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Preface

There are more than 20 million chemicals in the literature, with new materials being
synthesized each week. Most of these molecules are stable, and the 3-dimensional
arrangement of the atoms in the molecules, in the various solids may be determined
by routine x-ray crystallography. When this is done, it is found that this vast range of
molecules, with varying sizes and shapes can be accommodated by only a handful of
solid structures.

This limited number of architectures for the packing of molecules of all shapes
and sizes, to maximize attractive intermolecular forces and minimize repulsive
intermolecular forces, allows us to develop simple models of what holds the
molecules together in the solid. In this volume we look at the origin of the molecular
architecture of crystals; a topic that is becoming increasingly important and is often
termed, crystal engineering. Such studies are a means of predicting crystal structures,
and of designing crystals with particular properties by manipulating the structure
and interaction of large molecules. That is, creating new crystal architectures with
desired physical characteristics in which the molecules pack together in particular
architectures; a subject of particular interest to the pharmaceutical industry.
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Introduction: Crystal engineering

Chemists are busy people; there are over 20 million chemicals known in the
literature, with many new molecules being synthesized each and every week. Most
of these molecules are stable enough to be studied as they change state from solid to
liquid, or solid to gas as the temperature is varied. And this huge number of
molecules come in an appropriately wide variety of shapes and sizes. However, when
it comes to how this huge diversity of molecules are packed together in solids, under
the influence of the attractive electromagnetic forces that exist between all molecules,
it is found that there are only a limited number of ways of ordering the stable
packing of these variously sized and shaped molecules. This limited number of
architectures for the packing of molecules to maximize attractive intermolecular
forces and, consequently, minimize repulsive intermolecular forces, is the subject of
this volume. We will look at the molecular architecture of crystals.

Looking at intermolecular interactions via a consideration of the detailed
3-dimensional arrangements of the molecules that constitute the solid, is not the
usual route for studying intermolecular forces. However, the stable structure of a
solid is the result of all possible interactions between the molecules that constitute
that solid; that is, binary-interactions plus tertiary-interactions plus… N-body
interactions, and I hope that my choice of the molecules reveals something of the
contribution of these various terms that make up the intermolecular potential to the
observed solid structure.

As the Nobel laureate Francis Crick said, ‘If you want to understand function,
study structure’, and we will therefore consider the structure or internal architecture
of a number of materials as determined by x-ray and neutron crystallography. Some
of the 27 materials that I discuss in this volume have interesting and unusual bulk
properties; for example, high-temperature superconductivity, birefringence, or laser
activity. The data required to construct these 3-dimensional structures is stored in
databases such as the Cambridge Structural Database (www.ccdc.cam.ac.uk), which
presently contains the structure of over 875 000 covalently-bonded crystals; with
new structures being added continually. These structures represent data accumu-
lated by studies on single-crystals and on powders over the period 1914 (when the
first crystal structure was published) to the present day.

In our study, we will concentrate on the weak, non-bonding intermolecular forces
that lead gases to condense into liquids, and liquids to transform into ordered solids
as the temperature is lowered, or the pressure increased. It is these weak forces that
cause covalently bonded organic compounds to crystallize in the manner they do,
and it is the study and comparison of these crystal structures that allow us to
comprehend the nature of the underlying intermolecular forces.

In one of the earlies conjectures about the architecture of solids; the Roman poet
and philosopher Titus Lucretius Carus (c 99–c 55 BCE) said in his De Rerum
Natura, ‘Those things, whose textures fall so aptly contrary to one another that
hollows fit solids, each in the one and the other, make the best joining’. This
qualitative observation of how macroscopic objects, or jigsaw puzzles fit together
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has its modern counterpart in the observations of the Russian physicist Alexander I
Kitaigorodsky who wrote, ‘The projections of one molecule get into the “hollows”
of adjacent molecules, so that the molecules are closely packed with the minimum
[number of] voids between them’; that is, as the crystallographer Jack Dunitz has
said, ‘As far as the packing energy is concerned, empty space is wasted space’. Thus,
we observe that molecules pack so as to avoid empty space; but why? What forces
the molecules together to minimize intervening vacuum? This is what we will explore
in this volume.

At the beginning of the last century, hardly anything was known about the
arrangement of molecules in crystals. Indeed, the external point group symmetries of
crystals had been determined from the examination of the symmetry of their external
faces. As far as the internal structure of the crystals was concerned, the concept of
space lattices had been introduced in the 18th century to explain the constancy of
interfacial angles in differently shaped crystals of the same compound. The geo-
metric theory of space lattices was complete by the end of the 19th century,
culminating in the almost simultaneous recognition that there are only a finite
number (230) of ways of combining elements of point symmetry with translational
symmetry to form space groups. The mathematical theory of crystals may have been
complete, but nothing was known about the underlying structure of the repeating
units within those complex shapes.

