
j

N

1

ij j i

The Jacobi iterative method can be used to solve certain systems of linear equations.
To demonstrate the method, let us assume that the linear equation has the form

=A x b so that

∑ ∑= + =
= =

≠

a x a x a x b . (4.45)
j

N

ij j ii i
j
j i

N

ij j i
1 1

( )

The solutions of (4.45) are therefore given by

∑= −
=
≠

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
x

a
b a x

1
. (4.46)i

ii
i

j
j i

N

ij j

1
( )

4.5 Finding roots
The objective of this section is to introduce a numerical tool for finding root of a
transcendental equation f(x), that is, the x̃ value for which ˜ =f x( ) 0. A brute force
method is the so-called bisection method, which cuts the interval in half in which the
root lies, as shown in figure 4.5. This procedure is repeated until either f(x),
evaluated at every new midpoint, is smaller than a prescribed tolerance.

A more elegant and efficient method to find the root of a function is Newton’s
method. Here one starts from a given initial guess value, x0, for the root. A refined
value for the guess value, x1, is computed based on the x-intercept of the line tangent
to f at x0, as shown in figure 4.5. Mathematically this is expressed as

− = ′ −f x f x f x x x( ( ) ( )) ( ) ( ). (4.47)1 0 0 1 0

Since =f x( ) 01 by construction, it follows from (4.47) that
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− = ′ − ⇒ = −
′

f x f x x x x x
f x
f x

0 ( ) ( ) ( )
( )
( )

, (4.48)0 0 1 0 1 0
0

0

where x1 is the new, improved value for root. This process is repeated according to
the scheme ∈ +i( )

= −
′+x x

f x
f x

( )
( )

, (4.49)i i
i

i
1

until an +xi 1 value is found for which ϵ∣ ∣ <+f x( )i 1 , where ϵ is a prescribed tolerance.

4.6 Solving ordinary differential equations
An ordinary differential equation (ODE) of order n is an equation of the form

… =F x y y y y( ; , , , , ) 0, (4.50)n(1) (2) ( )

where y is a function of x, =y dy dx(1) , and =y d y dxn n n( ) . In general, equation
(4.50) has n linearly independent solutions, which are determined by initial
conditions ≡Y y(0)0 , ≡Y y (0)1

(1) , …, ≡−
−Y y (0)n

n
1

( 1) . In general, higher-order
ODEs can be reduced to a set of first-order ODEs, which are easier to solve
numerically. To demonstrate how this works, let us consider the second-order OED

+ =P x
d y x

dx
Q x

dy x
dx

S x( )
( )

( )
( )

( ), (4.51)
2

2

where P(x), Q(x), and S(x) are given functions of x. This equation has two linearly
independent solutions, y x( )1 and y x( )2 , with initial conditions Y0 and Y1. The
functions y x( )1 and y x( )2 can be computed from the following set of coupled, first-
order differential equations

=
dy x

dx
y x

( )
( ), (4.52)1

2

Figure 4.5. Left: The bisection method determines the midpoint of the interval in which the root of f(x) lies.
Right: Newton’s method uses line tangents to f to find the root of f(x).
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= −( )
dy x

dx P x
S x Q x y x

( ) 1
( )

( ) ( ) ( ) , (4.53)2
2

which is equivalent to (4.50), as can bee seen by setting =y x y x( ) ( )1 and
=y x dy dx( )2 1 . Similarly, a linear nth-order ordinary differential equation can be

reduced to a system of n coupled first-order ODEs, according to the scheme

= … = …( )
dy x

dx
f y x y x y x k n

( )
( ), ( ), , ( ) , ( 1, 2, , ), (4.54)k

k n1 2

with initial conditions Y0, Y1, …, −Yn 1. Common numerical methods for solving
initial value problems of ordinary differential equations are the Euler method, the
midpoint method, and the Runge–Kutta method. These methods will be introduced
next.

4.6.1 The Euler method

The Euler method is the simplest method to approximate first-order derivatives. It
advances the solution of a first-order ODE of the form ′ =y f x y x( , ( )) (where

′ ≡y dy dx) with a given initial condition =Y y(0)0 from x to x + h according to

+ = +y x h y x h f x y x( ) ( ) ( , ( )). (4.55)

Here h is a properly chosen, small marching step which advances the solution form x
to x + h. To indicate that the values of x are discretized numerically, it is convenient
to write (4.54) as

= ++y x y x h f x y x( ) ( ) ( , ( )) (4.56)n n n n1

= +y x k( ) , (4.57)n 1

where ≡k h f x y x( , ( ))n n1 . Euler’s formula (4.57) can easily be solved numerically,
but it is limited in practical usage since it uses the derivative information only at the
beginning of an interval, which implies numerical errors that may grow quickly,
depending on the behavior of y(x).

To illustrate how Euler’s method is used to solve a second-order differential
equation, let us consider a small object of mass m which moves vertically (z-
direction) through a viscous medium. The medium exerts a frictional force on the
mass described by ˙∣ ˙∣b z z , where b is a constant and the speed of the mass is given by
˙ =z dz dt. The gravitational force acting on the sphere is given by −m g, with
g denoting the gravitational acceleration. The equation of motion of the mass
follows from Newton’s law and is given by

¨ = − − ˙ ˙mz mg bz z (4.58)

Let us assume that at the initial time, t = 0, the mass is at =z(0) 0 and its initial
velocity is ˙ =z(0) 10 m s−1, which corresponds to =Y 00 and =Y 101 m s−1,
respectively. The system of first-order ODEs associated with (4.58) is obtained as
follows,
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= ˙ ⇒ + Δ = + Δv z z t t z t v t t( ) ( ) ( ) , (4.59)

˙ = ¨ ⇒ + Δ = − + Δv z v t t v t
m

m g b v t v t t( ) ( )
1

( ( ) ( ) ) , (4.60)

where Δt is a properly chosen, small time step which advances the solution z(t) from
t to + Δt t. Since the equations are solved for discretized times and positions, it is
appropriate to write (4.58) and (4.59) as

= + Δ+z z v t, (4.61)i i i1

= − + Δ+v v
m

m g b v v t
1

( ) . (4.62)i i i i1

A numerical sample code which solves (4.61) and (4.62) subject to the boundary
conditions =Y 00 and =Y 101 m s−1 is shown below.

z_1 = 0.0; v_1 = 10.0 !Define initial conditions
DO WHILE (z_2 >= 0.0)

z_2 = z_1 + v_1*dt

v_2 = v_1  dt*(m*g + b*v_1*ABS(v_1)) / m
time=time + dt

END DO

−

4.6.2 The midpoint method

The midpoint method, also known as the second-order Runge–Kutta method,
improves the Euler method by adding a midpoint in the step, which increases the
numerical accuracy. Equation (4.57) is then replaced by

= ++y x y x k( ) ( ) , (4.63)n n1 2

where k1 and k2 are given by

=k h f x y( , ), (4.64)n n1

= + +
⎛
⎝⎜

⎞
⎠⎟k h f x

h
y x

k
2

, ( )
2

. (4.65)n n2
1

4.6.3 The Runge–Kutta method

The Runge–Kutta method solves an ODE of the form ′ =y f x y x( , ( )) by determin-
ing the value of +y x h( ) in terms of y(x) computed at several different x values. To
illustrate the method, let us begin with writing +y x h( ) as

+ = + + −y x h y x y x h y x( ) ( ) ( ( ) ( )) (4.66)
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∫= + ′
+

y x y s ds( ) ( ) , (4.67)
x

x h

where ′ =y dy ds. Defining τ= +s x h so that τ=ds h d . This leads for the integral
in (4.67) to

∫ ∫ τ τ′ = ′ +
+

y s ds y x h d( ) ( ) (4.68)
x

x h

0

1

so that (4.67) can be written as

∫ τ τ+ = + ′ +y x h y x h y x h d( ) ( ) ( ) . (4.69)
0

1

Next we approximate the integral in (4.68) by a finite sum,

∫ ∑τ τ′ + = ′ +
=

y x h d b y x c h( ) ( ), (4.70)
i

m

1

i i
0

1

where the bi denote unknown expansion coefficients. For y′ ≡1 the values of these
coefficients are constraint by the condition

∑ =
=

b 1. (4.71)
i

m

1

i

Substituting (4.70) into (4.69) leads to

∑+ = + ′ +
=

y x h y x h b y x c h( ) ( ) ( ) (4.72)
i

m

1

i i

∑= + + +
=

y x h b f x c h y x c h( ) ( , ( )). (4.73)
i

m

1

i i i

To evaluate (4.73) further, we need to find an approximate expression for y at the
new grip points +x c hi . With this in mind we make use of (4.69) to arrive for

+y x c h( )i at

∫ τ τ+ = + ′ +y x c h y x h y x h d( ) ( ) ( ) . (4.74)i

c

0

i

Approximating the integral in (4.74) by a finite sum, as in (4.70), leads to
( = …i m1, , , = …j m1, , )

∫ ∑τ τ′ + = ′ +
=

y x h d a y x c h( ) ( ). (4.75)
j

m

1

c

i j j
0

,

i

As before, for ′ ≡y 1 we obtain the conditions

∑ =
=

a c . (4.76)
j

m

1

i j i,

Substituting (4.75) into (4.74) leads to
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∑+ = + ′ +
=

( )y x c h y x h a y x c h( ) ( ) (4.77)
j

m

1

i i j j,

∑= + + +
=

( )y x h a f x c h y x c h( ) , ( ) . (4.78)
j

m

1

i j j j,

Lastly, in order to simplify the notation, we introduce the abbreviation
˜ ≡ + +( )k f x c h y x c h, ( ) . (4.79)j j j

equation (4.78) can then be written in the more compact form

∑+ = + ˜ = …
=

y x c h y x h a k i m( ) ( ) , ( 1, , ). (4.80)
j

m

1

i i j j,

Plugging (4.80) back into (4.79) leads to

∑˜ = + + ˜ = …
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟k f x c h y x h a k j m, ( ) , ( 1, , ). (4.81)

l

m

1

j j j l l,

The set of Runge–Kutta equations of order m follows from (4.73), which, by means
of (4.79) and (4.81), can be written in the final form

∑= + ˜
=

+y y h b k , (4.82)
i

m

1
n n i i1

∑˜ = + + ˜
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟k f x c h y h a k, , (4.83)

j

m

1

i n i n i j j,

where ≡y y x( )n n and ≡ ++y y x h( )n n1 . For m = 4, the unknown coefficients ci, bi,
and ai j, , summarized schematically as

c a a a a

c a a a a

c a a a a

c a a a a

b b b b

(4.84)

1 1,1 1,2 1,3 1,4

2 2,1 2,2 2,3 2,4

3 3,1 3,2 3,3 3,4

4 4,1 4,2 4,3 4,4

1 2 3 4

have the following values,

0 0 0 0 0

1 2 1 2 0 0 0

1 2 0 1 2 0 0

1 0 0 1 0

1 6 2 6 2 6 1 6

(4.85)

This leads for ˜ ˜ ˜k k k, ,1 2 3, and k̃4 to
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˜ =

˜ = + + ˜

˜ = + + ˜

˜ = + + ˜

= + ˜ + ˜ + ˜ + ˜
+

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )

k f x y

k f x h y hk

k f x h y hk

k f x h y hk

y y h k k k k

( , ),

1
2

,
1
2

,

1
2

,
1
2

,

, ,

1
6

( 2 2 ).

