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IOP Concise Physics

Detecting the Stochastic Gravitational-Wave Background

Carlo Nicola Colacino

Chapter 1

A brief history of gravitational radiation

1.1 Introduction
More than 100 years ago, in 1915, Einstein published his general theory of relativity
(GR). This theory changed dramatically our understanding of the gravitational
force, or, to say it in modern parlance, interaction. Gravitation was no longer seen as
a force, but rather as the curvature of spacetime itself. Newton’s theory of
gravitation, that had withstood the test of time for almost 300 years, became just
an approximation of a radically different theory. It must be stressed that, although
many physicists struggled to understand the novelty of Einstein’s theory and
Einstein himself did not win the Nobel Prize in Physics for GR—he was awarded
the prize in 1921 for his pioneering work on quantum mechanics and his explanation
of the photoelectric effect and, precisely because of the hostile reception by the
physics community to his GR, did not collect the prize himself—100 years there-
after, Nature has always said a sound and clear yes to all predictions of GR. No
experiment so far has even planted the smallest seed of doubt concerning the validity
of GR. GR—the most beautiful of the physical theories because of its elegant and
consistent mathematical formulation and richness—ranks amongst the most exper-
imentally confirmed scientific theories, a milestone in our understanding of the
Universe, its evolution and its structure. GR predicts the existence of ripples of
spacetime that propagate with the speed of light, the so-called gravitational waves
(GWs). This specific prediction was verified for the first time at the end of the last
century in an indirect way: two radioastronomers, Hulse and Taylor, observed for
more than 20 years the rotation period of the binary system PSR1913+16, a system
made up of two neutron stars rotating around their centre of mass, and noticed that
the period of rotation changed with time. They attributed this change to the energy
loss due to the emission of GWs and showed that their data were in perfect
agreement, within the experimental error, with the predictions of GR, actually one
of the best agreements ever found in science between theory and data. Hulse and
Taylor were awarded the Nobel Prize in 1993. On 11 February 2016 the Laser
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Interferometric Gravitational Observatory (LIGO) in the US and the European
project Virgo announced the first direct detection of GWs, GW150914 [1]. This was
an historical moment. Two massive black holes had merged and the event’s
gravitational-wave signal detected. The event that was announced on 11 February
but had been recorded on the instruments on 14 September 2015, therefore 14
September has internationally become Gravitational-Wave Day. Three subsequent
detections of the same kind of event have followed since: GW151226 [2], GW170104
[3] and GW170814 [4]. As a result of these detections the Physics Nobel Prize 2017
was awarded to three LIGO scientists: Kip S Thorne (Caltech), Rainer Weiss (MIT)
and Barry C Barish (Caltech). Another breakthrough was about to come: on 16
October 2017 it was announced that thanks to triangulation made by the three
detectors, a GW signal, GW170817, had been recorded and its source localised in
the sky, which made it possible to observe the event with electromagnetic detectors
as well. The conclusion was reached that the radiation had been produced by the
merging not of black holes but of neutron stars. Multimessenger astronomy, i.e.
combining GW and electromagnetic observations, was officially born on 17 August
2017, the day the signal was detected by the interferometers [5].

1.2 Sources of gravitational radiation
The gravitational radiation that was detected on 14 September and announced on 11
February was produced by the coalescence of a binary system made up of two
supermassive black holes of roughly 36 and 29 solar masses, respectively. The signal
was named GW150914, from the date it was observed. Such coalescences are
described by scientists as a three-step process and gravitational radiation is produced
in all three different phases: first, as the two objects rotate around one another there
is the inward spiralling of the two compact objects; as they get closer and closer they
reach the merging phase—mergers of compact objects are the most violent events in
the history of the Universe after the Big Bang itself—and finally there is the
ringdown of the single resulting black hole. The coalescence of a compact binary was
the most likely candidate for the first detection and remains the main source of
gravitational radiation in the eyes of scientists, both theoreticians and data-analysts
alike. GR describes rather well the first and third stage, i.e. the spiralling and the
ringdown. Theoretical waveforms are known for these two phases and can give
information on a number of physical parameters such as the masses of the compact
objects. The strong gravitational fields produced during the merging phase cannot be
described too accurately by GR but can be tackled by using numerical relativity.
Data analysis is greatly enhanced by the use of the matched filtering technique.

