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Electronic Structure of Organic Semiconductors
Polymers and small molecules

Luı́s Alcácer

Chapter 6

Computational methods

There are many computational methods for the calculation of energy levels and
orbitals in molecules, as well as for energy bands in solids. Here, we will mention
briefly the general principles which support computational methods based on the
Hartree–Fock (HF) approximation and on density functional theory (DFT). We will
consider the electronic structures of molecules first, and then that of solids.

6.1 Hartree–Fock theory
In the HF approximation, the interactions of each electron with all the other N − 1
are reduced to a mean field potential, V r( ), which depends only on its own
coordinates, r (figure 6.1).

The HF method is based on the one-electron equation

χ ε χ=f (6.1)a a a

where f is the Fock operator. χa are the spin-orbital functions which are the product
of the spatial wave functions ψ r( )a with the spin functions σ ω( )a , where ω are the spin
coordinates:
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Figure 6.1. In the Hartree–Fock approximation, the interactions of each electron with the other −N 1 are
reduced to a mean field potential,V r( ), which depends only on its own coordinates, r. R are the coordinates of
the nuclei. Electrons 1 and 2 interchange the space+spin coordinates.
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χ ψ σ ω=x r( ) ( ) ( ). (6.2)a a a

For the general case of a system of N electrons and M nuclei, and noting that the
sum extends to all occupied spin-orbitals (occso), we have for the Fock operator

∑= + −
=

f h J K( ) (6.3)
b 1

occso

b b

with1 = − ∇ + ∑
∣ − ∣

h Z
r R

1
2 A

M A

A
2 , in which the first and second terms are the kinetic

energy and the attractive electron–nuclei potential, respectively. J and K are the
Coulomb and exchange integrals:

∫ ψ τ= ∣ ∣J
r

dr( )
1

(6.4)b b 2
2

12
2

∫ ψ ψ τ= *K
r

dr r( ) ( )
1

. (6.5)b b a2 2
12

2

Note that in these integrals, and since we consider the interactions of each electron
with each one of the others, it is common to designate electron 1, of coordinates r1,
the electron which is in the reference position, and electron 2, of coordinates r2, the
other one, whose interaction electron 1 is feeling. For a system ofN electrons, we can
write ≡ ≡V V Vr r(1) ( ) ( )ee ee ee1 (see figure 6.1).

Note also that in equation (6.3) the sum goes from b = 1 and extends to all
occupied spin-orbitals (occso), including b = a (the reference orbital, where electron 1
is). Introducing b = a, which means to account for the self-interaction, does not bring
any problems, since, if we make b = a in equations (6.4) and (6.5), we get J = K,
which cancel in Vee.

The Hamiltonian for a system of N electrons and M nuclei can be written as a
sum of Fock operators:

∑=
=

H f i( ) (6.6)
i

N

1

where the spin-orbitals χ x( )a , are the solutions of the HF equations, of the form

χ ε χ=f . (6.7)a a a

The problem is now reduced to building the f operator (6.3), for which we need the χa
which are the solutions of the HF equations. To do that, we need to follow an
iteration procedure, starting with a set of chosen spin-orbitals {χa}.

From the known χ{ }a spin-orbitals, we can write an expression for the energy,
considering that:

1 In quantum chemical calculations, it is convenient to use atomic units (see appendix A).
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• the one-electron integrals contribute with a term haa for each electron in spin
orbital a;

• the two-electron integrals contribute a term Jab for each pair of electrons, and
a term −Kab for each pair of electrons with parallel spins.

We could now proceed to distinguish between closed shell systems and open shell
systems to get the restricted HF (RHF) and the unrestricted HF (URHF) versions.

In any case, to solve the HF equations of the form

ψ ε ψ=f (6.8)a a a

where ψa is the spatial part of χa, we need a basis of functions (e.g. Slater type
orbitals, STO, and Gaussian type orbitals, GTO) to build linear combinations
(Roothaan’s method [1]). The iterative calculation proceeds with the diagonalization
of the Fock matrix F, of all matrix elements of the Fock operator.

In figure 6.2, we show diagrams of the energy levels in the UHF and in the RHF
versions.

The εa values of equation (6.8) have a physical meaning. According to
Koopmans’ theorem, the ionization potential is equal to the negative of the energy
of the spin-orbital χn from which one electron is removed, i.e.

ε= − = −−IP E E . (6.9)N N n1

On the other hand, the electron affinity is the energy released when one electron is
added to a given spin-orbital χm.

ε= − = −+EA E E . (6.10)N N m1

In the above equations, it is assumed that χn was occupied and that χm was empty for
the system with N electrons. Therefore, the first ionization potential is

ε= −IPfirst HOMO (figure 6.3).
In quantum chemistry, the electronic structure of atoms and molecules can be

described in terms of orbitals and energy levels calculated for one electron, which
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Figure 6.2. Diagrams of the molecular energy levels in the unrestricted Hartree–Fock (UHF) and in the
restricted Hartree–Fock (RHF) versions. The RHF can be used for closed shell systems and the UHF has to be
used for systems with incomplete shells. Note the highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO).