This all changed with the discovery of x-ray diffraction by crystals. The first x-ray
studies were of simple ionic crystals of high symmetry, such as the alkali halides
(cubic), but it was not long before complex minerals, such as mica, KAl3Si3O10(OH)2
(monoclinic) were being studied. With metals, the x-ray diffraction studies of the
American physicist Albert Hull showed that the arrangement of atomic nuclei in
many metallic crystals corresponds to the close-packed structures of spheres.

But for all the technical advances, questions about how organic molecules
attracted or repelled one another took longer to be asked, and still longer to be
answered. Such quantitative relationships as we have to explain the condensed
phases came from experimental observations and ideas about the shape and size of
molecules, although the nature of the molecular entities and of the forces acting
among them were only approximately known. Today we still talk about van der
Waals molecular volumes and van der Waals radii, and also about van der Waals
forces without defining too closely what they mean.

In contrast to inorganic compounds, even simple organic compounds typically
form crystals of low symmetry. Thus, crystals of anthracene examined by x-ray
diffraction in 1920, were found to be monoclinic and thus intractable by the methods
then in use. According to folklore, the idea for the ring structure of benzene came to
German chemist Friedrich August Kekulé (1829–1896) in a daydream of 1865, in
which he envisioned a snake eating its own tail. Kekulé’s daydream led him to
propose that the structure contained a six-membered ring of carbon atoms with
alternating single and double bonds. But questions still remained; for example, in
what configuration was this ring? Was it puckered, bowed, or flat? Did the molecule
have three distinct double bonds? Most chemists subscribed to the theory that
benzene was flat, but it was not until British crystallographer Kathleen Lonsdale
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(1903–1971) began her research in 1929 that the mystery was finally solved. Unlike
benzene, hexamethylbenzene has just one molecule per unit cell, making it easier to
distinguish the orientation of the molecule’s central benzene ring. Lonsdale’s x-ray
crystallography experiments unequivocally demonstrated that the benzene ring was
not only flat, but also had an evenly distributed cloud of electrons; there were no
single or double carbon–carbon bonds. Because the benzene ring is the foundation of
aromatic compounds, Lonsdale’s discovery made it possible to advance the
chemistry of aromatic molecules, and laid the basis for the modern form of organic
chemistry, and for molecule and crystal design. As Lonsdale’s head of department,
Christopher K Ingold commented on her discovery, ‘The calculations must have
been dreadful… but one structure like this brings more certainty into organic
chemistry than generations of activity by us [physicist] professionals’.

In quantum mechanics, there is no such thing as empty space. As far as the
physics of intermolecular interactions is concerned, what matters is the nature and
strength of the fields of force generated by the electrons and nuclei. In inorganic
structures, the strong Coulombic fields exerted by the cations and anions were
comparatively easy to understand, and atomic cohesion in such crystals seemed to
present no fundamental problems. Similarly, as an obvious extension, it was soon
realized that the interaction between molecules with permanent dipole moments,
such as water, is subject to analogous Coulombic fields and may be attractive or
repulsive, depending on the mutual orientation of the molecules. The nature of the
cohesive forces among neutral non-polar molecules remained elusive for a longer
time. For example, no theory based on classical mechanics and electrostatics could
possibly reproduce the lattice energy of methane or the inert gases. This may be a
small effect, but it is undoubtedly present, as witnessed by the condensation of these
gases and the solidification of the liquid at sufficiently low temperature. The
mysterious missing term, the dispersion energy, had to await the advent of quantum
mechanics and Fritz London who first described dispersion interactions. Thus,
explaining weak intermolecular interactions and pointing out that for these short-
range forces to be effective, molecules must be in close contact; bumps into hollows,
with as little empty space as possible. It was Kitaigorodsky’s achievement, in the
early-1960s, to put these concepts on a systematic footing beginning with a critical
survey of organic crystal structures.

X-ray crystallography is not a difficult or obscure branch of science; on the
contrary it is now a routine procedure, and measurements are today automated and
the data analysis has become a black-box technology. This volume seeks to show
that the beautiful and fascinating, detailed 3-dimensional pictures of closely-packed
molecules tells us a great deal about molecular interactions, and the bulk behavior of
solids. However, before we start exploring crystal architecture we will consider some
of the basics of chemical structure, bonding and the nature of intermolecular forces.
First, we will look at how atoms bond to form molecules and how electrons are
distributed in those molecules. The reader will then discover that considerations of
symmetry play a central role in classifying the structure of solids as well as in
rationalizing the properties of crystalline materials.
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Attentive readers will have noticed that it is barely a century since the very first
crystal structure determination using x-ray diffraction, 1914. Not surprisingly, this
anniversary generated a number of review articles. One of the most interesting is to be
found at http://cen.xraycrystals.org/introduction.html, and comprises a set of highlights
of crystallography over the last century as chosen by Chemical&Engineering News, the
news magazine of the American Chemical Society.
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