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Preface

In recent years there have been great advances in the applications of topology and
differential geometry to problems in condensed matter physics. Concepts drawn
from topology and geometry have become essential to the understanding of several
phenomena in the area. Physicists have been creative in producing models for actual
physical phenomena which realize mathematically exotic concepts, and new phases
have been discovered in condensed matter in which topology plays a leading role.
An important classification paradigm is the concept of topological order, where the
state characterizing a system does not break any symmetry, but it defines a
topological phase in the sense that certain fundamental properties change only
when the system passes through a quantum phase transition.

The main purpose of this book is to provide a brief, self-contained introduction to
some mathematical ideas and methods from differential geometry and topology, and
to show a few applications in condensed matter. It conveys to physicists the bases for
many mathematical concepts, avoiding the detailed formality of most textbooks.
The reader can supplement the description given here by consulting standard
mathematical references such as those listed in the references.

There are many good books written about the subject, but they present a lot of
material and demand time to gain a full understanding of the text. Here, I present a
summary of the main topics, which will provide readers with an introduction to the
subject and will allow them to read the specialized literature.

Very little in this text is my original contribution since the goal of the book is
pedagogy rather than originality. It was mainly collected from the literature. Some
time ago, I used to teach differential geometry in a graduate course about classical
mechanics and wrote a book (in Portuguese) on the topic. Now, I have adapted that
material and included ideas that appeared in the last years, to write the present book.

Chapter 1 is an introduction to path integrals and it can be skipped if the reader is
familiar with the subject. Chapters 2–4 are the core of the book, where the main
ideas of topology and differential geometry are presented. In chapter 5, I discuss the
Dirac equation and gauge theory, mainly applied to electrodynamics. In chapters
6–8, I show how the topics presented earlier can be applied to the quantum Hall
effect and topological insulators. I will be mainly interested in the technical details
because there are already excellent books and review articles dealing with the
physical aspects. In chapter 9, I treat the application of topology to one- and two-
dimensional antiferromagnets and the XY model. The framework presented here
can also be used to study other systems, such as topological superconductors and
quasi-metals. The appendices, although important for the application of differential
geometry to some problems in condensed matter, are more specific.
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A Brief Introduction to Topology and Differential Geometry in

Condensed Matter Physics

Antonio Sergio Teixeira Pires

Chapter 1

Path integral approach

1.1 Path integral
Aconvenient tool to treat topological quantum effects in quantum field theory is the path
integral technique, and in this chapter, I am going to present the basic ideas (following
mainly Ashok 1993). For more details I refer the reader to the references (Altland and
Simons 2010, Fradkin 2013, Kogut 1979, Schwartz 2014, Tsvelik 1996, Wen 2004).
Readers familiarwith the subject can skip this chapter. I will start by establishing the path
integral approach for the single particle in quantum mechanics in one dimension. The
formalism can then be easily generalized to arbitrary spatial dimensions.

In path integral formalism the aim is to calculate the probability amplitude that a
particle that starts at the position xi at a time ti ends up at a position xf at a time tf,
with tf > ti. From quantum mechanics we know that this is given by the time-
evolution operatorU t x t x( , ; , )f f i i which in the Heisenberg picture is written as

=U t x t x x t x t( , ; , ) , , , (1.1)f f i i f f i i

where ∣ 〉x t, is a coordinate basis for every time t. We divide the time interval
between the initial and final time into N infinitesimals steps of length

Δ =
−

t
t t

N
. (1.2)f i

Any intermediate time can be written as = + Δt t n t,n i with n = 1, 2, …, (N − 1).
Considering time ordering from left to right, we can write equation (1.1) as (see
figure 1.1)

∫= … 〈 ∣ 〉

… ∣
Δ → →∞

− − −

− − − −

U t x t x dx dx x t x t

x t x t x t x t

( , ; , ) lim , ,

, , , , .
(1.3)t N0,

f f i i N f f N N

N N N N i i

1 1 1 1

1 1 2 2 1 1
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We know that

=x t e x, , (1.4)iHt

where I have set ℏ = 1, and we should remember to put it back if we are going to
perform calculations. Therefore, we can write