Electronic Structure of Organic Semiconductors

6-3



moves in the field of the nuclei and in the mean field of the interactions with all other
electrons. The distribution of the electrons by the spatial orbitals is the electronic
configuration. The electronic states resulting from these configurations are the terms
of the configurations. The many-electron states can only be described in terms of
eigenfunctions of total angular momentum, since the individual angular momentum
of each electron is not an observable—the interactions of various types, namely the
Coulomb, spin and exchange, do not allow that the many-electron wave function be
simple products of the one-electron wave functions. It is therefore pertinent to
distinguish between levels (and orbitals), electronic configurations and electronic
states, which are illustrated in figure 6.4. It is also important to consider the
notation: lower case for levels (and orbitals) and upper case for many-electron states,
for atoms. For molecules, the corresponding notation is in Greek letters.

Equation (6.6) may suggest that the wave function for theN electron system could
be a product of all occupied χa. But all electrons are identical and can exchange
(consider the K integrals)—one electron can simultaneously occupy all orbitals—and
are correlated—entangled in Schrödinger’s words2, meaning that the knowledge
about one of them is inextricably linked to the knowledge about the others—and
therefore the wave function has to be written as an anti-symmetrized product of all
permutations, or a Slater determinant:

χ χ χ
χ χ χ

χ χ χ

Ψ =
!

⋯
⋯

⋯ ⋯ ⋯ ⋯
⋯

N

x x x
x x x

x x x

1
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

(6.11)

a b n

a b n

a N b N n N

1 1 1

2 2 2

where the xi are the space+spin coordinates of the electrons.

IP EA
00
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X + e           X      - -X X  + e-+

Figure 6.3. Ionization potential (IP) and electron affinity (EA) for the removal of an electron from spin-orbital
χb and the addition of an electron to spin-orbital χb, respectively.

2 The word ‘entangled’ was coined in Schrödinger’s article about his famous cat, E Schrödinger 1935 The
Present Situation in Quantum Mechanics Naturwiss. 23 807 translated into English in ‘Quantum Theory and
Measurement’ 1983 eds J A Wheeler and W H Zurek (Princeton, NJ: Princeton University Press). A video
about Schrödinger’s cat can be seen at http://www.youtube.com/watch?v=CrxqTtiWxs4.
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In the HF method, the Fock operator is of the form = + ∑ −f h J K( )b b b
occso in

the basis of the spin-orbitals χ, with = − ∇ − ∑
∣ − ∣

h Z
r R

1
2 A

A

A
2 , implying that the total

electronic energy will be given by

∑ ∑= + −E h J K
1
2

( ). (6.12)
a a

occso occso

aa ab abHF

In the Φ basis of the linear combinations, we can write the matrix equation = ΦX C
with components χ ψ σ ω=x r( ) ( ) ( ) and taking the density matrix as = †D CC , we will
have, considering that for any T operator, 〈 〉 =T DTtr( ):

= + −E DH DJ DKtr( )
1
2

tr( )
1
2

tr( ). (6.13)HF

6.2 Density functional theory (DFT)
Presently, one of the most successful methods for the calculation of the electronic
structure of molecules and solids is that of DFT. The theory is based on the
assumption that the total energy of a system, including all interactions (exchange
and correlation), is a unique functional of the electron density, and that the minimum
of this functional is the energy of the ground state [2]. The appeal of this method lies
in the fact that, in principle, the wave function for a system of N electrons, which is a
function of 4N coordinates (3N space coordinates and N spin coordinates) can be
replaced by the electron density, which is a function of only three space coordinates.
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Figure 6.4. Illustration of the differences between orbital energy levels, electronic configurations and electronic
states.
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The problem of the N electrons can then be solved, by solving the system of self-
consistent monoelectronic equations—the Kohn–Sham equations [3]. These equa-
tions which are identical to the HF equations can be solved by similar iterative
methods. The Kohn–Sham equations are of the form

χ ε χ=f (6.14)KS
a a a

where f KS is the Kohn–Sham operator; χa, the Kohn–Sham spin-orbitals, and εa is
the energy of spin orbital a.

The Kohn–Sham operator

= +f T V r( ) (6.15)KS
KS

is the sum of the kinetic energy = − ∇T 1
2

2 and an effective potential called the
Kohn–Sham potential, VKS, which is a functional of the electron density, ρ(r), and is
of the form

ρ ρ ρ= + +V V V Vr r r r[ ( )] ( ) [ ( )] [ ( )]. (6.16)KS XCext Hartree

V r( )ext is an external potential, generally the attractive potential between the electrons
and the nuclei, Vne.