(4.86)

n n

n n

n n

n n

n n

1

2 1

3 2

4 3

1 1 2 3 4

It is convenient to define ≡ ˜k hki i, the equations of the fourth-order Runge–Kutta
method, which is by far the most common method to solve ODE, can be
summarized as follows:

=

= + +

= + +

= + +

= + + + ++

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

k hf x y

k hf x
h

y x
k

k hf x
h

y x
k

k hf x h y x k

y y k k k k

( , ),

2
, ( )

2
,

2
, ( )

2
,

( , ( ) ),
1
6

( 2 2 ).

(4.87)

n n

n n

n n

n n

n n

1

2
1

3
2

4 3

1 1 2 3 4

4.6.4 Boundary value problems

In the previous sections, we looked at ODEs whose solutions and derivatives have
specific values at given points, such as position and velocity at an initial time. Such
problems are referred to as initial value problems. This is different for so-called
boundary value problems, where the solutions are required to have specific values at
the boundaries of the system that is being studied.

As an example, let us consider a particle of mass mmoving along the x-axis under
the action of a time-dependent force F(t). At time zero the particle is located at

=x(0) 0. The the final time, tf, the particle is at =x t b( )f . The particle’s motion is
therefore described by the solution to the boundary value problem

= = =m
d x
dt

F t x x t b( ), where (0) 0, ( ) . (4.88)f

2

2

To determine the motion of the particle from =x(0) 0 to =x t a( )f numerically, we
approximate the second-order time derivative in (4.88) by the finite-difference
expression (4.23). This leads for (4.88) to
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− + = ˜ = =− +x x x f x x b2 , 0, , (4.89)i i i i N1 1 0

where ˜ ≡ Δf F t mi i
2 and ≡F F t( )i i . As can be seen from (4.89), the second-order

differential equation is to be evaluated at three successive positions along the
discretized x-axis, i.e. =− −x x t( )i i1 1 , =x x t( )i i , and =+ +x x t( )i i1 1 . The discretized
times are given by ≡ Δt i ti where = … −i N1, 2, , 1. The time segment Δt is defined
as Δ ≡t t Nf , with N denoting the total number of time segments of size Δt. Finally,
the boundary values at the two end points require that =x 00 and =x bN , as shown
in (4.89). Equation (4.89) constitutes a system of −N 1 coupled linear equations,

= − + = ˜

= − + = ˜

= − + = ˜
⋯ ⋯

= − − + = ˜

= − − + = ˜
− − − −

− − −

i x x x f

i x x x f

i x x x f

i N x x x f

i N x x x f

1: 2 ,

2: 2 ,

3: 2 ,

2: 2 ,

1: 2 ,

(4.90)

N N N N

N N N N

0 1 2 1

1 2 3 2

2 3 4 3

3 2 1 2

2 1 1

which determine the −N 1 unknown positions … −x x x, , , N1 2 1. Written in matrix
form, this system of equations if given by

−
−

−

−
−

=

˜ −
˜
˜

˜
˜ −

−

−
−

−

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

x
x
x

x
x

f x

f

f

f

f x

2 1

1 2 1

1 2 1
. . .

. . .

1 2 1

1 2

.

. ..
, (4.91)

N

N
N

N N

1

2

3

2

1

1 0

2

3

2

1

where the coefficient matrix is tridiagonal and symmetric. Such systems can be
solved numerically with standard numerical routines such as tridag from the
Numerical Recipes [1, 2].
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Chapter 5

Problem solving methodologies

Computational physics is a subject where computing is used to gain insight into
complex systems. It is highly multidisciplinary involving physics, mathematics, and
computer science, as illustrated in figure 5.1.

This requires knowledge in the Linux/Unix environment, a programming
language of some sort, and numerical techniques. Having this knowledge from
the previous chapters, we can now attack a variety of problems in science and
engineering which will require computing of some sort. In this chapter, we lay out a
general guideline on methods and strategies which can be applied to any type of
computational problem.

Figure 5.1. Venn diagram illustrating a multidisciplinary approach to computational physics.
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When solving various problems in physics (and other scientific and engineering
disciplines), we have to first ask ourselves a few questions:

• What is the physics problem at hand?
• What is the mathematical model which describes this particular problem?

– What does the model tell us about the physics problem?
– Is it realistic?
– Can a solution be obtained in a reasonable amount of time and effort?

• Which programming language would work best for the application?

Asking the above questions is the first step to solving complex computational types
of problems. Once you have determined the answers to these questions, you are
ready to apply your skills in computing to solve the problem at hand.

5.1 General guidelines
A general guideline to solving computational physics problems is as follows:

1. Analyze the problem and think about it rationally.
2. Plan out the program, write out what you think you need to do.
3. Draw a flowchart explaining features of your program.
4. Write pseudo code to match your flow diagram.
5. Write your source code.
6. Compile your source code.
7. Execute (run) your source code (debug if necessary).

The seven steps listed here are very useful and can be applied not only to physics
problems but many other problems in science and engineering. A great example
of applying these guidelines is on the topic of two-dimensional kinematics,
particularly on projectile motion. Projectile motion is a topic encountered by
many students in a first semester physics course and can be applied to a variety of
other applications.

5.2 Projectile motion example
Consider an object which is projected upward with some initial velocity v0 at some
given angle θ. For this scenario, we can ask the following questions:

• What is the max height the object reaches?
• How long will the object be in the air before it hits the ground?
• How far away is the object when it hits the ground?

To answer these questions, we can look at the trajectory of this object and
computationally compute this by applying the seven steps listed above.

1. Analyze the problem and think about it rationally.
To solve this problem, we would need mathematical expressions which will

describe the x and y positions. This would require us to use the well-known
kinematic equations as described in the expressions in (5.1)–(5.3).
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= + = +v v a t v v a t, (5.1)x x x y y y0 0

= + + = + +x x v t a t y y v t a t
1
2

1
2

, (5.2)x x y y0 0
2

0 0
2

= + − = + −v v a x x v v a y y2 ( ) 2 ( ). (5.3)x x x y y y
2

0
2

0
2

0
2

0

Since we are looking for the x and y positions, we will utilize the expressions

= + + = + +x x v t a t y y v t a t
1
2

,
1
2

, (5.4)x x y y0 0
2

0 0
2

where, if we assume if the initial positions in the x- and y-direction are zero, in
addition to knowing the horizontal acceleration ax is zero and the vertical
acceleration ay is simply the acceleration due to gravity, our expressions which
describe the x and y positions modify to

θ=x v tcos( ) (5.5)0

θ= −y v t gtsin( )
1
2

(5.6)0
2

where we have substituted the expressions for v x0 and v y0 with θv cos( )0 and θv sin( )0 ,
respectively. This is an important concept since velocity is a vector and must be
broken up into its components.

2. Plan out the program.
Having our expressions which will describe the x and y positions, we can now

start to plan out our program. As the projectile moves, the horizontal and vertical
positions will change over time which will require the program to update these
positions. Thus,

• updating the positions would require some sort of iterative process (i.e. loops).
• it would also need some sort of step-size (i.e. a time step).
• it would need to write these data out as they are being calculated.
• it would also need to update the step-size for each new position.
• lastly, we would need iterate this until the projectile hits the ground (i.e.
requires a logical condition).

3. Draw out a flowchart.
A typical flow chart for this type of problem is illustrated in figure 5.2. The flow

chart is describing the important points of the program, such as input parameters,
iterative processes for our positions, writing data, and logical conditions.

4. Write out pseudo code.
We can easily write some simple pseudo code to describe the main processes

happening within our program. The pseudo code below describes what will be
happening within our iterative process.
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−

Do i = start, finish
time =...
x=...
y=...
Write out data
Update time step
Iterate UNTIL Projectile Hits the Ground

End Do

5. Write your source code.
Using the pseudo code, one can easily see the major part of the program is within

the loop. The actual code is left to the student to exercise their programming skills;
however, the main loop is provided for your reference:

−

Do i = 0,1000
t = i*dt

x = v0*cos(theta)*t
y = v0*sin(theta)*t  0.5*g*t**2

t = t + dt
Write(15,*) x, y
If (y <0) Exit

End Do

Figure 5.2. Flow chart illustrating calculations of projectile motion.
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Once you have successfully written the entire source code, you can compile and run
the program and graphically illustrate the trajectory of an object projected upward
with some initial velocity and given angle.

Figure 5.3 shows the trajectories for a projectile launched with various velocities
and angles by computing the expressions in (5.4) via the main loop listed above.

By applying our steps outlined in this chapter, we can attack a variety of physics
problems. The worksheets and homework assignments listed in the next two
chapters will give ample opportunities to apply these general guidelines.

Figure 5.3. Horizontal (x) and (y) positions of an object projected upward with various initial velocities and
angles.
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IOP Concise Physics

Introduction to Computational Physics for Undergraduates

Omair Zubairi and Fridolin Weber

Chapter 6

Worksheet assignments

6.1 Coding a mathematical expression
Purpose: Compute the value of a given mathematical expression.

Given is the following mathematical expression:

χ π π= + + + + + + +− −( )x x x e x x xsin( )cos ( ) 1 (1 ) .x x3 sin( ) 2 3 4 2 2

Tasks:
Write a structured Fortran 90 program which computes the function above for a
given value of x.

Program design:
1. The variable x is keyboard input.
2. Make use of the Fortran 90 intrinsic functions SIN(X), COS(X), SQRT(X),

and EXP(X).
3. Use the Parameter statement for π.
4. The value of χ is terminal output.
5. Run your code for =x 0, 0.5, 1.0, 1.5 and compare the results for χ with the

results obtained by your fellow students.

