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Preface

The inception of relativity as a dynamical theory of spacetime was a major
breakthrough of curiosity driven basic research, and it had important ramifications
both for particle physics and for our understanding of the structure and evolution of
the Universe on the largest scales. Training in special relativity is therefore an
integral part of the education of every aspiring physicist, and training in general
relativity is indispensable for every student who wishes to pursue graduate studies in
theoretical physics, astrophysics, or cosmology.

Furthermore, only about half a century after the inception of relativity, the
technological relevance of relativity emerged in the analysis of satellite signals and
orbits. This was not noticed by the public yet, and both special and general relativity
continued to be widely perceived as interesting theories with significant scientific
impact, but little practical relevance. This perception started to change about three
decades later, in the mid-1980s, when the global positioning system (GPS) became
available for civil purposes and more people learned about the immediate relevance
of relativity for the operation of GPS.

The wide ranging scientific implications and the modern technological relevance
of relativity imply that learning relativity is one of the highlights in the training of
physics students. In the North American physics curriculum this usually proceeds in
two or three stages: a first introduction to relativistic mechanics is often provided as
part of a second year course on the foundations of modern physics, while aspects of
relativistic electrodynamics are discussed as part of a third or fourth year course on
electromagnetism. This usually concludes the mandatory training in relativity for
physics students and is limited to special relativity. A deeper introduction to special
relativity along with an introduction to general relativity is then provided through a
fourth year elective course or an introductory graduate course. The present book
should be helpful at every stage of this traditional three-step approach to general
relativity. However, it should also help to accelerate and streamline the process of
learning relativity by unifying the introduction to special and general relativity in a
single concise book, which can be used as a basis of a one-semester course taking
students all the way from the foundations of special relativity to the derivation of the
Schwarzschild metric and particle motion in general relativity. Furthermore, the
immediate impact of relativity for time-keeping and signal transmission would make
it prudent for engineering colleges to include introductory relativity courses as
electives for students in electrical, computer, and aerospace engineering. It is
therefore timely to make the theory of relativity more easily accessible to all
students in science and engineering. This book intends to serve that purpose through
its concise presentation and by making special relativity accessible to first year
students, while the general relativity part should be understandable to third year
students.

The book evolved from notes for the special relativity sections of my second year
modern physics course, and from the lecture notes for my course on general
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relativity, gravitation, and cosmology. The latter course is offered biannually for
third or fourth year undergraduate students and beginning graduate students.

The first three chapters do not require any preparation beyond a standard first
year physics course. They can therefore be used as a reference for a first introduction
to special relativity towards the end of the first year physics course, or as part of the
second year modern physics course. Students who learn special relativity as part of
their third or fourth year electromagnetism courses should also find these chapters
useful.

Chapters 4-9 require that students have taken second year courses on vector
calculus and mechanics, and second or third year courses on partial differential
equations and electrodynamics. In North American universities, students in physics
and engineering have usually acquired the necessary skills in vector calculus,
intermediate mechanics, and partial differential equations after the first term of
their third year, and they usually also take an electrodynamics course during their
third year. The present book can therefore serve as a textbook for a course which is
already offered in the second term of the third year, thus providing both students
and instructors with a lot of flexibility whether they want to learn or teach general
relativity in third year, fourth year, or at the introductory graduate level.
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Rainer Dick

Chapter 1

Why relativity?

1.1 The Galilei invariance of Newtonian mechanics

Before we learn relativity, we all live our lives with an implicit prejudice: In
agreement with our everyday experience, we assume that every person always
measures the same time (up to conversions between time zones, but let’s just assume
that we all use Greenwich time). This prejudice can also be denoted as an assumption
of universal time. If an astronaut on the space station and an astronomer on Earth
observe the brightening and subsequent fading of a supernova, then we naively think
that they would assign the same time interval between the occurrence and the fading
of the supernova, and this point of view was in agreement with the science of
mechanics for over two centuries.