∣ = =
=

− −
−

−
− −

−
− Δ

−

− −x t x t x e e x x e x

x e x

, ,

.
(1.5)n 1n n n n

it H it H
n n

i t t H
n

n
i tH

n

1 1
( )

1

1

n n n n1 1

Using the result

∫ π
= − −x H x

dp
e H x p

2
( , ), (1.6)ip x x

2 1
( )1 2

we find

∫ π
∣ =− −

− − Δ +
−

−( )x t x t
dp

e, ,
2

, (1.7)n n n n
n ip x x i tH

x x
p

1 1
( )

2
,n n n

n n
n1

1

where to get a Weyl ordered Hamiltonian I wrote H using the mid-point
prescription. Taking equation (1.7) into (1.3), and identifying x0 = xi, =x xn f we
can write

⎜ ⎟
⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥
⎫
⎬
⎭

∫

∑

π π
= … …

− − Δ +

Δ → →∞

=

−

−
−

U t x t x dx dx
dp dp

i p x x tH
x x

p

( , ; , ) lim
2 2

exp ( )
2

, .
(1.8)

t N

n

N

0,

1

f f i i N
N

n n n
n n

n

1 1
1

1
1

Let us now consider a Hamiltonian of the type

= +H x p
p
m

V x( , )
2

( ). (1.9)
2

tf

t

ti
x

Figure 1.1. A discrete time axis and a path in quantum mechanics.
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This Hamiltonian covers a wide class of problems; however, some important
applications, as will be shown in the next section, do not fit into this framework.
Using equation (1.9) in (1.8) leads to

⎜ ⎟ ⎜ ⎟
⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎤
⎦
⎥⎥
⎫
⎬
⎭

∫

∑

π π
= … …

Δ −
Δ

− − +

Δ → →∞

=

−

− −

U t x t x dx dx
dp dp

i t p
x x

t

p

m
V

x x

( , ; , ) lim
2 2

exp
2 2

.
(1.10)

t N

n

N

0,

1

f f i i N
N

n
n n n n n

1 1
1

1
2

1

Performing the momentum integrals using the result for Gaussian integration

∫ π=
−∞

∞
− +dpe

a
e

2
, (1.11)

ap
bp b

a2 2

2 2

we obtain

⎜ ⎟

⎜ ⎟ ⎜ ⎟
⎪ ⎪

⎪ ⎪

⎛
⎝

⎞
⎠

⎧
⎨
⎩

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎤
⎦⎥
⎫
⎬
⎭

∫

∑

π
=

Δ
…

Δ −
Δ

− +

Δ → →∞

=

−

− −

U t x t x
m
i t

dx dx

i t
m x x

t
V

x x

( , ; , ) lim
2

exp
2 2

.

(1.12)
t N

n

N

0,

1

f f i i

N

N

n n n n

/2

1 1

1
2

1

Taking → ∞N , while keeping − = Δt t N t( )f i fixed, we can substitute the sum by
an integral

∫∑Δ →
=

t dt, (1.13)
n

N

1
t

t

i

f

and write equation (1.12) as

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥
⎫
⎬
⎭∫ ∫ ∫= − =U t x t x Dx i dt m

dx
dt

V x Dxe( , ; , ) exp
1
2

( ) , (1.14)f f i i
t

t
iS x

2
[ ]

i

f

where

⎛
⎝⎜

⎞
⎠⎟∫=S x dtL x

dx
dt

[ ] , , (1.15)
t

t

i

f

L is the classical Lagrangian, S[x] is the action, and we have introduced the
integration measure

∫ ∫∏
ξ

=
→∞ =

−

D x t
dx

[ ( )] lim , (1.16)
N

n

N

1

1
n

with ξ π= Δi t m( 2 / )1/2. In some cases, more care must be applied in taking the
continuum limit, but here I am considering only the essential details. Equation (1.14)
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is the path integral for the probability amplitude of a particle in quantum mechanics.
Feynman’s idea of introducing the technique was that a particle going from A to B
takes every possible trajectory, with each trajectory contributing with a complex
factor eiS.