6.2 Comparing two functions
Purpose: Practice the use of DO loops and the OPEN statement and generate
graphical output.

Given are the following two functions,

ϕ
τ

=
= + − + + − +

− − +
− − + − − +

−x e x

x x x

x

x x

( ) ,

( ) 0.124523 0.739594( 0.25 ) 0.65781( 0.25 )

0.916955( 0.25 )

0.214698( 0.25 ) 2.35154( 0.25 ) ,

x xsin( ) 3/2

2

3

4 5

2 2

where τ x( ) is the Taylor expansion of ϕ x( ) for ∈x [0, 1].
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Tasks:
Write a structured Fortran 90 program which computes ϕ x( ) and τ x( ) for a range of
x values.

Program design:
1. Use the range x = 0,1 with a step-size of 0.001.
2. Using the OPEN statement, design your code such that the results for ϕ x( )

and τ x( ) are written to two different output (data) files.
3. Declare the purpose of your code and all Fortran variables in the preamble

of the program.
4. Produce a plot which shows ϕ x( ) and τ x( ) for ⩽ ⩽x0 1.

6.3 Bessel functions of the first kind
Purpose: Practice the DO loop and OPEN constructs and generate graphical output.

Bessel functions are used in optics to characterize the pattern you see when light is
focused by a perfect lens with a circular aperture. The αth-order Bessel functions of
the first kind, denoted as αJ x( ), are solutions of Besselʼs differential equation that are
finite at the origin =x( 0) for integer or positive α, and diverge as x approaches zero
for negative non-integer α values. It is possible to define the function by its Taylor
series expansion around x = 0,

∑
α

= −
! Γ + +=

∞

α

α+
⎜ ⎟⎛
⎝

⎞
⎠J x

p p
x

( )
( 1)

( 1) 2
, (6.1)

p 0

p p2

where Γ = − !n n( ) ( 1) ( >n 0) is the gamma function. The zeroth-order Bessel
function, J x( )0 , follows from (6.1) as

∑≈ −
! Γ +=

⎜ ⎟⎛
⎝

⎞
⎠J x

p p
x

( )
( 1)

( 1) 2
. (6.2)

p

m

0

p p

0

2

Tasks:
Write a structured Fortran 90 program that takes the first 31 terms (i.e. m = 30) in
the Taylor expansion (6.2) and a value for x (both keyboard input) to return
(terminal output) a value for the zero-order Bessel function at that point.

You will need to increase the numerical precision when computing the factorials
and carrying out the summation over p. This is accomplished by making changes in
the IMPLICIT NONE construct, as shown below:

IMPLICIT NONE
INTEGER, PARAMETER :: DP = SELECTED_REAL_KIND(14)
REAL(KIND = DP) :: ... list of your variables ...
.
.
. [your code]
.
.
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Program design:
1. Making use of the DO loop construct, modify your program such that the

value of J x( )0 is computed over the range ⩽ ⩽x0 20 in steps of Δ =x 0.1.
Use the OPEN construct to write the results for J x( )0 to an external file.

2. The more terms you use when calculating J x( )0 the closer to the ‘real’ value
your results should be. To demonstrate this, compute J x( )0 ⩽ ⩽x(0 20) for

=m 20, 22, 24, 26, 30.
3. Illustrate the results of questions 1 and 2 graphically.
4. Extend your program such that the values of αJ x( ) of (6.1) are computed, for

a given value of α, over the range ⩽ ⩽x0 20 in steps of Δ =x 0.1. Choose
m = 30. The result is to be written to an external file. Run your code for
α = 0, 1, 2, 3, 4, 5 (m = 30 in each case) and compare the results graphically
on a single plot.

6.4 Logical IF statements
Purpose: Practice logical IF statements and use Fortran intrinsic functions.

The following function Φ x y z( , , ) is given for various conditions.

πΦ =
+ + <

=
+ >

⎧
⎨⎪

⎩⎪
x y z

x y z x

x
xy xz x

( , , )
if 0

4 if 0,
sin( ) cos( ) if 0

(6.3)

3 3 3

Tasks:
Write a structured Fortran 90 program that reads in three real numbers x y z( , , ) and
computes the following function ϕ x y z( , , ) for the three conditions listed above.

Program design:
1. Comment the different steps in your program.
2. Make use of the logical IF statement to discriminate between <x 0, =x 0,

and >x 0.
3. Make use of the parameter statement for π.
4. Run your the program for the following values:

= −
= −
=

x y z( , , ) ( 1.5, 4.0, 9.0)
(0.0, 12.0, 2.2)
(3.5, 4.0, 0.5)

6.5 Lead concentration in humans (data analytics)
Purpose: Practice DO loops, logical IF statements, and Input/Output data handling.

Lead is widely present in our environment due to its natural occurrence and
human activities that have introduced it into the general environment. Because lead
may be present in environments where food crops are grown and animals used for
food are raised, various foods may contain unavoidable but small amounts of lead
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that do not pose a significant risk to human health. Small amounts of lead in adults
are not thought to be harmful. However, even low levels of lead can be very
dangerous to infants and children. According to the Centers for Disease Control and
Prevention (CDC), blood lead levels of 2.4 μmol/10 L (5 μg dL−1) or greater require
further testing and monitoring in children1.

For this worksheet, you will write a Fortran program which reads lead concen-
tration data measured in children from a data file. For this data set, the program will
then calculate:

the mean 〈 〉x ,

∑=
=

x
n

x
1

, (6.4)
i

n

1

i

the variance σ2,

∑σ =
−

−
=n

x x
1

1
( ) , (6.5)

i

n

1

i
2 2

and the standard deviation σ,

∑σ =
−

−
=n

x x
1

1
( ) , (6.6)

i

n

1

i
2

where n is the number of measured data (observations). Recall that σ is a very useful
measure of the scatter of observed data, since a range covered by σ1 above 〈 〉x and
one σ below the mean includes about 68% of the observations, a range of 2 σ above
and two below 〈 〉x is about 95% of the observations, and a range of σ3 above and
three below 〈 〉x is about 99.7% of the observations. Consequently, by putting one,
two, or three standard deviations above and below the mean one can estimate the
ranges that would be expected to include about 68%, 95%, and 99.7% of the
observed data.

The probability distribution (function)

σ
σ π

= σ− −< >f x x( , )
1

2
e (6.7)x x2

2
( ) 22 2

of a set of data is represented by a curve defined uniquely by two parameters, which
are the mean and the standard deviation of a given data set. The curve is always
symmetrically bell shaped, but the extent to which the bell is compressed or flattened
out depends on the standard deviation of a given data set.

Tasks:
Write a structured Fortran program which reads lead concentrations (in μmol/10 L)
measured in children from an external data file and calculates the mean value, the

1 5 μg dL−1 stands for 5 micrograms per deciliter (dL).
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variance, and the standard deviation, as defined in (6.4)–(6.6). The data for this set
are given by the following array:

=data [0.1, 0.4, 0.6, 0.8, 1.1, 1.2, 1.3, 1.5, 1.7, 1.9, 1.9, 2.0, 2.2, 2.6, 3.2]

You will have to manually create an external file (.dat) for the data listed above
which then you will READ into your program.

Program design:
1. The screen output generated by the program should be as follows:

The mean of this data set is:
The variance of this data set is:
The standard deviation is:
The number of data points is:

2. Make use the implicit DO-loop construct (that is, READ(unitnumber, *,
end=unitnumber)) to read the data from the data file.

3. If the number of input data is less than 2, the program should tell (screen
output) the user that the number of input data is insufficient to carry out a
statistical analysis. Use the CALL EXIT statement to terminate the program.

4. The probability function σ∣〈 〉f x x( , )2 is to be computed and graphically
illustrated for μ μ− ⩽ ⩽x2 mol/10 L 5 mol/10 L. To cover this range, make
use of = + −x a b a k N( ) /k , with N = 100.

5. In your plot, mark the locations where 68% ( σ〈 〉 ±x ), 95% ( σ〈 〉 ±x 2 ), and
99.7% σ〈 〉 ±x 3 of the data are located.

6.6 Nested DO loops and double summations
Purpose: Practice the use of nested DO loops.

Tasks:
Write a structured Fortran 90 program which computes and prints out (standard
output) the results of

∑ ∑≡ +
= =

− −A N j i( ) ( 1) , (6.8)
i

N

j

i

1 1

2 2

∏ π≡
=

−

B N k N( ) sin ( ), (6.9)
k

N

1

1

∏π≡ − =
=

C s N s s k s( ; ) (1 ), ( 1.5). (6.10)
k

N

1

2 2
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for N = 10,100 with a step-size of 10. Compare your results for A(N), B(N), and
C s N( ; ) with the analytic results given by

∑ ∑ π∞ = + = =
=

∞

=

− −A j i( ) ( 1) /120 0.8117, (6.11)
i j

i

1 1

2 2 4

∏ π= =
=

−
−B N k N N( ) sin ( ) 2 , (6.12)

k

N

1

1
N1

∏π π= − =
=

C s N s s n s( ; ) (1 ) sin( ). (6.13)
n

N

1

2 2

Program design:
1. Make use of the Parameter statement for π.
2. The value of s is keyboard input.
3. Make use of the nested DO loop construct.
4. The (unformatted) terminal output produced by your code should be

something like this:

N= 10
A=... A(analytic)=...
B=... B(analytic)=...
C=... C(analytic)=... (s=....)

N= 20
A=... A(analytic)=...
B=... B(analytic)=...
C=... C(analytic)=... (s=....)
.
.
.
N= 100
A=... A(analytic)=...
B=... B(analytic)=...
C=... C(analytic)=... (s=....)

6.7 Ionic crystals
Purpose: Practice the use of DO loops, IF statements, and formatted I/O.

Consider a collection of N charges brought together so that the ith particle of
charge qi is located at the position vector ⃗ri . Then, the potential energy of the
assemblage is given by
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∑ ∑= Φ Φ =
⃗ − ⃗= =

U q k
q

r r

1
2

, , (6.14)
i

N

j

N

1 1
i i i e

j

i j

where Φi is the electrostatic potential of all the charges (except the ith charge) at the
location of the ith charge and ke is a constant ( πϵ=1/4 0). The potential energy (or
binding energy, as it is usually called) per ion is given by

α= −u
k q

a
, (6.15)e

2

where α denotes the Madelung constant. For a three-dimensional ionic crystal, α is
given by

∑ ∑ ∑

∑ ∑ ∑

α = − − − −
+

− −
+ +

= = =

= = =

+

+ +

j j k

i j k

6
( 1)

12
( 1)

8
( 1)

,

(6.16)
j

n

j

n

k

n

i

n

j

n

k

n

1 1 1

1 1 1

j j k

i j k

2 2

2 2 2

where n is a large number (equal to N /21/3 ).

