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Preface

When I was invited by Institute of Physics Publishing to write this book a little over
a year ago, I went through a process I am sure is common to many writers. After a
week of deliberation, I said yes. Some 24 hours later I wondered what was going
through my mind when I had said yes. Why on the Earth did I agree to do it?
I thought my days of writing large bodies of work started and stopped almost twenty
years ago with completion of my PhD thesis. Compiling list of references, sourcing
and preparing figures, and sitting for hours on end rewriting the same paragraph
over and over and not being happy with it; I must have been mad. However, after
one or two false starts I finally got going, and must say, as time progressed have
slowly enjoyed the process more and more. It has been made considerably easier by
discussions with my colleagues and the manufacturers, who have helped enormously
and provided valuable input to this text. Special thanks go to Helen Jones, at NPL,
Raphaela Scharfschwerdt at FEI and Diane Stewart at Zeiss.

I would like to thank all my colleagues at the the National Physical Laboratory
who over the last ten years have presented me with many scientific challenges, often in
areas where I had little or no knowledge. If ever there was an illustration of the power
and diversity of the focused ion beam (FIB) it is that in those ten years I have worked
with people in almost every division of the laboratory, from quantum metrology,
through material science, to dimensional metrology and analytical science.

Indeed, conveying this diversity and the incredible usefulness of these instruments
has been my main purpose in writing this book. Firstly, I would like to introduce this
wonderful instrument, the FIB, to new and potential users, and to show existing
users the additional areas where their instruments may find use. Very few instru-
ments offer such a huge range of diverse applications. Secondly, such is the speed of
development of the instruments and associated techniques that although previous
(and extremely thorough) texts exist in the subject, they do not cover the latest
developments involving new ion sources and methods. Finally, I would like to make
the reader aware that some of these methods are not foolproof, that errors exist and
are often overlooked. It is only by understanding the limitations of these processes
that we truly learn how useful they are. This is not to say that the FIB is a poor
technique by any means. Many of the topics covered in this book simply could not
be carried out at all without the FIB instrument and many will get even better in
terms of both throughput and accuracy as our understanding of them gets better,
and creative people develop the instruments and methods further.

David C Cox
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Chapter 1

Metrology

1.1 What is metrology?
Metrology is the science of measurement and can have several meanings, depend-
ing on whom or what it is being applied to. Broadly, these can be classified in three
areas. Firstly, it is used to create legal definitions of quantities such as weights and
measures, applied to our every day purchases of items and the environment around
us. Secondly, all industrial activity is underpinned by metrology. Components
manufactured in different parts of our increasingly globalised world must be
compatible with components made and assembled elsewhere. These compatibilities
might comprise more than simple dimensional agreement, but may also be
dependent on other measures such as voltage or chemical composition. Thirdly,
fundamental metrology is concerned with developing new methods of measure-
ment, establishing agreed standards, definitions and units of measurement and
providing traceable measurements from which standards can be created and
applied. It is fundamental metrology that underpins all of the other metrological
activities. The field of fundamental metrology is extremely broad, often complex,
and sometimes quite abstract. A 2004 definition stressing the huge range to which
metrology can be applied was offered by the International Bureau of Weights
and Measures (BIPM) ‘The science of measurement, embracing both experimental
and theoretical determinations at any level of uncertainty in any field of science and
technology’ [1].

All scientific disciplines have their own well-developed, and mostly agreed, use of
language and terminology and in this respect metrology is no different. An example
of this in the metrological context is the use of the word ‘uncertainty’ in the
preceding paragraph. One thing common to all metrologists is that when we discuss
our measurements we tend not to emphasise the absolute values we measure, but we
stress the uncertainty (or error) of our measurement as we strive to improve the
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science of the measurement itself. We can never be certain of our measurements
except in very special cases, such as being certain that no electrical current will flow
in an open circuit. As soon as we close the circuit and begin to take measurements we
must take into account the precision, accuracy, reliability and (un)certainty
associated with taking the measurement [2]. Beginning with precision, we could
think of this in simple terms, such as how many decimal places do we have on our
meter? However, this approach is incorrect and in fact our precision is also closely
linked to how reproducible our measurements are. If we find we take many
measurements of the same thing and they agree to three decimal places very well
on a system capable in principle of measuring more, we can be confident of only the
three decimal place measurement and this determines our precision, with the
variation below this contributing to our uncertainty. Turning to accuracy, even if
our measurement system agrees very well on identical measurements it does not
necessarily translate that it is accurate. To determine accuracy we need to compare
our instrument readings to a standard, traceable to one of the national measurement
institutes. Reliability is closely linked to precision, but it is also a measure of the
accuracy over time. Finally, the uncertainty of our measurement is a product of all
of these things and as we make measurements we see variation from sample to
sample, day to day and instrument to instrument. This dispersion in the measure-
ments is our measurement uncertainty, with the relative uncertainty being given by
the measurement uncertainty divided by the measured value. For readers for whom
these concepts are new, a downloadable collection of measurement guides including
an introduction to measurement uncertainty can be found at [3].

Throughout this book many examples will be given, or referenced, that quote
values and units of measurement. However, the main aim of this text is not to
emphasise or assign great importance to these values, but to make the reader
aware of the measurement possibilities of using the focused ion beam (FIB) and the
likely sources of error and uncertainty and the limits of this very versatile range
of instruments.