Hulse and Taylor’s source was of a different kind: pulsars are stars that emit
pulses at radio frequencies at very precise, regular intervals as they rotate. Again, the
waveform is very well known from GR. It is just a sine wave in the Solar System
barycentre, a coordinate system at rest with respect to the Sun. The orbital motion of
the Earth around the Sun and the rotational motion of the Earth around its own axis
modulate the frequency and this makes data analysis slightly more complicated than
in the previous case of the compact binary coalescences.
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Supernovae, or bursts, are the third kind of source, and perhaps the most difficult
to detect, for two reasons. First, we have no precise waveform of the gravitational
signal such events could produce, so we cannot rely on matched filtering.
Furthermore, the effects of supernovae on our detectors might look remarkably
similar to instrumental noise, so it is hard to tell them apart. Therefore, bursts are so
hard to detect.

The stochastic gravitational-wave background is something entirely different.
With the acronym SGWB we describe all the ‘random’ sources, random because
they arise from a large number of ‘unresolved’, independent and uncorrelated
events. We are not talking about quantum physics here: the individual events that
make up the SGWB are perfectly deterministic. It is their unresolved superposition
that produces a random signal, exactly as the superposition of many broadcasting
stations in the same frequency band sums up to confusion noise on our radios. Such
a signal can be treated and described only statistically. This type of background can
be the result of processes that took place in the very early Universe, shortly after the
Big Bang, or could have arisen more recently during structure formation. It is almost
impossible to detect with present-day technology, nevertheless it is perhaps the most
interesting source: from a theoretical point of view, as we have already mentioned,
the cosmological background, the one produced immediately after formation, when
the Universe was perhaps less than a picosecond old, could—if detected—shed light
on all mysteries of cosmology as well as high-energy physics. Our knowledge about
the Universe comes entirely from electromagnetic observations. Our most detailed
view of the Universe stems from the cosmic microwave background radiation
(CMBR), an isotropic electromagnetic radiation that decoupled from matter around
5 × 105 years after the Big Bang. We have no consistent and established quantum
theory of the gravitational interaction, but reliable theoretical estimates seem to
suggest that if current detectors reveal an SGWB component of cosmological origin,
then it will carry with it a picture of the Universe as it was about 10−22 s after the Big
Bang. That would be a tremendous leap forward in our knowledge and therefore
scientists refer to the SGWB of cosmological origin as the ‘Rosetta Stone’ of
cosmology and of particle physics. From a more practical point of view, we know
that there is a stochastic component hidden in every data set we record with our
detectors. When we look for any of the previously listed sources, we are really
searching for a needle in a haystack. This is sometimes very rewarding, as in the case
of the first detection, but it can also be very frustrating and is in any case
computationally very intensive. On the other hand, as we will see in this book,
any time two GW detectors operate and take data simultaneously, there will be an
SGWB component in our data. This component might be very well hidden below the
noise floor, but we know it is there and this knowledge lets us gain further insight
into the SGWB.