Tasks:
Write a structured Fortran 90 program which computes the Madelung number
defined in (6.16) for =n 10, 20, 30, 40, 50, 100.

Program design:
1. Thoroughly comment on the iterative process within your program.
2. Use a DO loop to determine the value of n.
3. The results are to be written in tabulated and formatted form to standard

output. The terminal output must be exactly as shown below:

Approximations for the Madelung constant in three dimensions:
N Madelung number alpha

————————————————————————————
10 Mad3D= x.xxxxxxxx
20 Mad3D= x.xxxxxxxx

. . .

50 Mad3D= x.xxxxxxxx
100 Mad3D= x.xxxxxxxx
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6.8 Least-squares fit
Purpose: Fit a set of experimental data with a mathematical model (using the least-
squares technique).

A satellite experiment was launched in the NIMBUS 7 spacecraft in 1978 to
collect data on the composition and structure of the middle atmosphere [1, 2]. The
instrumentation and sensors collected data from October 25, 1978, to May 28, 1979,
returning more than 7000 sets of data to the Earth each day. These data were used to
determine temperature, ozone, water, vapor, nitric acid, and nitrogen dioxide
distributions in the stratosphere and mesosphere. (The stratosphere and the meso-
sphere are atmospheric layers around the Earth from about 15 km to approximately
85 km above the Earth’s surface.) Assume that we have collected a set of data
measuring the ozone mixing ratios in parts per million volume (ppmv) as shown in
table 6.1.

Over small regions, these data are nearly linear, and thus we can use a linear
model to estimate the ozone at altitudes other than the ones for which we have
specific data.

Tasks:
Write a structured Fortran 90 program that reads a data file created by the data set
from table 6.1 and performs a linear fit on the data as described in chapter 5 via the
equations listed under section 4.1.1.

You will use the least-squares technique to determine and print the best-fit (linear)
model data as well as the averaged squared error.

Program design:
1. The original data and the best-fit model data are to be written to an output

file.
2. The screen output produced by your program should look as follows:

Table 6.1. Atmospheric data measuring ozone mixing ratios.

Altitude (km) Ozone mixing ratios (ppmv)

20 3
22 4
24 4
26 5
28 6
31 8
33 7
34 9
37 8
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Linear model: y= . . . x + . . .
original original estimated residual
x y y

20.00 3.00 . . . . . .
22.00 4.00 . . . . . .
24.00 4.00 . . . . . .
26.00 5.00 . . . . . .
28.00 6.00 . . . . . .
31.00 8.00 . . . . . .
33.00 7.00 . . . . . .
34.00 9.00 . . . . . .
37.00 8.00 . . . . . .
Averaged squared error = . . .

3. Generate a plot which has the original data and the best-fit (least-squares)
linear model in the same graph.

6.9 Numerical derivatives
Purpose: Illustrate how to numerically approximate derivatives.

The first derivative of a function can be approximated via the forward Euler’s
method and the three-point rule formula as described in chapter 4. While, these
methods serve their purpose for approximating the first derivative, higher-order
methods are required for higher-order derivatives of functions.

For second-order derivatives, one can use the three-point rule given by (4.23) and
the five-point rule given by (4.24).

Tasks:
Write a well-commented structured FORTRAN 90 program which numerically
approximates the second derivative for the function:

=f x x x( ) sin( ) (6.17)

at the point of =x 26.00 .

Program design:
1. Declare all variables with quad precision, i.e. Real (kind=16)::.
2. Choose a step-size such that dx=0.1.
3. Loop over five increments (i.e. i=1, 5).
4. Calculate the error between the exact solution and the approximations.
5. Produce a plot on a log–log scale which shows the results for the error versus

step-size for both approximations.
6. Comment on your graph, what can you say about the slope for each?

Note: When you change your scale, you will have to re-scale your axis—be
mindful of your data.
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6.10 Numerical integration
Purpose: You will learn how to integrate continuous functions (such as polynomials,
exponentials, and trigonometric functions) numerically using two so-called closed
techniques for numerical integration—the trapezoidal rule and Simpson’s rule.

Tasks:
Write a structured and well-commented Fortran 90 program that uses both the
trapezoidal (4.32) and Simpson’s (4.37) rules of numerical integration to compute
the integral

∫= +−w x dx(3e sin 1) . (6.18)
a

b
x 2

You will run your program for the following cases:
N = 100, a = 0, b = 1
N = 100, a = 0, b = 2
N = 100, a = 0, b = 3 (The exact result for this case is 4.14801).
N = 100, a = 0, b = 4
N = 100, a = 0, b = 5
N = 100, a = 0, b = 10
N = 100, a = 0, b = 50
N = 100, a = 0, b = 100

and explore the dependence of the numerical result(s) on N.

Program design:
1. Design your program such that it lets the user enter the integration

boundaries (a and b) and the number of intervals (N).
2. The screen output generated by your program should display:

– the integration limits, a and b;
– the number of intervals, N;
– the result of the integral using the trapezoidal rule;
– the result of the integral using Simpsonʼs rule.

6.11 Finding roots of a nonlinear equation
Purpose: You will learn how to compute the roots of a nonlinear equation numerically
using Newton’s method.

Given is the following nonlinear equation,

= −f x e x x( ) ln( ) . (6.19)x 2

Tasks:
1. Write a Fortran 90 program which uses Newton’s method as described in

section 4.5 to compute the root(s) of (6.19).
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Program design:
1. Design the program such that f(x) and ′f x( ) are computed in different

FUNCTION subprograms.
2. Stop Newton’s iteration scheme if ϵ∣ − ∣ ⩽+x xi i1 , where ϵ = −10 6.
3. Make sure that a message is written to standard output if the program fails to

detect the root(s) of the equation.
4. Generate a plot f(x) and check whether or not your solution(s) for =f x( ) 0

is (are) correct.

6.12 Ordinary differential equations
Purpose: Illustrate how to solve an ordinary first-order differential equation
numerically.

Given is the ordinary first-order differential equation

′ + = −x y x x y x x xcos( ) ( ) sin( ) ( ) 2 cos ( ) sin( ) 1, (6.20)3

where ⩽ ⩽x0 20. The initial condition is =y(0) 6.75. The analytic solution of
(6.20) is given by

= − − +y x x x x x( ) 0.2 cos( ) cos(2 ) sin( ) 7 cos( ). (6.21)analytic

Tasks:
Write a structured Fortran 90 program which solves (6.20) numerically via Euler’s
method, as described in section 4.6.1. The outcome is to be compared graphically
with the analytic result obtained from (6.21).

Program design:
1. Use a logical IF statement to assign a numerical value to ∈x [0, 20]. The

value to be used for the step size Δx is keyboard input.
2. Use the OPEN statement to write the results of (6.20) and (6.21) for

⩽ ⩽x0 20 to external output files.
3. Produce a plot which shows y(x).
4. In the same plot, show y x( )analytic for Δ = 0.01 and Δ = 0.001.

6.13 Projectile in a viscous medium
Purpose: Illustrate how to solve ordinary differential equations numerically.

A spherical projectile moves vertically in a viscous medium near the surface of the
Earth. It experiences two forces, the gravitational attraction of the Earth (−m g) and
the viscous force Fv from the medium in which it moves. The former is directed
downward (negative z) direction and the latter is directed opposite to the velocity v.
Usually, the magnitude of the viscous force is a function of the speed with which the
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projectile moves, symbolically, =F f v( )v . Assuming that =f b v2 ( >b 0 denotes a
positive constant), the projectile’s equation of motion is then given by

= − −m
d z
dt

m g b
dz
dt

dz
dt

. (6.22)
2

2

The parameters in this equation are the projectile’s mass, m = 50 g, and the
gravitational acceleration, g = 9.81 m s−2. The constant b is given by

ρ=b C A
1
2

, (6.23)d

where ρ is the density of the viscous medium, Cd is the drag coefficient,

≈ +
+

+C
Re Re

24 6

1
0.4, (6.24)d

A is the cross-sectional area, and Re denotes the Reynolds number2.

Tasks:
Write a structured Fortran 90 program which solves the nonlinear second-order
differential equation (6.22) using the midpoint method as described in section 4.6.2
for given values of m, g, ρ = −1500 kgm 3, and = ×Re 1.5 104. The radius of the
projectile is =r 5 mm. The initial conditions of the projectile are ≡ = =z z t( 0) 00

and ≡ ˙ = =v z t( 0) 50 m s−1.

Program design:
1. The formatted screen output should be as follows:

Projectile’s initial position (in meters):
Projectile’s initial speed (in meters/seconds):

Stepsize delta t (in seconds): 0.0001
t=0.00 seconds, z(t)=0.00 meters
t=0.00 seconds, v(t)=5.00 meters/seconds

2. Assume a temporal step size of Δ =t 0.0001 s.
3. Use FUNCTION subprograms to compute Cd, the area (cross section) of the

spherical projectile, and the constant b.
4. Generate a plot which shows the projectile’s position z(t) and speed v(t) as a

function of time, t.

2 The Reynolds number is a criterion of whether fluid, liquid or gas flow is steady (laminar) or unsteady
(turbulent). If the Reynolds number is less than around 2000, flow is generally laminar. For Reynolds numbers
greater than around 2000, flow is usually turbulent.
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Explore the dependence of your numerical solutions on the value chosen for Δt by
running your code for time steps Δ =t 0.1, 0.01, and 0.001. Show the results in the
plots that you just generated.

Additional tasks:
Modify your program to include the Runge–Kutta method as described in section
4.6.3 via the expressions in (4.87). Show the results for z(t) and v(t) graphically for
the midpoint method and the Runge–Kutta method in one plot and comment on
any differences.

6.14 Damped harmonic oscillator
Purpose: Illustrate how to solve higher-order differential equations numerically.

Given is an object of mass m attached to a spring (spring constant κ). The object
oscillates back and forth in the x-direction, as shown graphically in figure 6.1.

The motion of m is damped by a frictional, velocity-dependent force β− ẋ, where β
is a constant. The equation of motion of m is thus given by

κ β¨ + + ˙ =m x x x 0, (6.25)

with = ×m 2 104 g and β = 14 kg s−1.

Tasks:
Write a structured and well-commented Fortran 90 program that solves equation
(6.25) numerically via one or more of the methods described in sections 4.6.1–4.6.3.
You will do this for both for β = 0 (i.e. no damping) and β ≠ 0 and illustrate the
results graphically.

From your results, determine an approximate value for the amplitude, A, and the
period of oscillation, T.

The initial conditions are =x(0) 4 m and ˙ = −x(0) 150 cm s−1. The acceleration
of m at t = 0 is −10 cm3 s−2.