Each path is weighted by its classical action, there are no quantum mechanical
operators in the path integral. The quantum effects are present by the fact that the
integration extends over all paths and is not just the subset of solutions of the
classical equations of motion.

Following the same procedure, we can show that in quantum field theory with a
Lagrangian density ϕ ϕ∂μL ( , ) (where μ = t x y z, , , ) the amplitude transition from
the state ϕ r( )i to ϕ r( )f is given by

∫ ϕ ϕD r t e( , ) , (1.17)iS t r[ ( , )]

where the action is now given by

∫ϕ ϕ ϕ= ∂μS d x L[ ] ( , ) (1.18)4

In the path integral expression, the integration is performed over all possible paths in
which ϕ, which at an initial time took the configuration ϕ r( )i , evolves at the final
time tf into the configuration ϕ r( )f . The field ϕ in condensed matter is in general an
order parameter for a system, such as a superconductor or a ferromagnet.

1.2 Spin
One important application of the path integral approach in condensed matter is in
magnetic systems. However, in the integrand of the path integral formalism one has
an exponential of the classical action. But the spin is a fundamentally quantum
object and the mechanics of a classical spin cannot be expressed within the standard
formulation of Hamiltonian mechanics. We must resort to the coherent state
formalism. I will illustrate this for the spin 1/2 case. For a spin 1/2 particle, we
have only two states ∣ 〉sz , = ±s 1z , with zero energy, and s t( )z is not a continuous
function. To use the path integral approach, we use the coherent states ∣ ⃗〉n where ⃗n is
a unit vector and ∣ ⃗〉n describes different states. ∣ ⃗〉n is an eigenstate of the spin operator
in the ⃗n direction: ⃗ ∣⃗ ⃗〉 = ∣ ⃗〉n S n S n. .

We write

⃗ = = ( )n z
z
z , (1.19)1

2

with ∣ ∣ + ∣ ∣ =z z 11
2

2
2 . The total phase of z is not determined, so that we can write

⎛
⎝⎜

⎞
⎠⎟

θ
θ

=
ϕ−

z
e cos( /2)

sin( /2)
, (1.20)

i
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where θ ϕ( , ) are the polar coordinates of ⃗n . The coherent states ∣ ⃗〉n are complete, so
that we can write

⎜ ⎟⎛
⎝

⎞
⎠∫ π

⃗ ⃗ ⃗ =d n
n n

2
1 0
0 1

. (1.21)
2

Now we can calculate the amplitude 〈 ⃗ ∣ ∣ ⃗ 〉n U t n( , 0)2 1 that a state ∣ ⃗ 〉n1 at a time t = 0
evolves to the state ∣ ⃗ 〉n2 at time t. Since H = 0, we have U(t, 0) = 1. Inserting

∫ π
⃗ ⃗ ⃗d n

n n
2

, (1.22)
2

into 〈 ⃗ ∣ ⃗ 〉n n2 1 we obtain the path integral

∫ ∏
π

〈 ⃗ ∣ ⃗ 〉 = ⃗ 〈 ⃗ ∣ ⃗ 〉…〈 ⃗ ∣ ⃗ 〉〈 ⃗ ∣ ⃗ 〉
→∞ =

n n
d n t

n t n t n t n t n t nlim
( )

2
( ) ( ) ( ) ( ) ( ) (0) . (1.23)