We will start by recalling how GWs arise in GR, then calculate the radiation from
a rotating binary source with given parameters. We will also rederive Hulse and
Taylor’s result for the 1913+16 binary pulsar. We will then proceed to characterise
mathematically the SGWB, discussing cosmological as well as astrophysical sources.
A large section will also be devoted to the data analysis problem for the SGWB.
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1.3 Gravitational waves from general relativity
Einstein’s GR is a very complex theory, where gravitation is seen not as a force but
rather as the curvature of spacetime itself. The essence of GR can be summarised in
the famous words by John Archibald Wheeler ‘matter tells space how to curve, space
tells matter how to move’ (the sentence would be perfect, however, if the word
‘space’ were to be changed into ‘spacetime’). The mathematical formulation of this
idea is given by the GR field equations:

π− =μν μν μνR g R GT
1
2

8 (1.1)

μνR is the so-called Ricci tensor, obtained by contraction from the Riemann, or
curvature, tensor ≡μν μαν

αR R . R is the the Ricci scalar = μν
μνR g R . These two

quantities, well known in Riemannian geometry, are purely geometrical, they
measure the intrinsic curvature of the spacetime. μνT is the covariant form of the
energy–momentum tensor, i.e. a quantity related to matter. This distinction is,
however, not so clear-cut, as can be seen by taking the trace of both members from
which we can recast equation (1.1) as

⎛
⎝⎜

⎞
⎠⎟π= −μν μν μνR G T g T8

1
2

(1.2)

The equations are highly nonlinear in the ten unknowns μνg .
GWs are solutions to these equations in the weak-field approximation: we need to

expand Einstein’s equations around the flat space Minkowski metric, therefore, we
put

η= +μν μν μνg h (1.3)

with ∣ ∣ ≪μνh 1 and expand equation (1.1) to linear order in μνh , which we treat as a
quantity which transforms as a tensor under Lorentz transformations. The resulting
theory is called the linearised theory. To first order in μνh the Ricci tensor becomes

∼ ∂ Γ − ∂ Γ + ◯μν λ μν
λ

ν λμ
λ( )R h( ) (1.4)(1) 2

where the Christoffel symbol, as it is called in the framework of GR, or the affine
connection, as it is known by differential geometry mathematicians is

ηΓ = ∂ + ∂ − ∂ + ◯μν
λ λα

μ αν ν αμ α μνh h h h
1
2

( ) ( ) (1.5)2

To first order in h, we must raise and lower all indices using the flat Minkowski
tensor ημν and not the full tensor μνg , that is,

η η η≡ ∂ ≡ ∂ □ ≡ ∂ ∂ν
μ μ

ν
μ μν

ν
μν

μ ν
ϱ

ϱh h (1.6)2

With this understanding, equations (1.4) and (1.5) yield the first-order Ricci tensor:
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≡ ∂ ∂ + ∂ ∂ − □ − ∂ ∂μν λ μ ν
λ

λ ν μ
λ

μν μ ν λ
λR h h h h

1
2

( ) (1.7)(1) 2

and equation (1.2) becomes

π∂ ∂ + ∂ ∂ − □ − ∂ ∂ =λ μ ν
λ

λ ν μ
λ

μν μ ν λ
λ

μνh h h h GS16 (1.8)2

where

η= −μν μν μνS T T
1
2

(1.9)

As in electromagnetism, we can exploit a gauge symmetry of the linearised theory to
get rid of spurious degrees of freedom. In fact, if we change coordinates

ξ→ = +μ μ μ μ′x x x (1.10)

μνh transforms to lowest order as

ξ ξ→ ′ ′ = − ∂ + ∂μν μν μν μ ν ν μh x h x h x( ) ( ) ( ) ( ) (1.11)

so, if ξ∣∂ ∣μ ν is of the same order of magnitude as ∣ ∣μνh then the condition ∣ ∣ ≪μνh 1 is
preserved and therefore this is a diffeomorphism of the theory.

We can choose a coordinate transformation such that

Γ =μν
μν
λg 0 (1.12)

This is called the harmonic, or De Donder gauge. Some texts call it also Lorenz
gauge in analogy to electromagnetism. To first order it implies that:

∂ = ∂μ ν
μ

ν μ
μh h

1
2

(1.13)

In this gauge, the linearised field equations (1.8) become

π□ = −μν μνh GS16 (1.14)2

The solution to this equation is given by the retarded potential:

��
��

∫= ′
′

| − ′|
μν

μνh x t G x
S x t

x x
( , ) 4 d

( , ) (1.15)4

In order to understand the physical content of equation (1.14) let us solve it in the
region far away from the source, i.e.