∑= = −
∣ − ∣

V V
Z

r r
r R

( ) ( ) . (6.17)
A

ne
A

A
ext

VHartree is the term relative to the Hartree approximation, i.e. the mean field felt by
one electron, due to the Coulomb interactions with all others,

∫ τ ρ= ′ ′
∣ − ′∣

V d
r

r r
( )

. (6.18)Hartree

It is identical to the Coulomb integral J of HF theory, but now a functional of ρ, i.e.
ρ=V J [ ]Hartree . Finally, VXC is the exchange-correlation term, or XC, and contains all

exchange, VX, and correlation, VC, contributions; ( = +V V VXC X C).
It is defined as

δ
δρ

=V
E

(6.19)XC
XC

and is, naturally, the more problematic term. There are many choices available for
approximate functionals. One of the simplest is the local density functional (LDF) or
local density approximation (LDA) for which the exchange-correlation, EXC, is the
energy of a homogeneous electron gas of constant density ρ, of which there are
databases from Monte Carlo calculations. We will not go into more detail
concerning the various VXC potentials in this concise text.
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The electron density is defined in terms of the Kohn–Sham spin-orbitals:

∑ρ ρ χ= = ∣ ∣r r r( ) ( ) ( ) . (6.20)
a

occso

KS a0
2

Note that the sum extends over all occupied spin-orbitals (occso).
Expression (6.14) represents a set of coupled non-linear equations (one for each a)

that depend on the electron density which appears in this theory as a fundamental
variable.

For the purpose of computational calculations, a procedure can be used, which
starts with an appropriately chosen density ρ r( )0 to obtain a first VKS. This potential
is then introduced in the Kohn–Sham equations, which, when solved, give the
Kohn–Sham orbitals and the energies. From these orbitals, a new density ρ r( )0 is
calculated and a new VKS, and so forth until convergency. The self-consistent cycle is
terminated when the pre-established criteria is met. The two most common criteria
are based on the differences between the values of the total energies or on the values
of the densities for two successive iterations. In other words, when δ∣ − ∣ <−E Ei i

E
( ) ( 1)

or ∫ ρ ρ τ δ∣ − ∣ < ρ
− di i( ) ( 1) in which E i( ) and ρ i( ) are the values of the total energy or of

the density for iteration i, and δE and δρ are the tolerances defined by the user.
When a basis for the Kohn–Sham orbitals is used (Gaussian or Slater type), it is

necessary to diagonalize the matrix FKS as in the Hartree–Fock–Roothaan method.
It should be noted that the minimization of the energy is made using the Lagrange
multipliers, in which the restrictive condition, equivalent to normalization is in
DFT, ∫ ρ τ =d Nr( ) .

In the end, one can calculate the various observables, such as the total energy.
From that, one can obtain equilibrium configurations by minimization of E R( ),
ionization energies, etc. In the Kohn–Sham theory, the total energy is given by
expressions which are similar to those of HF theory, but taking into account the
Kohn–Sham operator and the fact that the fundamental variable is the electron
density.

In DFT, we will have, identically to equation (6.13):

= + + +E E EDH DJ D Dtr( )
1
2

tr( ) [ ] [ ] (6.21)X CDFT

in which the terms E D[ ]X and E D[ ]C are the exchange and correlation terms,
respectively, the last being neglected in HF theory. The HF theory is therefore a
particular case of DFT, in which = −E D DK[ ] tr( )1

2X and =E D[ ] 0C .
What is the meaning of the Kohn–Sham spin-orbitals? In principle, they do not

have a physical meaning. They are used as a tool for the calculation of the electron
density which is the fundamental variable of the theory. Its unique link to reality is
that the sum of all their squares is equal to the real electron density [4]. Note that the
molecular orbitals of HF theory are still worse—they do not take into account the
correlation effects, nor do they give the real density.

Electronic Structure of Organic Semiconductors

6-7



One should also not mistake Slater determinants built from Kohn–Sham spin-
orbitals, with the true wave function for the system of N electrons. In DFT, there is
no exact wave function for the system. Also, the energies εa have no real meaning,
since there is no equivalent to Koopmanns’ theorem to relate the orbital energies to
the ionization potentials, except that the εmax (the HOMO-KS energy) is equal to the
negative of the first ionization potential [5]:

ε = −− IP. (6.22)HOMO KS

The HOMO and LUMO levels can be approximately determined experimentally by
several methods, both in solution or in a solid film, as discussed below (see section 6.2.1).

Although these computational methods are of great value to predict the proper-
ties of molecules and solids and help on the design of new materials, they may not
give accurate energy values for the HOMO and LUMO orbitals and their relation to
the ionization potential and electron affinity. In DFT calculations, the difficulty lies
in finding the appropriate functional. The exact functional should give a HOMO
energy exactly equal to minus the vertical ionization potential. On the other hand,
the electron affinity should be minus the energy of the HOMO of the N + 1 electron
system.

The prediction of the electron affinity, in particular, is unreliable as a consequence
of the large effect of orbital relaxation on the LUMO energy value. Zhang et al [6]
analyzed these difficulties and proposed ways to correct the values, based on
experimental data of ionization potentials and lowest excitation energies. In
particular, the following formula was proposed for several functionals

− = + −E A B E( ) (6.23)HOMO HOMOcorr cal

where EHOMOcorr
and EHOMOcal

are the corrected and the calculated HOMO energies,
respectively. This empirical correction is a simple linear correlation but it gives
improved values of the ionization potentials from the HOMO energies. For the
B3LYP functional, for example, the authors found that a good correlation, (R =
0.94), is given for A = −1.02, B = 0.93. They conclude that all (11) functionals tested
give accurate predictions for the HOMO energies when empirically corrected, and
accurate HOMO–LUMO gaps by using time-dependent DFT methods or the
differences between the corrected HOMO and LUMO energies. LUMO energies
can best be obtained by adding the corrected HOMO energies to the HOMO–

LUMO gaps.