N
i

N

N
1

i
2 1

2

2 1 1

Now

δ δ⃗ ∣ ⃗ = +n t n z t z( ) (0) ( ) (0), (1.24)

but, δ δ =+z t z t( ) ( ) 1, so we can write

⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

δ δ δ δ δ
δ

δ

δ δ δ δ

⃗ ∣ ⃗ = − − = − −

= − ∂
∂

≈ − ∂
∂

+ +

+ +

n t n z t z t z z t
z t z

t
t

z t
z t

t
t z

z
t

t

( ) (0) 1 ( )[ ( ) (0)] 1 ( )
( ) (0)

1 ( )
( )

exp ,

(1.25)

which leads to

⎛
⎝⎜

⎞
⎠⎟∫ π

⃗ ∣ ⃗ = ⃗ ⃗n t n t D
n t

e( ) ( )
( )

2
, (1.26)iS n t

2 1
2 [ ( )]

(where D is the measure) with the action

∫⃗ = ∂
∂

+S n t i dtz
z
t

[ ( )] . (1.27)
t

0

This is an interesting result, despite H = 0, we have obtained a non-zero action. The
term eiS is here purely a quantum effect and is called the Berry phase. Berry phases
will be treated in more detail in chapter 6. We can also write equation (1.27) as

∫θ ϕ θ ϕ= − ∂
∂

S dt
t

( , )
1
2

(1 cos ) . (1.28)

If we have a spin ⃗S in a constant magnetic field ⃗ = − ⃗B Bn , and the ground state
energy is denoted by E0, the action in a time interval T is given by −E0T. Let us
consider what happens when the orientation of ⃗B changes slowly in time, writing
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⃗ = − ⃗B Bn t( ). The ground state now evolves as ∣ ⃗ 〉n t( ) , and the amplitude probability is
given by

⎡
⎣⎢

⎤
⎦⎥∫⃗ − ⃗ ⃗ ⃗ =n i dtB t S n eexp ( ). . (1.29)

T
iS

0

Inserting many equation (1.22) terms into the time interval [0, T ] we find

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥∫ ∫⃗ − ⃗ ⃗ ⃗ = ⃗ ⃗−n i dtB t S n e i dti n t

d
dt

n texp ( ). exp ( ) ( ) , (1.30)
T

iE T
T

0 0

0

and the action can be written as

∫= − + +S E T i dtz
dz
dt

. (1.31)
T

0
0

We can see there is an extra term given by the Berry phase. As we will see later, this
is a topological term, and I will denote it by Stop to distinguish it from the spin S.

For general spin S, equation (1.28) can be written as

∫θ ϕ θ ϕ= − ∂
∂

S iS d[ , ] t(1 cos )
t

. (1.32)top

If the motion of ⃗n t( ) is such that its orientation coincides at the beginning and the
end of the time interval, and considering that in the spherical coordinate system
ˆ ˆ ˆθ ϕe e e( , , )r we have

θ ϕ θ⃗ = ˆ + ˆθ ϕ
dn
dt

d
dt

e
d
dt

esin , (1.33)

we can write equation (1.32) as

∮ ∮θ ϕ = ⃗ ⃗ = ⃗ ⃗
γ γ

S iS d
dn
d

A iS dn A[ , ] t
t

. . , (1.34)top

where we have defined

θ
θ

⃗ = − ˆϕA e
1 cos

sin
. (1.35)

Using Stokes’s theorem, we have

∮ ∮ σ⃗ = ⃗ ⃗ = ⃗ ∇⃗ × ⃗
γ γ

S n iS dn A iS d A[ ] . . ( ), (1.36)
A

top

but ∇⃗ × ⃗ = ˆA e ,r which leads to

∮ σ⃗ = ⃗ ⃗ = γ
γ

S n iS d e iSA[ ] . , (1.37)
A

rtop
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where γA is the region in the sphere S2 which has the curve γ as its boundary and
contains the north pole (see figure 1.2). The action Stop is thus a measure of the area
bounded by the curve γ ⃗ ⃗t n t: ( ).

Using ⃗ ≡ ∇⃗ × ⃗B A , equation (1.37) can be interpreted as the action for a particle
moving in a radial magnetic field of a magnetic monopole of strength 4π located at
the origin of the sphere.