Program design:
1. Design your code such that the user is prompted to key in a value for the time

step Δt. The numerical results for x(t) and v(t) are to be written to output
files.

2. Generate a plot for x(t) and v(t) for both the undamped as well as the
damped case for ⩽ ⩽t0 15 s.

3. From your program, also numerically, determine the force, F3, that acts on
m at =t 0.3 s (i.e. determine F (0.3)3 ).

Figure 6.1. One-dimensional oscillator.
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6.15 RLC circuit
Purpose: Illustrate how to solve higher-order differential equations numerically and
learn the 90 module feature.

An RLC circuit [3] is an oscillating circuit consisting of a resistor (R), capacitor
(C), and inductor (L) connected in series (see figure 6.2). The capacitor is charged
initially. The voltage of this charged capacitor causes a current ( =I dq dt/ ) to flow in
the inductor to discharge the capacitor.

Once the capacitor is discharged, the inductor resists any change in the current
flow, causing the capacitor to be charged again with the opposite polarity. The
voltage in the capacitor eventually causes the current flow to stop and then flow in
the opposite direction. The result is an oscillating electric current. The differential
equation which describes the flow of the electric current throughout the RLC circuit
is given by

= − −d q
dt

R
L

dq
dt

q
L C

, (6.26)
2

2

where L = 0.012 H and = × −C 1.0 10 5 F3.

Tasks:
Write (6.26) as a system of coupled first-order differential equations.

Write a structured Fortran 90 program which solves this system of equations
numerically via one or more of the methods described in section 4.6.1–4.6.3 for times

⩽ ⩽t t0 final, where = × −t 5 10final
3 s. The initial conditions for the electric charge

and electric current are = = × −q t( 0) 1.6 10 5 C and = = =dq dt I t/ ( 0) 0.01 A,
respectively.

Program design:
1. Choose Δ =t t /500final for the temporal step size.
2. Use a FUNCTION to evaluate the right-hand side of (6.26).
3. Use the Fortran 90 module feature to assign values to L, C, I(0), and q(0).
4. Design your code such that the user is prompted to input the numerical value

for R from keyboard.
5. Generate a plot which shows q as a function of t for = ΩR 1.5 , = ΩR 5 , and

= ΩR 50 (single plot).

Figure 6.2. Illustration of an RLC circuit.

3H = Ω s, F = s Ω−1.
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Chapter 7

Homework assignments

7.1 Fresnel coefficients
To study the reflection and transmission of light at a material interface (e.g. air–
glass), one typically examines three distinct waves traveling in the directions
depicted in figure 7.1, where E p( ) and E s( ) denote the components of the electric
field in the parallel (p) and vertical (s) directions. The subscripts r, i, and t stand for
reflected, incident, and transmitted, respectively. The index of refraction ni charac-
terizes the material on the left, and nt characterizes the material on the right of the
vertical axis. The incident plane wave makes an angle θi with the normal to the
interface, the reflected wave makes an angle θr with the interface normal, and
the transmitted plane wave makes an angle θt with the interface normal. The ratio of
the reflected and transmitted electric field components to the incident field
components are specified by the following coefficients, called Fresnel coefficients:

θ θ
θ θ

≡ = −
+

r
E

E

n n
n n

cos cos
cos cos

, (7.1)s
r

s

i
s

i i t t

i i t t

( )

( )

θ
θ θ

≡ =
+

t
E

E

n
n n

2 cos
cos cos

, (7.2)s
t

s

i
s

i i

i i t t

( )

( )

θ θ
θ θ

≡ = −
+

r
E

E

n n
n n

cos cos
cos cos

, (7.3)p
r

p

i
p

i t t i

i t t i

( )

( )

θ
θ θ

≡ =
+

t
E

E

n
n n

2 cos
cos cos

. (7.4)p
t

p

i
p

i i

i t t i

( )

( )

The Fresnel coefficients allow one to easily connect the electric field amplitudes on
the two sides at the material interface. They also keep track of phase shifts at a
boundary.
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Tasks:
Write a structured Fortran 90 program which computes (and outputs) the Fresnel
coefficients given in (7.1) to (7.4) for θ⩽ ⩽ °0 90i .

Program design:
1. Use =n 1i and =n 1.5t (air–glass interface), and a fixed angle of θ = °5t for

the transmitted light ray.
2. The program should also compute (and output) the reflectances ≡R rs s

2 and
≡R rp p

2, and the transmittances ≡ −T R1s s and ≡ −T R1p p, for
θ⩽ ⩽ °0 90i .

3. Generate a plot which shows the Fresnel coefficients rs, ts, rp, and tp for
θ⩽ ⩽ °0 90i .

4. Generate a plot which shows Rs, Rp, Ts, and Tp for θ⩽ ⩽ °0 90i .

7.2 Earth atmosphere model
To help aircraft designers, standard atmosphere models of the variation of proper-
ties through the atmosphere have been developed. One such model is discussed here.
The model assumes that the pressure and temperature change only with altitude.
The model has three zones with separate curve fits for the troposphere, the lower
stratosphere, and the upper stratosphere. The troposphere runs from the surface of
the Earth to 11 km. In the troposphere, the temperature T decreases linearly and the
pressure p decreases exponentially. The curve fits for the troposphere are given by

= −
= +

T h
p T

15.04 0.006 49 ,
101.29[( 273.1)/288.08] ,5.256

where the temperature is given in Celsius degrees, the pressure in kilo-pascals (kPa),
and h is the altitude in meters.

Figure 7.1. Incident (i), reflected (r), and transmitted (t) plane waves at a material (e.g. air–glass) interface.
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The lower stratosphere runs from 11 km to 25 km. In the lower stratosphere the
temperature is constant and the pressure decreases exponentially. The curve fits for
the lower stratosphere are

= −
= −

T
p h

56.46,
22.65 exp(1.73 0.000 157 ).

The upper stratosphere model is used for altitudes from 25 km to 50 km. In the
upper stratosphere the temperature increases slightly and the pressure decreases
exponentially. The curve fits for the upper stratosphere are

= − +
= + −

T h
p T

131.21 0.002 99 ,
2.488[( 273.1)/216.6] .11.388

In each zone the density ρ in kg m−3 is derived from the equation of state

ρ = +p T/[0.2869( 273.1)].

Tasks:
Write a structured Fortran 90 program that computes the atmosphere’s temperature
T (in ◦C), pressure p (in kPA), and density ρ (in kg m−3) as a function of altitude h (in
m). The altitude is from 0 to 50 000 m.

The results are to be illustrated graphically.

Program design:
1. Use DO loops to compute T h( ), p h( ), and ρ h( ) for each atmospheric layer

(preferably use one DO loop).
2. Make use of logical If–Then–Else If conditions for the different regions

of the atmosphere.
3. Use a vertical step size of Δ =h 100 m (you will have to think about how

much you will need to iterate to reach 50 000 m).
4. The results for the T h( ), p h( ), and ρ h( ) are to be written to three separate

output files.
5. Generate plots which show the profiles of temperature, pressure, and density

graphically.

7.3 Magnetic permeability
The magnetic field around a wire (figure 7.2) carrying an electric current I is given by

μ π=B r I r( ) /(2 ),0

where r is the distance measured from the wire and μ0 is the magnetic permeability.
Experimental results of the measured magnetic field, B, as a function of r is given

in table 7.1. The current is kept constant at 2.7 A.

Tasks:
Write a structured Fortran 90 program which determines the value of μ0 (note that
the units of the permeability are μT m A−1.) using the linear (i.e. = +f x a bx( ) )
least-squares method, as described in section 4.1.1.
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Program design:
1. The DATA statement is used to input the values from table 7.1 into your code.
2. The coefficients a and b are computed in a subroutine named SUMMATIONS.
3. The permeability is computed by a function named PERMEABILITY.
4. The value of the permeability is written to standard output in the main

program.
5. Generate a plot which shows the experimental data of table 7.1 as well as the

least-squares linear fit result of the data.

7.4 Maxwell–Boltzmann distribution
The velocity distribution of gas molecules at temperature T is given by the Maxwell–
Boltzmann distribution function,

π
π

= −⎜ ⎟⎛
⎝

⎞
⎠P v dv

m
kT

v dv( ) 4
2

e . (7.5)mv kT
3/2

/2 22

From (7.5) one obtains

∫ ∫π
π

≡ ′ ′ = ′ ′− ′⎜ ⎟⎛
⎝

⎞
⎠f v T P v dv

m
kT

v dv( , ) ( ) 4
2

e (7.6)
v v

mv kT

0

3/2

0

/2 2
2

for the fraction, f, of molecules having speed less than v. For a given speed and
temperature, f has a value between 0 and 1. The quantities in (7.6) are as follows: m
is the mass of the gas molecules in kg mol−1, k is the Boltzmann constant, T is the
temperature in kelvins, and v is the speed in m s−1.

Table 7.1. Experimental measurement of magnetic field B at a certain distance from a current carrying wire.

Data points 1 2 3 4 5

r (cm) 10.0 20.0 30.0 40.0 50.0
B(μT) 5.4 2.7 1.8 1.4 1.0

Figure 7.2. Magnetic field around a wire.
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The Fortran 90 code provided in appendix C computes f v T( , ) for air molecule
with speeds ranging from = −v 100 m s 1, 5000 m s−1 with a step-size of (100 m s−1)
for a given temperature T. Since air consists of χ = 78%N nitrogen, χ = 21%O

oxygen, and χ = 1%Ar argon, an average value of χ= ∑ =m mi i iN,O,Ar
is used or the

mass of the gas molecules of air. The respective mole masses are =m 28N g mol−1,
=m 32O g mol−1, and =m 40Ar g mol−1. Using certain defined quantities, one can

easily simplify (7.6) by applying a change of variables.

Tasks:
Using the quantities β = kT m2 / and β=y v /2 2 2 apply a change of variables and
show that (7.6) can be written as

∫π
π

=
β

−f v T y y( , )
4

( )
e d . (7.7)

y
y

3/2 0

2 2

Modify the code given in appendix C (which currently uses the trapezoidal method)
to include the Simpson’s method of integration as described in section 4.3.2 to
compute the integral given in (7.7).

Program design:
1. The Simpson’s method and the trapezoidal method are to be written in

separate subroutines.
2. The program will ask the user which method to use (i.e. user input for the

integration methods).
3. Design your code such that the results for f v T( , ) for 0 ⩽v ⩽5000 m s−1 are

written to an output file for a fixed temperature. (Use Δ =v 10 m s−1.)
4. Generate a plot for f v T( , ) for temperatures: = °T 40 C, 2000 ◦C, and

= °T 5000 C (all in the same plot).

