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Chapter 11

Laser saturation and output power

11.1 The nature of FEL saturation
The essential richness of FEL physics—the complex, even chaotic, phase space
evolution; frequency pulling effects; synchrotron oscillations and sideband forma-
tion; the high FEL efficiency; and not least, the MW-level optical micropulse powers
delivered at GHz repetition rates—occurs at saturation.

To get at the nature of FEL saturation, examine the ξ ν′ ′( , ) phase space trajec-
tories for various magnitudes of optical field ′a , as shown in figure 11.1. These figures
were calculated for τ = →0 1 by straightforward numerical integration of the
coupled equations of motion, (9.52) and (9.53); the simulations used jF= 1, but the
trajectories are qualitatively independent of jF.

In all the panels of figure 11.1, the electrons enter the undulator with fixed energy.
The optical wave, which typically turns on from weak spontaneous radiation,
evolves coherently with an optical frequency corresponding to the peak of the gain
curve, with an initial phase velocity of ν ′ = 2.6060 for the electrons. This initial phase
velocity remains basically fixed at the start of each pass as the coherent optical wave
circulates within the resonator. The magnitude of the optical field determines the
height of the separatrices, equal to νΔ ′ = ± ∣ ∣a2 (see (9.6)). Saturation occurs when
the separatrices, which initially have a height much smaller than ν ′0, grow so large
that they capture the electrons in closed phase space orbits.

Initially, in the small signal regime with ∣ ′∣ ≪a 12 , the electrons evolve in open
orbits; the average energy loss of the electrons is small, but the fractional growth of
the optical energy on a single pass, Δ∣ ′∣ ∣ ′∣a a/2 2, is large. As the optical field grows to
the intermediate regime, ν∣ ′∣ ∼ ′a2 0, some of the electrons become trapped in the
phase space buckets enclosed by the separatrices; this represents the transition
between the small signal and large signal regimes. In the large signal regime with
∣ ′∣ ≫a 12 , essentially all of the electrons are trapped in closed orbits within the phase
space buckets. In these closed orbits, the electrons do not lose energy indefinitely;
instead, they fall only as far as the bottom of the buckets before coming up again and
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taking energy from the optical wave. This is the FEL saturation mechanism. In this
regime, the energy loss of the electrons is large, but the fractional growth of the
optical power, Δ∣ ′∣ ∣ ′∣a a/2 2, is small and continues to decrease with increasing ∣ ′∣a 2.
The optical field continues to grow until Δ∣ ′∣ ∣ ′∣a a/2 2 on a single pass decreases to a
value equal to the fractional cavity loss. The laser then reaches a type of quasi-stable
equilibrium, except for dynamic effects and the possible onset of instabilities
discussed below.

11.2 Strong-saturation effects
Frequency pulling. In contrast to lasers based on atomic media, the peak of the FEL
gain curve is not centered on the spontaneous spectrum. This has important
implications for the evolution of the optical frequency in an FEL. If we compute the
gain curves at various levels of saturation by self-consistent integration of the coupled
Maxwell–Lorentz equations of motion, we find that in addition to the reduction
in gain noted in the preceding section, there is a distortion of the gain curve that
pulls peak the of the curve to higher values of ν ′opt

0 . This effect is illustrated in
figure 11.2, generated for a small-gain current of jF= 0.1.

Since the injected electron energy is typically held fixed, this increase in the peak value
of ν ′0 causes the optical frequency to be pulled to lower frequencies and longer wave-
lengths. Indeed, recall that the phase velocity defined in (6.8), ν β= + ¯ −L k k k[( ) ]w w z ,
is an implicit function of both γ and ω, i.e. ν ν β γ ω= ¯ k( ( ), ( ))z . We therefore have

ν ν
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γ ν
ω

ω= ∂
∂

+ ∂
∂

d d d (11.1)

ν
β

β
γ

γ ν
ω

ω= ∂
∂ ¯

¯
+ ∂

∂k
kd

d
d

d
d

d (11.2)
z

z

Figure 11.1. The nature of FEL saturation. Left: open orbits, high gain; ∣ ′∣a 2 small, Δ∣ ′∣
∣ ′∣

a

a

2

2
large. Center:

intermediate regime, onset of particle trapping. Right: closed orbits, saturation; ∣ ′∣a 2 large, Δ∣ ′∣
∣ ′∣

a

a

2

2
small.

Classical Theory of Free-Electron Lasers

11-2



ν
γ

γ β ω= + ¯ −( )L k
k

k
L

c
d

2
d 1

1
d (11.3)w

w
w z

π γ
γ

π ω
ω

= −N N4
d

2
d

, (11.4)w w

where we dropped ≪k kw in the expression for ν β∂ ∂ ¯/ z and used the expression for
β γ¯d /dz from (6.14) in the third line, and inserted the slippage condition β λ λ− ¯ =1 /z w

from (1.5) in the fourth line. In the evolution of an optical pulse of finite spectral
width, whose initial wavelength is established via coherent evolution at the peak of
the gain curve in the small-signal regime, the spectral content is slowly replaced in
the large-signal regime by longer wavelengths due to the shift in ν ′opt

0 . This process
occurs over many passes in the resonator as the old radiation decays away and is
replaced by optical growth at the new wavelengths.