If we had taken ⃗ = − ˆθ
θ

−
ϕA e1 cos

sin
, the newly defined vector potential would be non-

singular in the southern hemisphere, and we would have got

⃗ = − ′γS n iSA[ ] (1.38)top

where ′γA is the area of a surface bounded by γ but covering the south pole of the
sphere. The minus sign is due to the outward orientation of the surface ′γA . We can
see that the difference between the northern and the southern parts is given by 4πiS,
having in mind that the intersection between the two surfaces is the sphere. We will
come back to this subject in chapter 9, when we will discuss magnetic models.

1.3 Path integral and statistical mechanics
In statistical mechanics, the equilibrium properties of a system can be obtained from
the partition function β= −Z Htr exp( ), where ‘tr’ denotes a summation over all
possible configurations of the system. For a single particle we have

∫= =β β− −Z e dx x e xtr[ ] . (1.39)H H

The partition function can be interpreted as a trace over the transition amplitude
〈 ∣ ∣ 〉−x e xiHt evaluated at an imaginary time t = −iβ. The transformation t = −iτ is
called a Wick rotation. Although mathematically this can be a highly nontrivial
procedure, the formal prescription is simple. First, we make the substitution t = −iτ,
and then we define the imaginary time action SE using the real time action SM
through the correspondence

Ag

g

Figure 1.2. Region of integration in equation (1.37).
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≡τ=−
−e e , (1.40)iS

t i
SM E

where the subscripts E and M stand for Euclidean and Minkowskian space–time.
For a field ϕ t r( , ) in quantum field theory we have

∫ ϕ τ=
ϕ ϕ

ϕ τ

=

−Z D r e( , ) . (1.41)S r[ ( , )]

i f

Here we are summing over a path in which the field ϕ τ r( , ) obeys periodic boundary
conditions in the imaginary-time direction. In equation (1.41) we integrate over all
trajectories with the sole requirement ϕ ϕ=i f , with no constraint on what the
starting point is. All we must impose is that the field comes back to where it started
after Euclidean time τ. We can think of τ as parameterizing a circle.

While all bosonic fields are periodic in the time direction, fermionic fields should
be made anti-periodic: they pick up a minus sign as we go around the circle.

Following Tanaka and Takayoshi (2015) we define a topological term Stop as the
portion of the action which arises in addition to the kinetic action coming directly
from the Hamiltonian H. When using the imaginary time, the term Stop is purely
imaginary and hence contributes a phase factor to the Boltzmann weight −e S (this
leads to nontrivial quantum interference effects). The total action is generally of the
form: S = Skin + Stop.

Another way to introduce topological terms is the following. The symmetric
stress–energy tensor μνT can be defined as a variation of the action with respect to the
metric tensor μνg . More precisely, an infinitesimal variation of the action can be
written as

∫δ δ= μν
μνS dx g T g , (1.42)

where g dx is an invariant volume of space (see chapter 4). We define topological
terms as the metric-independent terms in the action. It follows that topological terms
do not contribute to the stress–energy tensor. We will study topological terms in
more detail later in the text.

1.4 Fermion path integral
A path integral over fermions is basically the same as for bosons, but we must
consider that fermions anti-commute. However, we cannot directly write a
Lagrangian for fermions, since they have no classical analogue. To implement the
path integral, we need the notion of anti-commuting classical variables that are
called Grassmann variables (Ashok 1993, Altland and Simons 2010).