7.5 Kinetic friction
An object with a mass of 5.5 kg slides from rest down an inclined plane. The plane
makes an angle of θ = °30 with the horizontal and is s = 72 m long. The speed of the
object at the bottom of the plane is =v 16.7 m s−1 and follows from

θ μ θ= −v g s2 (sin cos ) ,

where =g 9.81m s−2 and μ is the coefficient of kinetic friction between the plane and
the object.

Tasks:
Write a structured and well-commented Fortran 90 program which uses Newton’s
numerical root finding method as described in section 4.5 to determine μ.

Program design:
1. The value of v is keyboard input and the maximum number of iterations is

20.
2. Use an initial value of μ = 0.5 to start the root finding algorithm.
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3. Terminate the calculations if μ μΔ ≡ ∣∣ ∣ − ∣ ∣∣ <+
−10i i1

5.
4. Use FUNCTIONs to determine μF ( ) and μ μdF d( )/ .
5. For each iteration step, write Δ and μ to standard output.

7.6 Compton scattering
Suppose that x-rays of =E 100 keV energy are incident on a target and undergo so-
called Compton (i.e. electron–photon) scattering. The scattering process can be
described by the following formula,

ϕ = − ′ + +
+

E E K E K

EK E K
cos

(1 2 / )

2 1 2 /
,

2 2 2
0

0

where ϕ = °73 is the angle of the recoiling electrons, ′E is the energy of the scattered
x-rays, =K 2.5 keV, and =E 511 keV0 is the restmass of an electron.

Tasks:
Write a structured Fortran 90 program which uses the numerical root finding
method as described in section 4.5 to determine ′E .

Program design:
1. The value of E is keyboard input.
2. Limit the maximum number of iterations to 20.
3. Use an initial value of ′ =E 10 keV to start the root finding algorithm.
4. Terminate the calculations if Δ ≡ ∣∣ ′ ∣ − ∣ ′ ∣∣ <+

−E E 10i i1
5.

5. Use FUNCTIONs to determine ′F E( ) and ′ ′dF E dE( )/ .
6. For each iteration step, write Δ and ′E to standard output.

7.7 Radioactive decay
Given are three radioactive atomic nuclei, A, B, C, which decay according to the
following radioactive decay chain:

⟶ ⟶A B C.

The decay is described by the following system of coupled differential equations,

= − = − =dA dt k A dB dt k A k B dC dt k B/ , / , / , (7.8)A A B B

where kA and kB are decay constants, and A t( ), B t( ),C t( ) are the number of nuclei of
each species present. The differential equations are coupled, since each of the second
and third of the them involves two of the dependent variables.

The initial values are =A A(0) 0, =B B(0) 0, and =C C(0) 0. The differential
equations then have a unique solution, and that solution will depend on the
parameters kA and kB and on the three initial values.

Tasks:
Write a structured and well-commented Fortran 90 program which solves the
radioactive decay equations (7.8) using Euler’s method as described in section 4.6.1.
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Program design:
1. Compute solutions for =A(0) 1000, = =B C 00 0 , = =k k 0.1A B , and a time

step of Δ =t 0.25 s.
2. Generate a plot which shows A t( ), B t( ), C t( ) for ⩽ ⩽t0 50 s.
3. Comment on the results for + +A B C . How are they connected with (7.8)?

7.8 Halley’s comet
Halley’s comet last reached perihelion (its point of closest approach to the Sun at the
origin) on 9 February 1986. Its position and velocity components at this time were

→ ≡ = −
→ ≡ = − − −( )

x y z

v v v

r

v

(0) ( (0), (0), (0)) (0.325 514, 0.459 460, 0.166 229)

(0) (0), (0), (0) ( 9.096 111, 6.916 686, 1.305 721),x y z

respectively, with position in AU (Astronomical Units, the unit of distance being
equal to the major semi-axis of the Earth’s orbit about the Sun). The time is
measured in years. In this unit system, its three-dimensional equations of motion are
as follows:

μ μ μ= − = − = −d x
dt

x
r

d y
dt

y
r

d z
dt

z
r

, , , (7.9)
2

2 3

2

2 3

2

2 3

where μ π= 4 2, and = + +r x y z2 2 2 .

Tasks:
Write a structured Fortran 90 program which solves (7.9) numerically via one or
more of the methods described in sections 4.6.1–4.6.3 to find and illustrate the results
graphically via a plot of the yz projection (i.e. z versus y) of the orbit of Halley’s
comet.

Use your numerical solution to determine Halley’s maximum distance (at
aphelion), the comet’s period of revolution, and the time needed to return to
perihelion. (Hint: plot r t( ).)

Using your results, determine the best estimate of the calendar date of the comet’s
next perihelion passage?

Program design:
1. Use the Parameter statement for π.
2. Use a time-step of Δ =t 0.001 and have user input for the final time.
3. Have your program also generate plots for both the xy (i.e. y versus x) and xz

(i.e. z versus x) projections.

Additional tasks:
Investigate your own comet
Lucky you! The night before your birthday in 1997 you set up your telescope on a

nearby mountaintop. It was a clear night, and at 12:30 am you spotted a new comet.
After repeating the observation on successive nights, you were able to calculate
its solar system coordinates = x y zr ( (0), (0), (0))0 and its velocity vector
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= v v vv ( (0), (0), (0))x y z0 on that first night. Using this information, determine this
comet’s

– perihelion (point nearest Sun) and aphelion (farthest from Sun),
– its velocity at perihelion and at aphelion,
– its period of revolution about the Sun and,
– its next two dates of perihelion passage.

Using length-time units of AU and Earth years, the comet’s equations of motion
are given in equation (7.9) with μ π= 4 2. For your personal comet, start with
random initial position and velocity vectors with the same order of magnitude as
those of Halley’s comet. Repeat the random selection of initial position and velocity
vectors, if necessary, until you obtain a nice-looking eccentric orbit that goes well
outside the Earth’s orbit (like real comets do).

7.9 Rocket equation
The equation that describes the motion of a rocket is given by the following
differential equation:

=
−

−dv
dt

R u
m Rt

g. (7.10)
i

ex

This equation is called the rocket equation. The quantity =F Ruth ex is the force
exerted on the rocket by the exhausting fuel, and is called the thrust (R denotes the
burn rate, uex is the speed at which the fuel is exhausted relative to the rocket). The
payload of a rocket is defined as m m/f i, where mf denotes the rocket’s final mass,
after all the fuel has been burned, and mi is the rocket’s initial mass. The quantity g
denotes the gravitational acceleration (9.81 m s−2). The Saturn-V rocket used in the
Apollo moon-landing program had an initial mass of = ×m 2.85 10 kgi

6 , a payload
of 27%, a burn rate of ×1.384 10 kg4 s−1, and a thrust of ×3.4 10 N7 .

Tasks
Using these values, write a Fortran 90 program that solves the rocket equation (7.10)
numerically via one or more of the methods described in sections 4.6.1–4.6.3.

Program design:
1. Use the PARAMETER statement to assign a value to the gravitational

acceleration in your program.
2. Use the DATA statement to assign values to the rocket data.
3. The temporal step size, dt, is to be read from the keyboard.
4. Compute the rocket’s final mass, mf, in a FUNCTION subprogram called

RMASS_F.
5. Compute the rocket’s burn time, given by = −t m m R( )/b i f , in a FUNCTION

subprogram called BURNT.
6. Print the values of uex, mf, tb on the terminal screen. The output should look

as follows:
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uex (km s−1) mf (tons) tb (sec)

. . .

. . .

7. Solve the rocket equation in a SUBROUTINE called VELOCITY and write the
results to an external data file.

8. In the same subroutine, compute the exact value of the rocket’s velocity at
time t, which is given by

= − − −v t u Rt m gt( ) ln(1 / ) (7.11)ex i

and save the results to another external data file.
9. Generate a plot that compares the numerical solution of the rocket equation

(computed for time steps of 0.1, 1, 10, and 20 s) with the exact (i.e. analytical)
solution given by equation (7.11).

7.10 Hydrostatic equilibrium and relativistic stars
Galaxies are filled with billions of so-called compact stars. Such objects are as
massive as our Sun but have radii that are just around 10 km.1 The densities inside
compact stars are therefore 10–20 times higher than the density of atomic nuclei! In
this assignment we will compute the mass–radius relationship of such stars, which
follows from the first-order differential equation

ϵ π= − + +

−
⎛
⎝⎜

⎞
⎠⎟

dP r
dr

P r r P r m r

r
m r
r

( ) [ ( )][4 ( ) ( )]

1
2 ( )

,
(7.12)

3

2

where P, ϵ, and m denote the pressure, energy density, and mass of the mass
distribution at a radial distance r from the center of the star, where we have used the
geometrical units of = =G c 1.

Equation (7.12) follows from Albert Einstein’s theory of general relativity and is
known as the Tolman–Oppenheimer–Volkoff (TOV) equation as first derived in
[1, 2]. The Newtonian limit of (7.12) is given by ( ϵ≪P , ≪P m, ≪m r/ 1)

ϵ= −dP r
dr

r m r
r

( ) ( ) ( )
, (7.13)

2

and is known as the equation of classical hydrostatic equilibrium. This equation
describes the pressure gradient inside of a spherically symmetric mass distribution.
The mass contained in a spherical shell of radius r is given by

∫π ϵ= ′ ′ ′m r r r dr( ) 4 ( ) . (7.14)
r

0

2

1 The mass of our Sun is = ×⊙M 2 10 kg30 , its radius is around ∼R 700 000 km.
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The total mass M of the star is given by =M m R( ), where R denotes the stellar
radius defined by = =P r R( ) 0. The equations of hydrostatic equilibrium can be
solved if the so-called equation of state (EoS) of the star is known (particle
composition). In this assignment we will be studying stars made up of a relativistic
gas of quarks. The EoS of such a system is extremely simple [3, 4],

ϵ= −P B( 4 )/3. (7.15)

Here P and ϵ denote pressure and energy density in units of MeV fm−3, and B = 57
MeV fm−3 is a constant.

Tasks
Write a Fortran 90 program that solves the coupled set of (7.12) and (7.14)
numerically via one or more of the methods described in section 4.6.1–4.6.3 for
given central energy densities ϵ ϵ≡ =r( 0)c ranging from B4.2 to B2000 . The finite-
difference representation of (7.12) and (7.14) is given by

πϵΔ = Δm r r4 , (7.16)2

+ Δ = − ΔP r r P r f r r( ) ( ) ( ) , (7.17)

where

ϵ π κ
κ

≡ + +
−

f r
P r P m

r m r
( )

( )(4 )
(1 2 / )

. (7.18)
3

2

The units in (7.16) to (7.18) are as follows: ϵ = −[ ] MeV fm 3, = −P[ ] MeV fm 3,
=m[ ] MeV, =r[ ] fm.
In the units of = =G c 1, the mass of the Sun is =⊙M 1.47 km. On the other hand

= = ×⊙ ⊙M c M 1.115 829 102 60 MeV so that κ ≡ × ×1.475 10 fm/1.115 829 1018 60

MeV, which relates MeV to fm.