To explain the connection with mechanics, we need to recognize that the
assumption of universal time implies certain coordinate transformation equations
between observers which move at constant velocity v relative to each other: Suppose
two observers, Frank and Mary, each use their own coordinate system {x, y, z}
(Frank) and {x’, y’, z'} (Mary), to describe the ‘event’ in figure 1.1. We also assume
that Frank and Mary met at time # = ' = 0 and that Mary moves with velocity
v = (v, 0, 0) = ve, relative to Frank, where e, denotes the unit vector in the x-
direction. The assumption ¢’ = ¢ then implies that we should be able to read off from
figure 1.1 that Frank’s and Mary’s coordinates for the event are related according to

X=x-vt,y =y,z =z, (1.1)

because after time ¢ = ¢’ elapsed, Mary has moved a distance vt = v’ away from
Frank in the x-direction, such that her x’-coordinate to the event is smaller than
Frank’s x-coordinate by the amount vz.

This simple example illustrates already that the world is four-dimensional, even
without relativity: We need four coordinates ¢z, x, y, z to localize an event in space
and time. If we explicitly remind ourselves that we use the assumption of universal

doi:10.1088/2053-2571/aaf173chl 1-1 © Morgan & Claypool Publishers 2019
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Figure 1.1. Two frames with relative velocity v = (v, 0, 0) = ve, and the assumption of universal time: # = ¢'.

time, the transformation equations (1.1) become the Galilei transformation for
relative motion with velocity v = ve,,

t'=t,x'=x—-vt,y =y,z =z. (1.2)

However, it is crucial to recognize that our inference of the equations (1.1) from
figure 1.1 used the assumption of universal time, ' = ¢, in two ways: The assumption
t = t' implies the further assumption that both observers see the same momentary
picture 1.1 when the times ¢ and ¢’ have elapsed on their clocks, and therefore we also
infer a third assumption, viz that both observers assign the same distance vector with
length vz = v’ to their separation at times ¢ and #’. However, all this is wrong! Once
we are forced to surrender the assumption of universal time, we also have no more
reason to believe that Frank’s perception of the two frames at time ¢ equals Mary’s
perception at time ¢/, and the distance vectors vt and v¢’ will also not be the same any
more. Therefore a basic mistake in figure 1.1 is the inclusion of the equation vt = vt’
and the corresponding identification of the distance vectors at times ¢ and ¢'. We will
discuss this in detail in chapter 3.

However, for now let’s stick with our naive assumption ¢ = ¢’ and see how this
seemed to be confirmed by Newtonian mechanics.

Suppose the ‘event’ in figure 1.1 is a moving particle of mass m at time . If this
particle moves under the influence of a force F(x, ¢) (e.g. due to a local electric field
which also changes with time), then Newtonian mechanics says that the particle
satisfies the equation of motion

d? 1.3
mﬁx(t) = F(x(t), 1) (1.3)

in the {¢, x} frame. However, the Galilei transformation
=1t x'(t') = x(t) — vt, (1.4)

into the {¢’, x’'} frame then implies that the particle also satisfies Newton’s equation
in that frame with a local force F'(x'(¢'), t'),

1-2
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d2 ! ! d2 ’ ! ! !
mdt’zx (t)= mﬁx(l) = F(x(t), t) = F(x'(¢') + ot', V) (1.5)
=F'(x'(1), 1),
with the transformation law for forces between the two reference frames,
F'(x',t)=F(x,1). (1.6)

If we also include a rotation R of the coordinate axes and constant coordinate shifts
T and X (which implies v = R-v and X' = R- X for the relative velocity
components and spatial shifts assigned by the two observers),

V=t-T,x()=R-(x(t) —vt —X), x(t) =RT - (x'(t) +0't’ + X", (1.7)

then equations (1.5) and (1.6) become

d2
mdt,2 x'(t)=F'(x'(t), t) (1.8)

and’
F(x',¢)=R- F(x, ). (1.9)

Equation (1.8) with the constant coordinate shifts 7"and X included is denoted as
an inhomogeneous Galilei transformation, whereas the transformation (1.4) is
denoted as a Galilei boost.