□ =μνh 0 (1.16)2

The most general solutions to equation (1.16) can be written as plane-wave
solutions:
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�� �� �� �� ��⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ω ω= − · + − − ·μν μν μν
*h x t e t k x e t k x( , ) exp i( ) exp i( ) (1.17)

This satisfies equation (1.16) if

=μ
μk k 0 (1.18)

and equation (1.13) if

=μ ν
μ

μ ν
νk e k e

1
2

(1.19)

The matrix μνe is obviously symmetric and is called the polarisation tensor.
This tensor is symmetric in its indices, so it has + = · =n n( 1) 2 4 5 2 10

independent components. The four relations (19) reduce this number to six, but of
these six only two represent physically significant degrees of freedom. As we have
seen, under a coordinate transformation ξ→ +μ μ μx x the metric η +μν μνh trans-

forms into a new metric ′η +μν μνh , where ′μνh is given by equation (1.11). If we
choose:

ξ ξ ξ= − −μ μ
μ

μ μ
μ

μ*( ) ( )x k x k x( ) i exp i i exp i (1.20)

then equation (1.11) gives

′ = ′ + ′ −μν μν λ
λ

μν λ
λ*h e k x e k xexp(i ) exp( i ) (1.21)

with

ξ ξ′ = + +μν μν μ ν ν μe e k k (1.22)

It is easy to see that μνe and μν′e represent the very same physical situation for
arbitrary values of the four parameters ξμ, so, of the six independent components of

μνe , only − =6 4 2 represent physical degrees of freedom.
To illustrate this point and to make our notation uniform to that of many books

and articles on GWs, let us consider, as an example, a wave travelling in the
z-direction, i.e. with wave vector

= = = = >k k k k k0 0 (1.23)1 2 3 0

In this case equation (1.19) gives

+ = + =e e e e 031 01 32 02

+ = − − = + + −e e e e e e e e
1
2

( )33 03 03 00 11 22 33 00

These equations allow us to express ei0 and e22 in terms of the other six μνe :

= − = − = + = −e e e e e e e e e; ;
1
2

( ); (1.24)31 01 02 32 03 33 00 22 11

When the coordinate system transforms according to equation (1.20) these six
independent components transform according to equation (1.22):
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′ = ′ =e e e e11 11 12 12

ξ ξ′ = + ′ = +e e k e e k13 13 1 23 23 2

ξ ξ′ = + ′ = −e e k e e k2 2 (1.25)
33 33 1 00 00 0

We see therefore that it is only e11 and e12 that have an absolute physical

significance. We can arrange that all components of ′μνe vanish except for ′e11 and

′e12 and ′ ′= −e e22 11 by performing a coordinate transformation with

ξ ξ ξ ξ= − = − = − =e
k

e
k

e
k

e
k

; ;
2

;
2

(1.26)1
13

2
23

3
33

0
00

The distinction between the different components of the polarisation tensor becomes
clear if we study how μνe changes when we subject the coordinate system to a
rotation about the z-axis, a Lorentz transformation of the form:

θ θ= =R Rcos ; sin1
1

1
2

θ θ= − =R Rsin ; cos2
1

2
2

= = =ν
μR R R1 other 0 (1.27)3

3
0
0

Since this transformation leaves μk invariant, the only effect is to transform μνe into

′ =μν μ
α

ν
β

αβe R R e (1.28)

Using the relations (24) we find that:

θ′ = ±± ±e eexp( 2i ) (1.29)

θ′ = ±± ±f fexp( i ) (1.30)

′ = ′ =e e e e; (1.31)
33 33 00 00

where

≡ ∓ = − ∓±e e e e ei i (1.32)11 12 22 12

≡ ∓ = − ±±f e e e ei i (1.33)31 32 01 12

In general any plane wave ψ which is transformed by a rotation of any angle θ about
the direction of propagation into
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ψ θ ψ′ = hexp(i ) (1.34)

is said to have helicity h. We have shown that a GW can be decomposed into parts e±
with helicity ±2, parts f± with helicity ±1 and parts e00 and e33 with helicity zero.
However, it is only the parts with helicity ±2 that have physical significance.