Program design:
1. Choose a step-size of ϵΔ = B /10c and a radial step-size of r = 10 m.
2. Use the Do While construct for the range of central densities ϵΔ( )c and for

the condition of >P r( ) 0.
3. The stellar radius R (in km) and massM (in units of the mass of the Sun, ⊙M )

are to be written, for each central density ϵc, to an external data file.
4. Generate plots for ⊙M M/ as a function of R. Repeat the calculation for

Newtonian stars (i.e. equation (7.13)) and show the outcome in the same
plot. Comment on any differences.

Additional tasks:
Have your program also compute the gravitational redshift of light,

= − −
−⎛

⎝⎜
⎞
⎠⎟z

M
R

1
2

1,
1/2

as a function of mass M and write the results to an external data file.
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Have your program generate a plot of z as a function of ⊙M M/ . Repeat the
calculation for Newtonian stars and show the outcome in the same plot. Comment
on any differences.

7.11 Massive stars
In this homework, you will compute the properties of massive stars. We will assume
that such stars are made of a gas of hydrogen atoms whose thermodynamic
properties are described by the ideal gas equation of state, =PV NkT . For our
purposes it is convenient to write the ideal gas equation of state as

μ=P k T m/ , (7.19)H

where = × −k 8.617 10 11 MeV K−1 denotes the Boltzmann constant and
= × −m 1.674 10H

27 kg is the mass of a hydrogen atom. Assume that the temper-
ature is constant throughout the star (a very poor approximation) and is given by
5000 K. The mass density at the star’s center is 100 g cm−3. Finally, the pressure at
the surface of such stars is typically −10 3 atm2.

Tasks:
Rewrite the Fortran 90 program that you developed to compute the properties of
compact stars (i.e. homework assignment 7.10) such that it computes the massM (in
units of ⊙M ) and radius R (in km) of this star.

Program design:
1. Solve the hydrostatic equilibrium equations (i.e. (7.12) and (7.13)) in the

Newtonian limit and determine by how much general relativity changes the
Newtonian results for M and R.

2. Have your program generate a plot for the pressure profile P r( ) (in atm) and
the particle number density profile ρ =r P r kT( ) ( )/ (in 1/cm3) for this star.

7.12 Isothermal gas spheres
Poisson’s equation for the gravitational potential Φ of a gas sphere is given by

∂ Φ
∂

+ ∂Φ
∂

= − Φ

r r r
a

2
e , (7.20)K

2

2
2 /

where π ρ≡ = × − −a G4 2.91 10 s2
0

6 1 and ≡ −K 10 m s10 2 2. The quantity
ρ = × −2.91 10 kg m0

3 3 denotes the mass density at the center of the sphere. Its
radial dependence is given by

ρ ρ= Φr( ) e . (7.21)r K
0

( )/

2 1 atm = ×1.013 10 Pa5 , 1 Pa = −10 5 bar, 1 bar = 106 dyn cm−2, 1 MeV fm−3 = ×1.6022 1033 dyn cm−2,
1 MeV fm−3 = ×1.7827 1012 g cm−3.
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The initial conditions for the gravitational potential are Φ = =r( 0) 0 and
Φ′ = =r( 0) 0, where the prime denotes partial differential with respect to r. The
finite difference solution of (7.20) reads

Φ = Φ − Φ − Δ Φ − Φ
Δ

+

= …

− −
−

− − Φ −
⎡
⎣⎢

⎤
⎦⎥r

r r
a

i

2
2

e

2, 3,

(7.22)i i i
i

i i K
1 2

2

1

1 2 2 /i 1

with Φ = 00 and Φ = 01 .

Tasks:
Write a structured and well-commented Fortran 90 program which solves (7.22) via
one or more of the methods described in section 4.6.1–4.6.3 for < <r r0 final, where

= ×r 8 10final
8 km.

Program design:
1. Use a radial step size of Δ = ×r 5 104 km.
2. Use the DO WHILE construct for the radial integration. The initial conditions

for Φ are Φ = 00 and Φ = 01 .
3. The results for ρ as a function of r and ρ ρlog ( / )10 0 as a function of

rlog ( /km)10 are to be written to output files.
4. Illustrate your results for ρ r( ) and ρ ρlog ( / )10 0 graphically (two separate

plots).

7.13 Proton in constant electric and magnetic fields
The non-relativistic equation of motion of an electric charge q with mass m moving
in a combined electric and magnetic field is given by

→
=

→
+ → ×

→d v
dt

q
m

E
q
m

v B

The following conditions will produce a trochoidal motion in the x–y plane. Let
→

=
→ →

=
→ → =

→ → =
→

+
→

B B k E E j v v j r i j, , (0) (0) , (0) 0 0 .z y y

Then the x and y components of the acceleration are given by

=d x
dt

q
m

dy
dt

B , (7.23)z

2

2

= −d y
dt

q
m

E
q
m

dx
dt

B . (7.24)y z

2

2

Equations (7.23) and (7.24) can be written as a system of coupled first-order
differential equations,

˙ =x v , (7.25)x

˙ = ¨v x, (7.26)x

˙ =y v , (7.27)y
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˙ = ¨v y. (7.28)y

The input data and initial conditions for this problem are = × −m 1.0 10 27 kg,
= × −q 1.0 10 19 C, = ×E 1.5 10 Vy

6 m−1, =B 0.1z T, =x(0) 0, =y(0) 0, =v (0) 0x ,
= ×v (0) 1.0 10y

6 m s−1.

Tasks:
Write a structured Fortran 90 program which solves (7.25) through (7.28) numeri-
cally via one or more of the methods described in sections 4.6.1–4.6.3 for

< <t t0 final, where = × −t 1.2 10final
6 s.

Program design:
1. Use a temporal step size of Δ = × −t 5.0 10 10 s.
2. Assign numerical values to m, q, Ey, Bz x(0), y(0), v (0)x , and v (0)y in a

SUBROUTINE named input_data.
3. Define a SUBROUTINE named write which writes the values assigned to m,

q, Ey, Bz x(0), y(0), v (0)x , and v (0)y back to standard output.
4. The differential equations (7.25) through (7.28) are to be solved in a

SUBROUTINE named diffeqs.
5. The proton’s position, i.e. y as a function of x (given in meters), is to be

written to an output file.
6. Have your program generate a plot which illustrates the proton’s position

graphically.

7.14 Square voltage pulse applied to a RC circuit
A resistor–capacitor circuit (RC circuit [5]) is an electric circuit composed of
resistors (R) and capacitors (C) driven by a voltage or current source. An RC
circuit consisting of only one resistor and one capacitor is shown in figure 7.3.

A square voltage pulse with a time dependence given by

=
<

= ⩽ ⩽
<

⎧
⎨⎪
⎩⎪

U t
t t

U t t t
t t

( )
0, if

6 V, if
0, if

(7.29)
1

0 1 2

2

is applied to the RC circuit shown in figure 7.3. The circuit current q̇ (=I ) is given by
the equation

Figure 7.3. Illustration of a simple RC circuit.
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+ =R
dq
dt C

q U t
1

( ), (7.30)

where = ΩR 100 and = × −C 4.7 10 5 A s V−1. The initial condition is =q(0) 0.

Tasks
Write a complete Fortran 90 program which solves (7.30) (i.e. computes q t( ) and

I t( )) numerically via one or more of the methods described in sections 4.6.1–4.6.3 for
times < <t t0 final, where =t RC4final , =t 01 , and =t RC22 .

Program design
1. There is NO input from keyboard.
2. Use Δ =t RC /200 for the incremental time step.
3. The results for q t( ) and I t( ) are to be written to an external data file.
4. The mathematical solution of (7.30) for the current I t( ) is given by

¯ = Θ − − Θ −− − − −I t
U
R

t t t t( ) (e ( ) e ( )), (7.31)t t RC t t RC0 ( )/( )
1

( )/( )
2

1 2

where Θ denotes the Heaviside step function given by

Θ = <
⩾

⎧⎨⎩x
x
x

( )
0, if 0
1, if 0

Design your code such that Ī t( ) is computed for < <t t0 final. The result is to
be written to an external data file.

5. Generate a plot which shows I t( ) and Ī t( ) for < <t t0 final.

7.15 Mutual inductance of two coils
Mutual inductance [5] is the basic operating principal of the transformer, motors,
generators, and any other electrical component that interacts with another magnetic
field. Mutual induction is defined as the current flowing in one coil that induces a
current in an adjacent coil. An example is shown in figure 7.4, where current I1
flowing in coil L1 caused a current I2. The differential equations which describes the
flow of the electric currents are given by

˙ + − ˙ =L I R I L I U , (7.32)1 1 1 1 12 2

˙ + − ˙ =L I R I L I 0, (7.33)2 2 2 2 12 1

where =L 1.61 H, =L 0.92 H, =L 0.7212 H, = ΩR 481 , = ΩR 272 , andU = 240 V3.

Tasks:
Write a structured Fortran 90 program which solves (7.32) and (7.33) numerically
via one or more of the methods described in sections 4.6.1–4.6.3 for times

3H = Ω s, F = s Ω−1.
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⩽ ⩽t t0 final, where =t 0.25 sfinal . The initial conditions for the electric currents are
= =I I(0) (0) 01 2 A.

Program design:
1. Choose Δ =t t /250final for the temporal step size.
2. The analytic solutions of (7.32) and (7.33) are given by

¯ = − −− −I t( ) 5 2.5e 2.5e (7.34)t t
1

75 75 /4

¯ = − +− −I t( ) 3.33e 3.33e . (7.35)t t
2

75 75 /4

Use FUNCTIONs to compute the analytic solutions given by (7.34) and (7.35).
3. Use the Fortran 90 module feature to assign values to L1, L12, L2, R1, R2,

and U.
4. The initial value of Ī1 and Ī2 are keyboard input.
5. Generate a plot which shows the numerical as well as the analytic results for

I t( )1 and I t( )2 for ⩽ ⩽t t0 final.
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Appendix A

Summary of Fortran features

This overview of Fortran 90/95 features is presented as a series of tables that
illustrate the syntax and abilities of Fortran 90/95. Comparisons are made to similar
features in the Fortran 77 language. The tables (A.1–A.3) show that Fortran 90/95
has significant improvements over Fortran 77 and matches or exceeds newer
software capabilities found in C++ and Matlab for dynamic memory management,
user defined data structures, matrix operations, operator definition and overloading,

Table A.1. This table shows array operations in programming constructs. Lower-case letters denote scalar
elements or arrays, upper-case letters denote matrices or scalar elements of matrices.