Equations (1.3) and (1.8) express the form invariance (or invariance for short) of
Newton’s equation under Galilei transformations. If Newtonian mechanics holds in
a reference frame {7, x}, then it also holds in every reference frame {z’, x’} which
relates to the frame {7, x} through a Galilei transformation (1.7).

How did physicists then learn that, in spite of the invariance of Newtonian
mechanics under Galilei transformations, the assumption of universal time is wrong?
We will not explain relativity theory in the remainder of this chapter (that requires a
bit more preparation and has to wait until chapter 3 and the following chapters), but
we will review the observations and developments which made relativity unavoid-
able in sections 1.2 and 1.3.

1.2 The need for special relativity

There were theoretical and experimental observations in the 1880s that something

was amiss with Galilei transformations:
1. The laws of electromagnetism are not invariant under Galilei transforma-
tions, i.e. if Maxwell’s equations hold in the {z, x} coordinate system, they

"We will learn in due course that a transformation law F'(x') = F(x) of a quantity F(x) under coordinate
transformations x — x’ is denoted as a scalar transformation. Equation (1.6) tells us that forces transform like
scalars under Galilei boosts (1.4). However, equation (1.9) tells us that forces transform like vectors under the
general Galilei transformation (1.7).
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would not hold in the {#', x'} coordinate system if the coordinates are related
by a Galilei transformation® (1.7).

This is in striking difference to the Galilei invariance of Newton’s
equation: For Newtonian mechanics the two frames are completely equiv-
alent, but for electrodynamics they are inequivalent!

2. If Galilei transformations would be a correct description of the coordinate
transformations, Frank and Mary would observe different speeds for light fronts:

Suppose Frank triggers a light flash. In his frame this will generate a
spherical light front moving with speed ¢ in all directions.

For Mary this light front would move with speed ¢ — v in x-direction,
with speed ¢ + v in (—x)-direction, and with speed ¢ orthogonal to the x-axis,
if the transformation equations (1.2) between their coordinates were correct.
However, this prediction was shown to be false in the Michelson experiment’.

Both of these problems were solved by Einstein’s inception of the special theory of
relativity* (STR).
1. STR explained the unexpected and very puzzling outcome of the Michelson
experiment. Michelson had observed that the Earth’s motion around the Sun
at a speed of about 30 km s~ does not affect the speed of light observed in a
terrestrial laboratory, irrespective of the direction in which the light wave
travels. Although Einstein seemed to have been primarily motivated by the
symmetry properties of electrodynamics, his work solved the Michelson
problem by implying that different observers measure time and space
intervals in such a way that they both find the same value ¢ for the speed
of a light wave in vacuum, irrespective of their mutual relative velocity v.
Specifically, this implies that space and time intervals in one coordinate
system satisfy ¢2Az?> = Ax? if and only if they satisfy in another coordinate
system the condition ¢*A¢?> = Ax’?, if the other coordinate system moves
with a constant velocity v relative to the first system. For relative velocity in
x-direction, v = (v, 0, 0) = ve,, this yields transformation laws for the
coordinate intervals and coordinates

Ax' = y(Ax — fcAt), Ay’ =Ay, Az = Az, (1.10)

cAt = y(cAt — fAx), (1.11)

and

2Voigt W 1887 Nachrichten von der Kiniglichen Gesellschaft der Wissenschaften und der Georg-Augusts-
Universitdt zu Gottingen 1887 (2) 41. This paper analyzes the symmetries of the electromagnetic wave equations
and essentially contains the first incarnation of the Lorentz transformations (up to a scaling transformation).
3Michelson A A and Morley E W 1887 Am. J. Sci. 34 427; Michelson A A and Morley E W 1887 Philos. Mag.
24 463.

“Einstein A 1905 Ann. Phys. 17 891.
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X =yx-X=-pct-T)], y=y-Y, zZ=z-2, (1.12)

ot =yle(t = T) — B(x — X)), (1.13)

where f = vlc,y = (1 — p*>)"V?> and X, Y, Z, T are constant coordinate shifts.