A Grassmann algebra is a set of objects θi with the following properties:
(a) They anti-commute θ θ θ θ+ = 0i j j i . This implies θ = 0i

2 for any i.
(b) θ θ θ θ+ = +i j j i.
(c) They can be multiplied by complex numbers ∈a C.
(d) There is an element 0 such that θ θ+ =0 .i i
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For any θ, the most general element of the algebra is

θ= + ∈g a b a b c, with , . (1.43)

For two θ the most general element is

θ θ θ θ= + + +g a b c d , (1.44)1 2 1 2

and so on. In defining a derivative, the direction in which the derivative operates
must be specified. For a right derivative we have

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟θ

θ θ θ θ
θ

θ
θ

θ δ θ δ θ∂
∂

= ∂
∂

−
∂
∂

= −( ) . (1.45)
i

j k j
k

i

j

i
k ik j ij k

For a left derivative the result is

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟θ

θ θ
θ
θ

θ θ θ
θ

δ θ δ θ∂
∂

=
∂
∂

− ∂
∂

= −( ) . (1.46)
i

j k
j

i
k j

k

i
ij k ik j

Here I will use left derivatives. Note that we have

θ θ θ θ
∂

∂
∂

∂
+ ∂

∂
∂

∂
= 0. (1.47)

i j j i

For a fixed i we have

⎛
⎝⎜

⎞
⎠⎟θ

∂
∂

= 0. (1.48)
i

2

If D represents the operation of differentiation with respect to one Grassmann
variable and I represents the operation of integration, we must have

= =ID DI 0. (1.49)

So, using equation (1.48) we see that the integration can be identified with
differentiation: I = D.

For a function we have

∫ θ θ θ
θ

= ∂
∂

d f
f

( )
( )

, (1.50)

which gives

∫ ∫θ θ θ θ= =d d, 1. (1.51)

If we write θ′ = aθ with ≠a 0, we find

∫ ∫θ θ θ
θ

θ
θ

θ θ= ∂
∂

= ∂ ′
∂ ′

= ′ ′d f
f

a
f a

a d f a( )
( ) ( / )

( / ). (1.52)
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For many Grassmann variables, if θ θ′ = ai ij j (where we sum over repeated indices)
with ≠adet 0,ij we get

∫ ∫∏ ∏θ θ θ θ= ′ ′
= =

−d f a d f a( ) (det ) ( ). (1.53)
i

n

i

n

1 1

i i ij i ij j
1

We define a delta function as

δ θ θ=( ) . (1.54)

We can verify that it satisfies

∫ ∫θδ θ θθ= =d d( ) 1. (1.55)

For a function f(θ) = a + bθ, we have

∫ ∫ ∫ ∫θδ θ θ θθ θ θθ θ θθ θ
θ

= = + = = ∂
∂

= =d f d f d a b d a
a

a f( ) ( ) ( ) ( )
( )

(0). (1.56)

For path integral calculations, we need Gaussian integrals. For two θi we have

∫ ∫θ θ θ θ θ θ= − =θ θ−d d e d d A A(1 ) , (1.57)A
1 2 1 2 12 1 2 12

1 12 2

where we have expanded the exponential in a Taylor series. The variable θ does not
need to be small; rather the exponential is defined by its Taylor expansion.

Let us now consider two sets of independent Grassmann variables θ θ…( , , )n1 and
θ θ…( , , )n1 . We want to calculate the integral

∫ ∏ θ θ= θ θ−I d d e . (1.58)
i j,

i j
Ai ij j

We have

⎡
⎣⎢

⎤
⎦⎥∫ ∏ θ θ θ θ θ θ θ θ= − + + …I d d A A A1

1
2

( )( ) . (1.59)
i j,

i j i ij j i ij j k kl l

The only non-zero term in this expansion is the one with all θn i and all θn i. This will
give

∑=
!

± … −I
n

A A
1

. (1.60)
ipermutations{ }

i i i i

n

n n1 2 1

If Aij is a matrix, equation (1.59) is a sum over all elements {i, j} where we choose
each row and column once, with the sign from the ordering. But this is just the
determinant. So the result is:

=I Adet( ) (1.61)
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It is easy now to show that

∫ ∏ θ θ =θ θ θ θ− + * + * −d d e A c A cdet exp( ). (1.62)
i j,

i j
A c c

i ij j
1i ij j i i i i

That is all we need for the fermion path integral.
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