Description Equation F90/F95 operation

Scalar plus scalar = ±c a b = ±c a b
Element plus scalar = ±c a bjk jk = ±c a b

Element plus element = ±c a bjk jk jk = ±c a b

Scalar times scalar = ×c a b = *c a b
Element times scalar = ×c a bjk jk = *c a b

Element times element = ×c a bjk jk jk = *c a b

Scalar divide scalar =c a b/ =c a b/
Scalar divide element =c a b/jk jk =c a b/

Element divide element =c a b/jk jk jk =c a b/

Scalar power scalar =c ab = **c a b
Element power scalar =c ajk jk

b = **c a b

Element power element =c ajk jk
bjk = **c a b

Matrix transpose =C Akj jk C = transpose(A)

Matrix times matrix = ∑C A Bij k ik kj
C = matmul(A B, )

Vector dot vector = ∑c A Bk k k
c = sum( *A B)

c = dot_product(A B, )

doi:10.1088/978-1-6817-4896-2ch8 A-1 ª Morgan & Claypool Publishers 2018
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intrinsics for vector and parallel processors, and the basic requirements for object-
oriented programming. They are intended to serve as a condense quick reference
guide for programming in Fortran 90/95 and for understanding programs developed
by others.

Table A.2. Fortran features to include intrinsic data types, relational operators, and flow control statement.

Description F77 F90/F95

Comment syntax C,* !

byte character character::

integer integer integer::

single precision real real::

double precision double precision real*8::

complex complex complex::

argument parameter parameter::

pointer − pointer::

structure − type::

Equal to .EQ. ==

Not equal to .NE. /=

Less than .LT. <
Less or equal .LE. <=
Greater than .GT. >
Greater or equal .GE. >=
Logical NOT .NOT. .NOT.

Logical AND .AND. .AND.

Logical inclusive OR .OR. .OR.

Logical exclusive OR .XOR. .XOR.

Logical equivalent .EQV. .EQV.

Logical not equivalent .NEQV. .NEQV.

Conditionally execute statements if if

end if end if

Loop a specific number of times do # k=1,n do k=1,n
# continue end do

Loop an indefinite number of times − do while
− end do

Terminate and exit loop go to exit

Skip a cycle of loop go to cycle

Display message and abort stop stop

Return to invoking function return return

Conditional array action − where

Conditional alternative statements else else

elseif elseif

Conditional array alternatives − elsewhere

Conditional case selections if select case

end if end select
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Table A.3. Overview of Fortran 90 intrinsic functions. The names of the arguments specify their type (i.e. X =
Real, DX = Double precision, IX = Integer, Z = Complex).

F90 Function type Definition

SQRT(X) Real X
DSQR(DX) Double precision DX
ABS(X) Real ∣ ∣X
EXP(X) Real eX

DEXP(DX) Double precision eDX

LOG(X) Real Xloge
LOG10(X) Real Xlog10
IFIX(X) Integer Truncate X to an integer
AINT(X) Real Round number
NINT(X) Real Round X to an integer
FLOAT(X) Real Converts IX to real value
CEILING(X) Real Smallest integer >X
FLOOR(X) Real Largest integer <X
MOD(X,Y) Real Division remainder
CONJ(Z) Real Complex conjugate
IMAG(Z) Real Imaginary part
DBLE(X) Double precision Convert X to double precision
AMAX1(X,Y,…) Real Maximum of …X Y( , , )
AMAX0(IX,IY,…) Real Maximum of …IX IY( , , )
AMIN0(IX,IY,…) Real Minimum of …IX IY( , , )
AMIN1(X,Y,…) Real Minimum of …X Y( , , )
MIN0(IX,IY,…) Integer Minimum of …IX IY( , , )
SIN(X) Real Xsin( )
COS(X) Real Xcos( )
TAN(X) Real Xtan( )
ASIN(X) Real Xarcsin( )
ACOS(X) Real Xarccos( )
ATAN(X) Real Xarctan( )
SINH(X) Real Xsinh( )
COSH(X) Real Xcosh( )
TANH(X) Real Xtanh( )
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Appendix B

Plotting using Python

There are many plotting programs and software available to use. In this appendix,
we show how to plot data using the Python programming language. Plotting data
using Python is very useful and versatile and can be performed on multiple platforms
The file extension for a Python program is .py (i.e. filename.py). To compile and
run a Python program, simply type

> python filename.py ↩

Figure B.1 shows a simple graph of some numerical data. The sample Python
code which produced figure B.1 is shown below for your reference.

#! /usr/bin/python3

import numpy as np
import matplotlib.pyplot as plt

# import data:
fx = np.loadtxt('datafile.dat')

# reading in two columns:
plt.plot(fx[:,0],fx[:,1])

# setting horizontal axis
plt.xlim((0,5))

# setting vertical axis
plt.ylim((0,30))

doi:10.1088/978-1-6817-4896-2ch9 B-1 ª Morgan & Claypool Publishers 2018
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# label axis
plt.xlabel('x')
plt.ylabel('f(x)')

# saving plot into a .pdf format
plt.savefig('graph.pdf')
plt.clf()

Note that the symobl ‘#’ is used for comments. The sample code above gives the
basics of plotting data; however, much more can be done using Python such as
configuring axis, including a title, insert special symbols, etc. For example, in
figure B.2, the axes are configured differently with more increments, there is a title
for the graph, and we have inserted a special character on the vertical axis.

The sample code below gives a more detailed description on how to reproduce
figure B.2.

Figure B.1. Plot of the function =f x x( ) 2.

Introduction to Computational Physics for Undergraduates

B-2



#! /usr/bin/python

import numpy as np
import matplotlib.pyplot as plt

#import data
mr = np.loadtxt('mass_radius.dat')

#Note: The .dat file has 3 columns -- e_c, mass, radius
#but the columns are e_c = 0, mass = 1, radius = 2

#specify which columns of data are being imported
plt.plot(mr[:,2],mr[:,1])

#Note: ([x],[y])–>([radius], [mass]) = ([:,2], [:,1])

#title of plot
plt.title('Mass vs. Radius', fontname='cmr10', fontsize=25)

#configure ticks:
plt.minorticks_on()
plt.tick_params(axis='both',which='minor',length=5,width=0.75,labelsize=15)
plt.tick_params(axis='both',which='major',length=10,width=1.0,labelsize=15)

#configure x-axis
plt.xlim((8,16)) #range of x-values
plt.xlabel(r'R [km]', fontname='cmr10', fontsize=16)
plt.xticks(fontname='cmr10', fontsize=15, size=15)

Figure B.2. Mass–radius plot for neutron stars.
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#configure y-axis
plt.ylabel(r'$M/M_\odot$', fontname='cmr10', fontsize=16)
plt.yticks(fontname='cmr10', fontsize=15, size=15)

#save your plot
plt.savefig('mr.pdf')
plt.savefig('mr.eps')
plt.clf()
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Appendix C

Fortran 90 sample program illustrating
good programming

The following is a sample program which illustrates good Fortran 90 programming.

!* module

module constants

implicit none

real, parameter :: pi=acos(-1.) ! define pi

real, parameter :: k_B =8.3145 ! k_B in joule/mol/K

real, parameter :: m_N 2=28. ! Molecular mass of N2 in g/mol

real, parameter :: m_02=32. ! Molecular mass of O2 g/mol

real, parameter :: m_Ar=40. ! Molecular mass of Ar g/mol

end module constants

!* main program

program boltzmann

!*

! Calculate the fraction of molecules in a thermally equilibrated gas

! (uniform temperature T) whose speed is less than a given speed v,

! given by the expression

! v

! f(v,T) = 4*pi*(m/2/pi/k/T)^1.5 * I dv' exp(-m*v'^2/2/xk/T)*v’^2

! 0

!

! Performing the variable transformation v^2/kappa^2=y^2 with

! kappa=(2kT/m)^1/2 leads for f(v,T) to

! v/kappa
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! f(v,t) = 4*pi/pi^3/2 * I dy y^2 exp(-y^2)

! 0

! Given:

! v = Speed (m/sec)

! m_N2 = Mole mass of nitrogen = 28 g/mol

! m_O2 = Mole mass of oxygen = 32 g/mol

! m_Ar = Mole mass of argon = 40 g/mol

! (Air consists of 78%N2, 21% 02, 1% Ar)

! k_B = Boltzmann constant = 8.319 Joule/mol/K

! T = Temperature (K)

use constants

implicit none

real :: nint, m, Tc, v_max, h_v, T, kappa, y_a, y_b, h_y

real :: a, b, sum, y_k, f, fvT

integer :: k, n

! Standard input from keyboard

write(*,*) ’Compute fraction of molecules whose speeds v < v_max:’

write(*,*) ’Enter temperature in Celsius: ’

read(*,*) Tc

write(*,*) ’Enter upper velocity limit in m/sec: ’

read(*,*) v_max

write(*,*) ’Enter integration step size in m/sec (e.g. 1.): ’

read(*,*) h_v

T = 273.15 + Tc ! Compute absolute temperature (in K)

m = (m_N2*0.78 + m_02*0.21 + m_Ar*0.01) / 1000. ! Masses in kg/mol

kappa = sqrt(2.*k_B*T/m)

a=0.

b=v_max

y_a = a/kappa

y_b = b/kappa

h_y = h_v/kappa

nint = (y_b-y_a)/h_y

n = ifix(nint)

sum = 0.

Boltzmann_integral: do k=1, n-1
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y_k= y_a+h_y*float(k)

sum = sum + f(y_k)

end do Boltzmann_integral

fvT = h_y * (f(y_a)+f(y_b)+2.*sum) / 2.

fvT = 4.*pi * fvT / sqrt(pi)**3

! Output the result

write(*,*) ’Results: ’

write(*,*) ’ Average molecular mass (g/mol): ’, m*1000.

write(*,*) ’ Temperatuer of gas (Celsius): ’, Tc

write(*,*) ’ Velocity (m/sec) ’, v_max

write (*,20) fvT*100.

20 format(’ f(v,T) (in %) ’,3x,f6.2)

stop

end program boltzmann

!* function sub-program

function f(y)

!*

implicit none

real :: f, y, y2

y2 = y*y

f = y2*exp(-y2)

return

end function f
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