6.2.1 Ionization potential, electron affinity and energy gaps

The energies of the HOMO and LUMO are of the greatest importance since they
determine the electronic and optical properties of materials. There is, however, some
confusion in the literature about the meaning and accuracy of these parameters in
organic semiconductors. A clarification of that meaning, as well as that of the
various types of energy gaps that can be measured or calculated by computational
methods, is the focus of a succinct article by Jean-Luc Brédas [7]. The subject is also
discussed in detail in Köhler and Bässler’s book [8], and useful information on
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experimental methods and corrections is given by Sworakowski [9]. Here, we will
describe some of the most relevant of these authors’ views and add a few words on
the definition and meaning of some related concepts in metals and semiconductors.

As mentioned above, in the HF computational methods, according to
Koopmans’ theorem, the first ionization potential, IP, is considered to be minus
the energy of the HOMO level ( ε= −IP HOMO), and the first electron affinity, EA,
minus the energy of the LUMO level ( ε= −EA LUMO), i.e. ‘the negative of the energy
change when adding an electron to the neutral species’, according to the IUPAC
definition. In DFT, it is assumed that the εmax (HOMO-KS energy) is equal to minus
the first ionization potential.

In a molecule, the optical gap, ΔEo, is considered as the energy of the lowest
electronic transition. The difference between the first ionization potential and the
first electron affinity is called the fundamental gap (also chemical hardness)
(Δ = −E IP EAf ) and it is only approximately given by the difference between the
calculated HOMO and LUMO energy levels, which is theHOMO–LUMO gap. The
optical gap is lower than the fundamental gap, due to the fact that in the first excited
state, the electron–hole pair generated by the optical transition has a binding energy

= Δ − ΔE E Eb f o (see figure 6.5).
We should remind ourselves that the HOMO and LUMO correspond to one

electron levels and not to many electron states (see figure 6.4), and that the energies
calculated for those one electron levels differ from the experimentally needed
energies to remove one electron from a neutral many electron molecule (the IP)
or to add one electron to a neutral molecule (the EA). Therefore, the common
practice to use the HOMO and LUMO energies as approximations to the IP and EA
is misleading.

For a semiconductor, the electron affinity is the change in energy when one
electron is moved from the vacuum to the bottom of the conduction band,

≡ −EA E E .vac c The band gap is the difference between the bottom of the
conduction band, Ec, and the top of the valence band, Ev, and is considered to be

0

o

E E/eV E /V

ΔE

PIPI
AEAE

0S

fΔE
1S

0

0

-4.5

FFE

WW

c

v

E
E
E

Molecule Metal Semiconductor

)b)a

0

H  + e        1/2 H-+
2

Figure 6.5. (a) Ionization potential (IP), electron affinity (EA), and gap energies (optical gap (ΔEo) and
fundamental gap (ΔEf )) in molecules. (b) Work function (W ), IP and EA in metals and semiconductors. Ec is
the bottom of the conduction band, EF is the Fermi energy and Ev is the top of the valence band. On the right,
the electrochemical scale of reduction potentials (in volts) relative to the standard hydrogen electrode.
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the difference between the ionization potential and the electron affinity. We should
also define a transport gap, Eg, as the minimum energy needed to create a charge
carrier. Figure 6.5(b) also shows the work function of a metal and a semiconductor
as well as the ionization potential and electron affinity. The electrochemical scale of
standard reduction potentials, E0, in volts, is shown on the right, for comparison
with the energy scale, in electron-volts.

Sworakowski [9] compiled a significant amount of data from the literature on
small molecule organic semiconductors and showed that the electrochemical cyclic
voltammetry measurements for the HOMO and LUMO energies are typically lower
than the values obtained directly from UV photoelectron spectroscopy, UPS, and
inverse photoelectron spectroscopy, IPES, measurements by ca. 16%. He proposed
the following empirical equations for the first ionization potential and electron
affinity based on the oxidation, Eox, and reduction potentials, Ered, measured in
solution or in contact with non-aqueous solvents of high dielectric constant,

α β= − = × ++ +IP E eE( ) (6.24)oxHOMO

α β= − = × +− −EA E eE( ) (6.25)redLUMO

with α = ±+ (1.15 0.09), β = ±+ (4.79 0.07) eV and α = ±− (1.18 0.05),
β = ±− (4.83 0.05) eV when measured against the Fc+/Fc (ferrocenium/ferrocene)
reference electrode at 25 °C. For polymers, he proposed α = ±+ (1.7 0.2) and
β = ±+ (4.6 0.1) eV.

To conclude, we enumerate below the most used methods to determine the
energies of the HOMO and LUMO levels for organic semiconductors:

• Direct experimental methods: UPS for = −IP EHOMO and IPES for
= −EA ELUMO.

• Using cyclic voltammetry values corrected using equations (6.24) and (6.25).
• Using a combination of UPS for the HOMO and the optical gap calculated
using the correlation = + × ΔE E E1.37 oLUMO HOMO for the LUMO.