Einstein’s work provided an important re-interpretation and logical
completion of previous work by Lorentz and Poincaré on the Michelson
experiment, and the transformations (1.10), (1.11) and (1.12), (1.13) are
known as Lorentz and Poincaré transformations, respectively.

Einstein’s reasoning implied that the vacuum speed of light ¢ is absolute,
but time is not absolute! The relativity of time for different observers, and the
corresponding relativity of the notions of space and time, provided the
motivation for the name relativity theory for the new theory.

2. STR explained why the wave equations derived from Maxwell’s equations
are invariant under Lorentz transformations instead of the classically
expected Galilei transformations. It was then demonstrated by Minkowski
a few years after the invention of STR that the Lorentz transformations are
in fact symmetries of the full Maxwell’s equations”.

1.3 The need for general relativity

Explaining the universality of the vacuum speed of light and the symmetries of
Maxwell’s equations were outstanding successes, and yet Einstein had to face two
new challenges as a consequence of STR:

1. While STR explained the symmetry properties of Maxwell’s equations, the
very successful theory of Newtonian gravity was now incompatible with the
basic symmetry principles of the theory.

2. The problem of ‘proper’ and ‘improper’ coordinate frames, which had been
around in mechanics ever since the publication of Newton’s Principia, now
appeared in a different guise: STR had to assume that there exists a fixed
four-dimensional flat spacetime and ‘inertial frames’, i.e. coordinate systems
which move uniformly through this spacetime. The basic equations of STR
and electrodynamics were assumed to hold in these distinguished coordinate
systems, and the challenge was to identify these special coordinate systems.

For the latter problem physicists ever since Newton referred to the rest frame of
the ‘fixed stars’ as an example of an inertial frame, and any other frame that was
related to this frame through Galilei transformations (mechanics) or Lorentz
transformations (STR) was also considered to be an inertial frame.

In modern terms the rest frame of the ‘fixed stars’ would rather be denoted as the
CMB frame (cosmic microwave background frame) or the cosmic rest frame.

>Minkowski H 1908 Nachrichten von der Kéniglichen Gesellschaft der Wissenschaften zu Géttingen,
Mathematisch-Physikalische Klasse 1908 (1) 53.
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Nevertheless, before the inception of the general theory of relativity (GTR) we
encounter two (supposedly equivalent, but actually inequivalent) definitions of
inertial frames:

1. The cosmic rest frame and any non-rotating frame which moves with
constant velocity v relative to the cosmic rest frame are inertial frames.
2. A coordinate system in which every trajectory x(z) of a free particle satisfies

d’x

>
is an inertial frame. In different terms: the motion of a free particle is inert in
an inertial frame (hence the designation ‘inertial frame’).

(1.14)

The supposed (or naively presumed) equivalence of these definitions assumes that
free particles satisfy equation (1.14) in the cosmic rest frame. However, the Universe
expands, and therefore the cosmic rest frame turns out not to be an inertial frame,
because free particles do not satisfy an equation like (1.14) in this frame®.

The second definition by itself, without reference to a specific example of an
inertial frame, is actually meaningless unless we can find a definition of ‘free particle’
which does not require the notion of inertial frames to start with (if we want to use
(2) as a definition of inertial frames, we better not try to define free particles with a
statement like ‘free particles are particles which have constant velocity, i.e.
d*x/dt*> = 0, in an inertial frame”).

General relativity resolved this whole conundrum with the definition and
presumed importance of inertial frames in the following way:

1. Inertial frames are actually not required for the proper formulation of the
laws of nature. With a proper understanding of differential geometry, the
laws of nature assume the same form in any coordinate system.

2. As a consequence of 1, we can give a definition of free particles which works
in every coordinate system and does not rely on the notion of inertial frames.

3. Indeed, inertial frames can be defined as coordinate systems where the
equation of motion of free particles takes the simple form (1.14), but these
inertial frames turn out to have limited extension in spacelike directions.