1.2 Metrology in the FIB
Based on these metrological definitions and key terms, what exactly do we mean by
nanometrology? If one thinks of dimensional metrology, and applies the standard SI
units and prefixes, a simple definition is the measurement of features from 1 × 10−9 m
up to 1 × 10−7 m, this range being in agreement with commonly held definitions of
what constitutes a nanoparticle, for example. However, we can use FIB to aid us in
the measurement of many other properties, and as we shall see in chapter 4, when
using FIB for the measurement of residual stress it is possible to determine stress
levels of 1 × 109 Pascal, 18 orders of magnitude from nano! Limiting ourselves only
to dimensional metrology is also complicated, for example, when we produce a
transmission electron microscope (TEM) sample with FIB and analyse it in a state-
of-the-art TEM we can easily resolve columns of atoms and their spacing, some two
orders of magnitude smaller than a nm. This could be argued to be metrology
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carried out in the TEM, of course, but the sample was still prepared by FIB and it is
often the best sample preparation method to enable the measurement to be
undertaken. For these reasons, when we refer to nanometrology in the FIB we do
mean dimensional metrology on the scale of nm, but we can extend our definition to
include using the ion beam to either image, expose, or create features or structures
that are on the scale of nm. At the upper limits, some of these things will extend
beyond 1 × 10−7 m, and may in one or more dimensions be tens of μm, but the FIB
instrument is more than capable of working at the nm length scale and is commonly
found working in this regime.

As we have alluded to, practising metrology with focused ion beam instruments
is complicated by their high degree of versatility. We can use the instrument to
make a direct measurement, we can use it to prepare a sample for measurement in
another instrument, or we could even use it to make or modify a completely new
instrument or component that can in turn be used to measure something
completely unrelated to FIB (figure 1.1). Even in the first case the range of
measurements we can make is large due to the varieties of this type of instrument.
For example, few FIB systems these days are supplied without a scanning electron
microscope (SEM) column, further increasing our measurement capability.
However, a detailed discussion on scanning electron microscopy is beyond the
scope of this book, where the reader need only be aware that very large numbers of
FIB systems also incorporate SEM columns sharing the same vacuum, detectors
and sample handing system. We will only discuss electron beam microscopy where
necessary to assist in the discussion of the measurement taking place. For an
excellent introduction to the SEM and SEM-based techniques, the reader is
directed to [4]. Additional third-party-vendor equipment can also take these
instruments beyond simple imaging by the addition of x-ray detectors and electron
backscatter diffraction (EBSD) cameras. However, while both x-ray emission and
backscatter diffraction signals are normally generated by electron beam, the FIB is
used to produce the polished faces and slices for both techniques and the
preparation of these will be covered in later sections. Finally, the long established
and historic use of Ga as the source of ions is being added to with noble gas sources
using light elements, He and Ne, largely for imaging, and additionally heavier
elements from plasma-based sources such as Xe. These plasma sources offer
significantly larger volume ion milling, owing to their high emission currents and
the high sputter yield of the heavy ions, bringing FIB into new areas previously
deemed beyond the scope of Ga source instruments. Similarly, although currently
less common, metallic alloy source based instruments are available, often combin-
ing both light and heavy element options in the same instrument.

We can consider three distinct length ranges in FIB microscopy, the size of
the sample to be studied, the size of the field of view of our interest in the sample
and the resolution at which we can obtain information from the region of interest.
Samples studied in the FIB can range from only nm in the case of dispersed
nanoparticles, up to 150 mm diameter at the larger end of most laboratory systems.
In figure 1.1 we can see that the typical length scale over which a focused ion
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beam might be used covers some five orders of magnitude, from nm through to
hundreds of micrometers, depending on the type of instrument and application.
Although the maximum field of view can approach one mm, the instrument is
likely to be used to resolve or expose detail with a resolution of a few nm on areas
up to around 100 μm at the upper end. As an example, the single most common
application for FIB is as a tool to reveal the internal structure of samples. In cases
such as this we may be removing tens of μm of material, but we are only interested
in imaging a few nm of a thin film to check for uniformity. For example, figure 1.2
shows a simple cross-section cut into a gallium nitride (GaN) film deposited on
silicon (Si) wafer.

Figure 1.1. Selected examples of the length scales applicable to focused ion beam based metrology. The
horizontal axis indicates a typical scale of the feature created or imaged by FIB. The vertical axis indicates the
likely range of measurement activity. In most cases this is a simple length scale in metres, but the
nanofabrication activities in particular may create devices where other properties are measured, such as
magnetic flux or temperature. Text and boxes in black indicate an activity carried out directly in the FIB
instrument, white denotes an activity where samples are prepared in a FIB and then measured in another
instrument (or with an SEM column on the instrument) and red denotes an activity where devices or artefacts
are created in FIB but used for other metrology.
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The simplest measurement we can perform is based on imaging, utilising
secondary electron or secondary ions ejected from the sample by the energetic ion
beam, where the highest spatial resolution can be below 1 nm. Focused ion beam can
additionally be used to measure material properties beyond dimension, such as
composition, texture and residual stress. Furthermore, we can construct or modify
devices that can in turn also be used to measure dimension, magnetic or electrical
properties. We can also construct artefacts with sufficient precision for them to be
used to calibrate other equipment. Table 1.1 describes some of the areas we will
discuss in later chapters. These topics will be divided into two broad categories;
materials science applications targeted exclusively at understanding materials
properties and composition, and FIB-fabricated devices and artefacts that may
also have some materials science applications, but can be used in a far wider
measurement context.

Figure 1.2. Ion-milled cross-section of polycrystalline GaN film deposited on Si wafer. The FIB has been used
to remove the material in the foreground, revealing the film thickness and texture. There is also a protective
strap of ion beam deposited platinum directly above the sectioned area. The section is 20 μm wide, 3 μm deep
and the film is approximately 500 nm thick with individual GaN grains of less than 50 nm. The image is an ion
beam induced secondary electron image. The inset shows a higher magnification secondary electron image
(from the primary electron beam).
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