• Using a combination of cyclic voltammetry and the optical gap: EHOMO

calculated from equation (6.24) and the LUMO determined by
= + × ΔE E E1.37 oLUMO HOMO .

6.3 Molecular orbitals calculated by DFT
In the following, we will give some examples, using hybrid functionals, which are a
class of approximations to the exchange-correlation energy functional in DFT that
incorporate a portion of exact exchange from HF theory with exchange and
correlation from other sources (ab initio or empirical). The exact exchange energy
functional is expressed in terms of the Kohn–Sham orbitals rather than the density,
and therefore it is termed an implicit density functional. One of the most commonly
used versions is B3LYP, which stands for Becke, 3-parameter, Lee–Yang–Parr.
B3LYP combines the Becke exchange functional and the correlation functional of
Lee, Yang and Parr. This functional is
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= + − + −
+ + −

E E a E E a E E

E a E E

( ) ( )

( )
(6.26)xc

B3LYP
x
LDA

0 x
HF

x
LDA

x x
GGA

x
LDA

c
LDA

c c
GGA

c
LDA

where =a 0.200 , =a 0.72x , and =a 0.81c . Ex
GGA and Ec

GGA are generalized gradient
approximations: the Becke-1988 exchange functional and the correlation functional
of Lee–Yang–Parr 1988 (LYP88), and Ec

LDA is the Vosko–Wilk–Nusair (VWN)
local-density approximation to the correlation functional. The three parameters
defining B3LYP have been taken without modification from Becke’s original fitting
of the analogous B3PW91 functional to a set of atomization energies, ionization
potentials, proton affinities, and total atomic energies.

Our own calculations were performed with the basis set split valence augmented
with polarization function type (d) 6-31G*, using the SPARTAN’10 software
package (Spartan, Wave Function Inc. CA).

We start by giving some examples of results of quantum chemical calculations at
the DFT-B3LYP level of the frontier orbitals (HOMO and LUMO) of polymer units
and small molecules, and show how they can be combined to form the valence band
(HOMO band) and the conduction band (LUMO band), respectively, and which, of
course, depend on the crystal structure and the magnitude and type of the transfer
integrals within the solid. Then, we will show examples of results of band structure
calculations based on density functional theory methods. These calculations can give
important information on the bandwidths, density of states, Fermi surfaces and other
data relevant for the understanding of transport and optical properties.

In figure 6.6, we show the HOMO and LUMO orbitals of a chain of 56 CH units,
taken here as a simplified model for a chain of polyacetylene. The calculated values
are as follows: = −E 4.23 eVHOMO , = −E 2.78 eVLUMO . The HOMO–LUMO gap is
1.45 eV, which compares well with the experimental gap of ∼E 1.2 eVg [10].

In figure 6.7, we give the results for a sequence of six oligomers of p-phenylene
vinylene (PV), as units of the conjugated polymer poly(p-phenylene vinylene) (PPV).

Figure 6.6. The HOMO (top) and LUMO (bottom) orbitals obtained from a DFT/B3YLP calculation for a
chain of 56 CH units. = −E 4.23 eVHOMO , = −E 2.78 eVLUMO .

LUMO:

HOMO:

LUMO:

HOMO:

4321

65

Figure 6.7. Frontier orbitals for 1–6 PV units.
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The sequence starts with one unit and goes up to six units. The HOMO and LUMO
orbitals are shown.

The respective energies are given in table 6.1, and a plot of the levels as a function
of the number of PV units is shown in figure 6.8.

This simple exercise shows that the frontier levels tend to stabilize at constant
values, as we increase the number of PV units. For six units, we get a value for the
HOMO–LUMO gap of − =E E 2.72 eVLUMO HOMO , which is not very far from the
experimental value of 2.5 eV. In fact, PPV is a highly stable conjugated polymer and
its yellow color is due to an absorption band centered at 400–420 nm.

6.3.1 Small molecules

Anthracene is a wide band gap organic semiconductor due to the π–π interactions
between adjacent molecules as in pentacene and other polyacenes. We performed a
DFT/B3YLP calculation and found the results for the frontier orbitals shown in
figure 6.9.

The crystal structure of anthracene was one of the first crystalline structures of
organic compounds to be studied. It was studied by Sir William Bragg himself in the
early 1920s [11] and is monoclinic prismatic characterized by the herringbone
arrangement with tilted edge-to-face π–π interactions with the following parameters:

= Åa 8.58 , = Åb 6.02 , = Åc 11.18 , β = 125°.
The first work on organic light emitting diodes was due to Ching Wan Tang and

Steven Van Slyke at Eastman Kodak [12]. It was based on aluminum tris-8-

Table 6.1. Molecular orbital frontier levels for PV oligomers.