In a nutshell, general relativity provided a way to define free particles without
reference to inertial frames, but at the same time also deprived inertial frames of
their prominent role and identified limitations to the construction of inertial frames.

®In more precise terms, there is no global coordinate system for the Universe where all free particles satisfy
an equation like (1.14) everywhere at all times. However, if we study only phenomena on time scales which
are very small compared to the lifetime 7o ~ 13.8 billion years ~4.35 x 10!7 s of the Universe (i.e. if we do
anything but large scale astronomy or cosmology), then a corresponding spacelike slice through the cosmic rest
frame with small duration Az < fy provides a very good approximation to an inertial frame as long as we stay
away from neutron stars or black holes.
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The equivalence of inertial and gravitational mass helped Einstein to solve the
problem to reconcile gravity and relativity’. To understand this equivalence, recall
that Newton® had solved the problem to find a dynamical explanation of Kepler’s
laws of planetary motion (Kepler 1609, 1619) by relating forces to acceleration, and
by assuming his famous force law for the gravitational forces between masses m and
M at locations r; and r,:

d? d? mM  r,—r
m—ri=—-M——r, =
" '’

(1.15)

| — V2|2 [y — 1y .

This contains a peculiarity which appears as a mere coincidence in classical
mechanics: The acceleration d’r/dt*> of the mass m is independent of m, since the
‘inertial mass’ m in F = ma cancels the ‘gravitational mass’ m in GmM /|r; — rof*.

Einstein realized in a famous ‘Gedankenexperiment’ (‘thought experiment’) that
this implies a striking similarity between gravitational forces and inertial forces
(pseudo-forces). Assume an observer standing in an elevator at rest in a homoge-
neous gravitational field, with the gravitational acceleration g pointing downwards.
If the observer releases two different objects with different masses, both objects will
hit the floor of the elevator at the same time, since they experience the same
acceleration g. Now assume that the elevator is far away from gravitational fields,
but accelerated upwards with acceleration a = —g. Again the observer releases the
two objects, which now appear to be accelerated downwards with acceleration g,
and again would hit the elevator floor simultaneously.

The outcome in both experiments is identical, and the observer cannot decide
whether the force acting on the two objects was due to an external homogeneous
gravitational field, or whether the force was an inertial force due to the observer’s
accelerated motion.

Einstein concluded that locally we cannot separate gravitational forces from
inertial forces. But if gravitational forces are so similar to pseudo-forces, maybe
they should not be considered as genuine forces at alll Maybe what we perceive as
motion of particles under the influence of gravitational forces is actually only the
motion of free particles through the curved geometry of spacetime!

The stage was set for the invention of general relativity: Gravity is a manifestation
of the geometry of spacetime.

Note that the equivalence of inertial and gravitational mass plays a key role in
Einstein’s Gedankenexperiment: If inertial and gravitational mass were different,
then two different objects would experience different accelerations in a homogeneous
gravitational field, but they would still appear to undergo the same acceleration —a
relative to an accelerated coordinate frame. The observer could then unambiguously
distinguish between gravitational forces and inertial forces.

"For a historical account of the development of mechanics, see Mach E 1902 The Science of Mechanics: a
Critical and Historical Account of Its Development 2nd edn (Chicago: Open Court Publishing Company) (Engl.
transl. T J McCormack).

8 Newton assembled all the pieces of the puzzle in several works from 1666 to 1687. This is also discussed in
Mach E 1902 loc. cit.
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Einstein’s identification of motion in ‘gravitational fields’ as free motion through
curved spacetime explains the coincidence of inertial and gravitational mass: The
mass of a particle should have no impact on its force free motion, and therefore it
should have no effect on the free motion which we perceive as motion in a
gravitational field. And we will also see that it naturally solved the problems which
Einstein was facing as a consequence of STR: The need to extend STR to a
geometric theory of a curved spacetime automatically incorporates gravity, and it
deprives inertial frames of their prominent role.

We will see this explicitly in chapters 7-9. However, first we need to acquire a
better understanding of geometry and of special relativity.
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