We can write the tensor μνh as

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
=

−μνh
h h
h h

0 0 0 0
0 0
0 0
0 0 0 0

(1.35)11 12

12 11

This is for a wave travelling along the z-direction. = −h h11 22 is also referred to in
literature as +h , whereas = −h h12 21 is called hx.

We can understand this argument in greater depth by exploring the analogy with
electromagnetism. Maxwell’s equations in empty space, together with the harmonic
gauge condition, are:

□ = ∂ =μ μ
μA A0; 0 (1.36)2

A plane-wave solution is of the form:

= + −α α β
β

α β
β*A e k x e k xexp(i ) exp( i ) (1.37)

where
=α

αk k 0 (1.38)

=α
αk e 0 (1.39)

In general αe would have four independent components but the condition (1.39)
reduces this number to three, just as equation (1.19) would reduce the number of
independent μνe components from ten to six. Furthermore, without changing the

physical fields
→
E and

→
B and without leaving the Lorenz gauge, we can change αA by

a gauge transformation:

→ ′ = + ∂ Φμ μ μ μA A A

ξ ξΦ = − −λ
λ

λ
λ*x k x k x( ) i exp(i ) i exp( i )

in analogy with equations (1.20) and (1.21). The new potential can be written:

′ = ′ + ′ −α α β
β

α β
β*( )A e k x e k xexp i exp( i )

ξ′ = −α α αe e k

The parameter ξ is arbitrary, so of the algebraically three independent components
only − =3 1 2 are physically significant. To identify the two significant components
of αe we may consider a wave travelling in the z-direction, with αk given by equation
(1.23). The condition that =μ

μk e 0 allows us to determine e0:
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= −e e0 3

The preceding gauge transformation leaves e1 and e2 invariant, but changes e3 into

ξ′ = −e e k3 3

hence ′e3 can be set equal to zero by choosing ξ = e k3 and so it is only e1 and e2 that
carry physical significance. To work out the meaning of these two components we
can subject the electromagnetic wave to the rotation defined by equation (1.27). The
polarisation vector is then changed into:

′ =α α
β

βe R e

and therefore

θ′ = ±± ±e eexp( i )

′ =e e3 3

where

≡ ∓±e e ei1 2

Thus an electromagnetic wave can be decomposed into parts with helicity ±1 and
parts with helicity zero. However, the only physically significant ones are those with
helicity ±1, just as for GWs they are ±2. This is what we mean when we say that
electromagnetism and gravitation are carried by waves of spin 1 and spin 2,
respectively.

It is a general fact that waves that propagate with the speed of light have only two
helicity states. The hypotetical carrier of the gravitational interaction, the graviton,
carries spin 2.

1.4 Background reading
My mathematical treatment of GR follows closely that of Steven Weinberg’s
Gravitation and Cosmology (Wiley 1972): although written 44 years ago, and with
no exercises to solve, it remains a masterpiece, where the physical reasoning goes
perfectly hand-in-hand with the mathematical formalism. Another excellent, and
more modern book, about GR is Introduction to General Relativity by Lewis Ryder
(Cambridge University Press 2009). As it concerns the SGWB, I am very grateful to
Bruce Allen, whose lectures on the SGWB during a summer school back in 1999 in
the beautiful location of Lake Como inspired me to devote my energies to the
SGWB. Allen’s lectures were published in the Proceedings of the Les Houches on
Astrophysical Sources of Gravitational Waves, eds Jean-Alain Marck and Jean-
Pierre Lesota (Cambridge University Press 1996).
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