Oligomer EHOMO/eV ELUMO/eV Gap/eV

PV1 −5.79 −0.67 5.12
PV2 −5.24 −1.51 3.73
PV3 −5.04 −1.83 3.21
PV4 −4.94 −1.99 2.95
PV5 −4.88 −2.08 2.80
PV6 −4.86 −2.14 2.72

0

0 1
Number of PV units

LUMO

HOMO

E/
eV

2 3 4 5 6

-1
-2
-3
-4
-5
-6
-7

Figure 6.8. Values of frontier orbital energies for 1–6 PV units.
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hydroxyquinoline, best known as Alq3, and the device structure consisted of indium
tin oxide (ITO)/diamine hole transporting later (HTL)/Alq3/Mg:Ag, meaning a layer
of Alq3 as the electroluminescent and electron transport material sandwiched
between two electrodes, a cathode of magnesium–silver alloy with a layer of silver
to protect the magnesium, and an anode of transparent ITO deposited on glass. A
layer of diamine was used as a HTL. The electrons and holes combine at the
diamine/Alq3 interface.

The Alq3 molecular structure consists on three hydroxyquinoline ligands bonded
to an aluminum atom. Several isomers have been identified, but the so-called facial
and the meridional have been the most studied (see figure 6.10).

The facial (fac) isomer has this name because the three ligands are positioned
along one of the faces of the octahedron centered in the Al atom. In the meridional
(mer) isomer, the three ligands are positioned along one meridian (a line from one
apex of the octahedron to the opposite apex).

The electronic structure of Alq3 has been studied in many ways and for both ‘fac’
and ‘mer’ isomers, in the pristine solid state and when doped with alkali metals,
combining experimental and theoretical methods based on x-ray photoelectron
emission and absorption spectroscopies, as well as UV photoelectron spectroscopy
and DFT quantum chemical calculations including band structure [13–18].

Figure 6.11 shows the molecular structure and the HOMO and LUMO orbitals in
the equilibrium geometry of the meridional isomer calculated by quantum chemical
DFT at the B3YLP level. As seen in the figure, the HOMO is mainly localized on the
phenoxide side of the ligands, while the LUMO is localized on the pyridyl side. Due
to the symmetry of the molecule, the frontier orbitals appear in groups of three,
meaning, for example, that the LUMO+2 and the LUMO+1 are similar to the

Figure 6.10. Molecular structure of the two best known isomers of Alq3: the facial and the meridional.

Figure 6.9. HOMO and LUMO orbitals in anthracene. = −E 5.23 eVHOMO , = −E 1.63 eVLUMO .
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LUMO, each located on one of the ligands, and the same is found for the
HOMO−2, HOMO−1 and HOMO. Naturally, the energy values are similar within
each group. For example, the calculated values for the HOMO group are

= −E 5.0 eVHOMO , = −−E 5.2 eVHOMO 1 and = −−E 5.3 eVHOMO 2 .
Our own calculations on the facial isomer give the following values for the

frontier levels: = −E 5.20 eVHOMO , = −E 1.68 eVLUMO . Besides the fact that the
facial isomer has a slightly higher HOMO–LUMO gap, (3.52 eV vs 3.28 eV), it has a
higher dipole moment (μ = 7.9 debye vs μ = 4.46 debye for the ‘mer’ isomer). These
different features are considered important for high performance thin-film OLEDs,
however it is argued that both isomers are present in the amorphous films [19].

Rubrene is another small molecule semiconductor considered the standard
material for single crystal organic field effect transistors (SC-OFETs). Benchmark
carrier mobilities on the range of 20–40 cm2 V s−1 have been achieved in OFETs
based on laminated single crystals less than 1 μm thick. A topical review on SC-
OFETs is given by Hasegawa et al in [20]. In figure 6.12, we show the frontier
orbitals as calculated by DFT/B3YLP.

The energies of the frontier levels compare well with those reported by Ma et al
[21] of = −E 4.94eVHOMO , = −E 2.34 eVLUMO , who also report on a DFT detailed
study of the electronic structures and conducting properties of rubrene and
derivatives, which are characterized by the typical herringbone packing. Carrier

Figure 6.12. Molecular structure of rubrene and HOMO and LUMO orbitals. = −E 4.61 eVHOMO ,
= −E 2.11 eVLUMO .

Figure 6.11. Molecular structure of Alq3, and the HOMO and LUMO orbitals in the equilibrium geometry for
the meridional isomer. = −E 5.01 eVHOMO , = −E 1.73 eVLUMO , HOMO–LUMO gap =3.28 eV.
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mobilities are highly anisotropic (in single crystals). Values in the range of μ = 1.0h –
15.8 cm2 V−1 s−1 are predicted by theory for the hole mobilities, while the found
experimental value was μ = ±7.07 1.77h cm2 V−1 s−1. The theoretical electron
mobility was predicted to be in the order of μ = 0.1e –3.6 cm2 V−1 s−1.

Last but not least, a few additional words are due about pentacene, the most
popular small molecule organic semiconductor for OFETs since the 1980s. The
crystal structure and other features of this material have already been discussed.
Now we will show the HOMO and LUMO orbitals as obtained from DFT/B3YLP
calculations in figure 6.13.

Identical results were obtained by Zhu et al [22] using the same density functional
(B3LYP/6-31G(d)), namely = −E 4.6009eVHOMO , = −E 2.3840 eVLUMO and
Δ =E 2.2169 eV for the HOMO–LUMO gap.

The values of the frontier levels are close to those of commercial sublimed
pentacene = −E 4.9 eVHOMO and = −E 3.0 eVLUMO , advertised by Ossila, for
example.