Frequency pulling is associated with the phase space behavior of the electrons at
saturation, as we see in figure 11.3. In the presence of large optical fields, the phase
space bucket height grows much higher than the initial phase velocity of
ν ′ = 2.606opt

0 . For separatrices corresponding to lower optical frequencies (larger
values of ν ′0), the electrons have more room at the top of the buckets to fall a greater
distance in νΔ ′ even as they remain trapped, yielding a greater energy loss and
increased optical gain. The optical wave is thus pulled to lower frequencies and
longer wavelengths over many passes in the resonator.

Synchrotron oscillations and sideband instability. In strong optical fields, the
electrons can execute many closed orbit revolutions in a single pass through
the undulator. These phase space revolutions are called synchrotron oscillations and
the corresponding frequency is the synchrotron frequency. The revolutions are well

Figure 11.2. Distortion of the FEL gain function for increasing fields ( jF= 0.1).
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represented by the electrons near the stable points in phase space. From the pen-
dulum equation, (9.53), with ϕ′ = 0, we have

ξ
τ

ξ ξ ξ ξ ξ π′ = ∣ ′∣ ′ = −∣ ′∣ ′ − ′ = −∣ ′∣ Δ ′ ′ =a a a
d

d
cos sin( ) sin ;

2
(11.5)s s

2

2

ξ ξ
τ

ξ
τ

ξ ξ ξ
′ − ′

= Δ ′ = −∣ ′∣ Δ ′ ≃ −∣ ′∣Δ ′ Δ ′ ≪a aso
d ( )

d

d

d
sin ; 1. (11.6)s

2

2

2

2

The electron phase thus oscillates as ξ ξ τΔ ′ = Δ ′ ∣ ′∣acos[ ]0 and the number of
synchrotron oscillations in a single pass through the undulator (τ = 1) equals

π∣ ′∣a /2 . Electrons are forced to the bottom of the buckets ( π∣ ′∣ =a ) for

π∣ ′∣ = ≃a 102 and execute a single phase space revolution for π∣ ′∣ = ≃a 4 402 .
Synchrotron oscillations, when coupled with optical slippage, lead to an inter-

esting phenomenon called the sideband instability. Consider two adjacent sections of
an optical wave intense enough to drive one complete synchrotron oscillation, each
section roughly one half of a slippage length long ( λN /2w ). Let the leading one of
these sections be coincident with a given group of electrons on their downward swing
at the start of the undulator; this section of the wave will be preferentially amplified
due to large energy extraction from the electrons. However, by the time these
electrons swing back up, they will be coincident with the trailing section of the
optical wave because of slippage. This section of the wave will be attenuated due to
the loss of optical energy to the coincident electrons.

Thus, the optical wave develops spiking in the time domain, a chaotic behavior
known as the sideband instability. Its onset generally requires optical fields large
enough to force at least one phase space revolution in a single pass through the

Figure 11.3. The phase space origin of the frequency pulling effect.
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undulator, with adjacent spikes roughly separated by the slippage length λNw . An
actual measurement of spiking is shown in figure 11.4.

The name ‘sideband instability’ derives from the associated perturbation in the
optical spectrum. Spiking is clearly an amplitude modulation effect driven by the
vertical motion of the electrons in phase space. But the accompanying horizontal
motion of the electrons in their phase space orbits drives the phase of the optical
wave and leads to phase modulation. One of the AM sidebands is evidently canceled
by the coincident PM sideband, and the result is a single sideband on the low fre-
quency side of the optical spectrum. Although the sideband instability leads to
increased energy extraction, sideband growth is intrinsically chaotic, with sidebands
eventually acquiring their own sidebands, and so on. Such spectral broadening and
chaotic spiking are often undesirable for research applications using short pulses.

As noted above, the sideband instability turns on when the optical field is suffi-
ciently large to drive at least one synchrotron oscillation, which is often the case
when the fractional cavity loss of the optical resonator is sufficiently small. However,
the development of spiking on multiple passes in the resonator also requires that the
downward motion of the electrons in phase space at a given time τ remain succes-
sively coincident with the corresponding spike in the co-propagating optical wave at
the same time τ. This is possible only if the resonator is set near its synchronous
length (see section 10.4). A small degree of cavity detuning is often sufficient to
extinguish the growth of the sideband instability.