6.4 Energy bands calculated by DFT
DFT computational methods have been used to calculate band structures of organic
semiconductors using various exchange and correlation functionals. Time dependent
DFT (TD-DFT) methods are better suited to calculate excited states. The B3LYP
hybrid functional is the most popular for calculations on polymer chains although
the Kohn–Sham orbital energies generally underestimate the fundamental band gap.
Calculations with B3LYP/6-31G* give results which are close to the gaps measured
in many conjugated polymers, due to the fact that the errors in orbital energies,
geometries, packing and exciton binding energies appear to cancel out. Typical
calculations on one-dimensional periodic systems as found in conjugated polymers
use, in general, a minimum of 200 k points and 100 unit cells. The effective masses,

*m , can be calculated as the inverse curvature of the energy curves of the highest
occupied and of the lowest unoccupied crystal orbitals near the extrema, according
to the equation

ϵ=
ℏ*m

d
dk

1 1
. (6.27)k

2

2

2

It has been reported that the B3LYP functional, when compared with other
methods, demonstrated better agreement with experimental band gaps of

Figure 6.13. Molecular structure and HOMO and LUMO orbitals in pentacene. Energy values:
= −E 4.60 eVHOMO , = −E 2.39 eVLUMO .
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polythiophene (experimental: 2.1 eV, HSE3: 1.68 eV, B3LYP: 2.04 eV, BHHLYP4:
3.90 eV) [23]. The good agreement between B3LYP and experimental band gaps for
semiconducting polymers has also been demonstrated in the theoretical study of
periodic organic polymers by Janesko [24].

Hutchison et al [25] calculated the energy levels for a series of oligomers with one
to six units and the corresponding energy bands using a DFT/LDA method with the
Perdew–Wang exchange-correlation functional and a doubled numeric basis set.
The results for thiophene oligomers and polythiophene are shown in figure 6.14.

The authors conclude that although DFT methods are used to analyze the scaling
of discrete oligomers and give approximate band gaps when extrapolated to infinite
polymer chains, the result from that simple extrapolation cannot correctly predict
the full band structure of the polymers, namely band crossing, localized bands, and
other effects. They also found that the LDA approximation systematically under-
estimates the band gaps by a factor of ∼0.57 when compared with experimental
values. This systematic error in the E (LDA)g has been reported by Brocks and Kelly
[26] who recommend that the band gaps calculated by DFT/LDA should be divided
by 0.60, as a common procedure. In fact, the LDA calculated gap for polythiophene
is 1.10 eV, which divided by 0.6 gives 1.83 eV, much closer to the thin-film
experimental value of 2.0 eV.

6.4.1 Band structure of poly(p-phenylene vinylene) (PPV)

The electronic structure of poly(phenylene vinylene) (PPV) has been addressed in
section 5.1.2 as an example of how energy bands can be formed in a very intuitive
way. Now we will present a more detailed description of the band structure of PPV,
as an instructive example.

Figure 6.14. (a) Calculated energy levels scaling from oligomers of one to six monomer units. (b) Calculated
band structure of polythiophene plotted relative to the valence band maxima. Reprinted figure with permission
from [25]. Copyright 2003 by the American Physical Society.

3Heyd–Scuseria–Ernzerhof exchange-correlation functional.
4 Becke’s half-and-half exchange+LYP functional.
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The crystal structure of PPV is monoclinic P a/21
with two monomer units per unit

cell, in a herringbone arrangement, with the parameters = Åa 8.07 , = Åb 6.05 ,
= Åc 6.54 , α = 123° [27–29]. Zheng et al [29] studied the electronic structure of PPV

using a DFT method based on the local density approximation (LDA) with a plane
wave basis set and a pseudopotential to describe the electron–ion interactions, which
take into account interchain interactions. The band structures were calculated for
both an isolated PPV chain and a polymer crystal. The calculation for the single
chain gives a HOMO–LUMO band gap of 1.3 eV that is much less than
the experimental value of 2.4 eV measured by Voss et al [30]. The band structure
of the crystalline polymer calculated by Zheng et al is displayed in figure 6.15(b)
along the paths within the first Brillouin zone defined by the symmetry points
indicated in (a).

The main difference between the band structures of the single chain and the
polymer crystal is that in the latter the bands occur in pairs due the fact that there are
two monomer units per unit cell in the herringbone crystal structure, and the
interchain interactions are slightly different for each monomer unit. As expected,
the largest bandwidth, with a value of about 2.1 eV, is found along the conjugated
chain direction, which corresponds to the Γ → P path and is of same order of
magnitude as for the single chain.

The earlier study of the band structure of PPV by da Costa et al [28] is worth to be
mentioned because it focus on the interchain coupling and concludes that the ratio
between the inter and intrachain transfer integrals, ≈⊥ ∥t t/ 0.03, is quite large. The
authors argue that such a value is too large to allow the existence of polarons in a
perfect PPV polymer crystal, but that there is evidence that they exist, concluding
that their existence is due to defects.

Figure 6.15. (a) Brillouin zone for the PPV monoclinic P a/21 structure. Γ → P is the chain direction, where
= −P (0, 0.355, 0.707) in terms of the reciprocal lattice vectors. Point Δ = −(0, 1/4, 1/2) lies at 0.7 of the

distance from Γ to P. (b) Band structure for the PPV polymer crystal along the Γ–Δ–P–Q–D–X–Γ path.
Energies are in electron volts relative to the top HOMO. From [29]. Reprinted with permission from IOP
Publishing.
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6.4.2 Band structure of pentacene

We cannot finish this chapter without saying a few words about the band structure
of pentacene. Several DFT calculations have been done to investigate the band
structure of pentacene in the bulk and in the polymorph thin-film as, for example,
those in [31–33], to name but a few. Here, we have chosen the Parisse et al [33] results
as our example. The generalized gradient approximation (GGA) to the exchange-
correlation potential was used. Pentacene appears in at least four different phases,
depending on the tilting of the molecules relative to the substrate and on the distance
between planes along the c-axis, features which affect, in particular, the transport
properties.

The authors used the results of Campbell et al [34] for the crystal structure of the
bulk phase, namely that it is triclinic, with two molecules per unit cell of dimensions

= Åa 7.90 , = Åb 6.06 , = Åc 16.01 ; α = 101.9°, β = 112.6°, γ = 85.8°. For the
polymorph thin-film, they used the results of Ruiz et al [35]: = Åa 7.6 , = Åb 5.9 ,

= Åc 15.43 ; α β γ= = = °90 .
Figure 6.16 reproduces Parisse et al band structures for the bulk and for the thin-

film polymorphs of pentacene along several symmetry directions.

Figure 6.16. DFT/GGA band structure of the bulk phase of pentacene (a) and for the thin-film phase with
the density of states (b) along several symmetry directions. Symmetry points: =X (0.5, 0, 0), Y = (0, 0.5, 0),
Z = (0, 0, 0.5), C = (0.5, 0.5, 0) and Q = (0.5, − 1, 0.5). Energies are referred to the Fermi level. Only the
HOMO−1, HOMO and LUMO bands are shown. From [33]. Reprinted with permission from IOP
Publishing.

Electronic Structure of Organic Semiconductors

6-18



The energy gap is indicated in yellow. From the band structure, it can be seen that
the bandwidth is small along the Γ → Z direction (shown in the thin-film phase) and
much larger along the other directions, such as Γ → X and Γ → Y, in the ab plane
(see figure 5.12), confirming that the mobility (and conductivity) which depends on
the bandwidth is higher in that plane where the π–π intermolecular interactions are
predominant. The gap is smaller for the thin-film polymorph, and the valence
(HOMO) and conduction (LUMO) bandwidths are reported as ∼0.7 and ∼0.8 eV,
respectively, which are larger than those of the bulk phase. All this is consistent with
the higher conductivity observed in thin-films.

Further reading
There are many books and sources on Computational Quantum Chemistry. We
particularly recommend the following:

• Quantum Chemistry. A Concise Introduction for Students of Physics,
Chemistry, Biochemistry and Materials Science [36], an IOP Concise
Physics book by Ajit J Thakkar.

• Quantum Chemistry by I N Levine [37].
• Modern Quantum Chemistry: Introduction to Advanced Electronic Structure
Theory by A Szabo and N S Ostlund [38].

• Introduction to Computational Chemistry by F Jensen [39].
• A Chemist’s Guide to Density Functional Theory by W Koch and M C
Holthausen [40].

Problems
1. (a) Write the Hamiltonian for the hydrogen atom in atomic units.

(b) What is the energy of the hydrogen atom in the ground state, in
atomic units?

(c) The STO for the 1s orbital is ϕ = ζ−Nes
r

1
STO . Calculate the normal-

ization constant N.
2. An ab initio HF calculation was made for the water molecule using a 3-21G*

basis set. The following linear combination was obtained for the HOMO:

Ψ = + ′p0.52105 (O) 0.63233p (O)y yHOMO

with all other coefficients being null. p (O)y and ′p (O)y are STOs similar to the
usual py orbitals centered in the O atom. The overlap S matrix relative to
these orbitals is

⎜ ⎟⎛
⎝

⎞
⎠=S 1 0.498767

0.498767 1
.

(a) Calculate the density matrix relative to the HOMO orbital.
(b) Calculate the electron population associated to the O atom in the

HOMO orbital.
(c) Comment on the result obtained in the last point.
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3. Consider the band structure of PPV shown in figure 6.15.
(a) The largest bandwidth of the conduction band is found along the

Γ → P. Why?
(b) The main optical absorption in PPV starts at about 2.5 eV. What is the

value of the optical gap? Why?
(c) Estimate the value of the optical gap from the band structure in the

figure. Compare it with the value predicted from the optical absorp-
tion and explain why it is different.

(d) The bands along Γ → X and →P Q are almost flat. What can you
infer from that and why?

4. Compare the band structures of pentacene in the bulk and in thin-films
shown in figure 6.16.

(a) Comment on which phase is expected to exhibit higher conductivity
and mobility.

(b) Comment on the anisotropy of the conductivity and mobility in the
thin-film phase.

(c) From the values of the unit cell dimensions of the two phases of
pentacene given in section 6.4.2, calculate their volumes and the
densities.
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