11.3 Intensity dependence
In the regime of long electron bunches and laser pulses (with slippage parameter
μ ≲ 0.2c or so), a useful and quite universal analysis of FEL saturation can be
developed. In this regime, we assume that the laser spectrum is sufficiently narrow
that the dynamic distortion of the gain curve at saturation does not have sufficient
time to appreciably pull the optical frequency from its small-signal value within
the finite duration of the macropulse. We also neglect the formation of sidebands,
which assumption is justified independently. These constraints allow us to neglect all

Figure 11.4. Measured autocorrelation function on the Mark III FEL at 3.2 μm showing optical spiking.
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microtemporal perturbations and to base our analysis on the CW equations of
motion. Short-pulse supermode effects are omitted, because laser lethargy and
electron beam dispersion are negligible at saturation, as explained in section 10.5.
Finally, to develop a basic quantitative understanding of saturation, we initially
neglect energy spread, to be included in section 11.6.

The analytical procedure employs a straightforward numerical integration of the
coupled Maxwell–Lorentz equations of motion over a single pass in the undulator,
for different CW optical fields ′a0 and current densities jF, at the peak of the FEL
gain curve, ν ′ ≃ − +j j2.606 0.022 0.00016opt

F F0
2 (see text following (10.15)). For this

analysis we employ the coupled equations derived in section 9.3, (9.52) and (9.53),

τ
′ = − 〈 〉ξ

ξ
− ′

′
a

j
d
d

e (11.7)F
i

0

ν
τ

ξ ϕ′ = ∣ ′∣ ′ + ′a
d
d

cos( ), (11.8)

where = 〈 ∣ ∣ 〉j j f RF L p F
2 and ∣ ′∣ = ∣ ∣ 〈 ∣ ∣ 〉a a R fp F p

2 2 2 2 . Energy conservation, (9.49), is
written

ν ν− 〈Δ 〉 = Δ∣ ′∣ − 〈Δ 〉 = Δ∣ ∣ξ ξj a
j

R
a2 or 2 . (11.9)F

L

F
p0

2 2
0

where ν νΔ ′ = Δ . Upon solving (11.7) and (11.8) numerically at peak ν ′opt
0 , we can

approximate the results by the following expression:

π

≡ Δ∣ ′∣
∣ ′∣

=
′

+ ∣ ′∣
π⎡

⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

G
a

a

G j

a

( )

1
4

, (11.10)F
sat

2

2 2

where ′G j( )F is given in (10.15). The coefficients ‘ π4 ’ and ‘ π ’ are mnemonic;
numerically, we find

π = − + −j j j‘4 ’ 13.60 0.257 0.00942 0.000150 (11.11)F F F
2 3

π = − + −j j j‘ ’ 1.800 0.0114 0.000864 0.0000159 . (11.12)F F F
2 3

For ⩽j 22F these expressions convey an accuracy of ∣Δ ∣ <G G/ 3.5%(7%)sat sat for
∣ ′∣ ⩽a 19(30). Nevertheless, considerable accuracy is retained in analyses using the
mnemonic values π4 and π . We see that the intensity dependence of FEL
saturation, obtained here by rigorous numerical integration of the equations of motion,
manifestly does not correspond to the saturation mechanism of homogeneously
broadened atomic lasers, ∼G + −I I[1 / ]sat

1. This has important implications for
the analysis of optical resonators, as we discuss below.
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11.4 Analysis of optical resonators
Consider a generic FEL optical resonator with fractional cavity loss δc and output
coupling δoc, illustrated in figure 11.5. In the small signal regime, the net gain in a
single round trip is

δ+ = + − >G G1 (1 )(1 ) 1, (11.13)net ss c

where Gss is the small-signal, single-pass laser gain; see section 10.5.
For steady state oscillation at saturation, we have

δ
δ

δ
δ

= + − + =
−

=
−

G G G1 (1 )(1 ); 1
1

1
;

1
. (11.14)sat c sat

c
sat

c

c

The output power is thus proportional to

δ∣ ′∣ = ∣ ′∣ +a a G(1 ) (11.15)out
2 2

sat oc

δ
δ

δ
δ

= ∣ ′∣
−

⎛
⎝⎜

⎞
⎠⎟a

1
(11.16)2 c

c

oc

c

η= ∣ ′∣a G ; (11.17)2
sat oc

η

π

∣ ′∣ = ∣ ′∣ ′

+ ∣ ′∣
π⎡

⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

a a
G

a
or

1
4

, (11.18)out
2 2

oc
2

where we define the output coupling efficiency η ≡ δ
δoc
oc

c
as the fraction of total cavity

loss that appears as usable output coupling. This parameter is typically known by
design. From the known cavity losses δc we can calculate the steady-state saturated
gain Gsat from (11.14), then calculate ∣ ′∣a 2 at saturation from (11.10) and finally
calculate ∣ ′∣a out

2 from (11.17).
Optimum output coupling. What is the optimum cavity loss δc for a known value

of the small-signal gain ′G ? Physically, we might expect there to be some optimum
value: if δc is too large then no power builds up, and if δc goes to zero (including δoc!)
then no power gets out.

Figure 11.5. Fractional gain and loss factors in an optical resonator.
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Since equation (11.18) gives ∣ ′∣a out
2 as a function of ∣ ′∣a 2, we can maximize ∣ ′∣a out

2

versus ∣ ′∣a 2 by differentiation. Using mnemonic values for the coefficients, the
result is

π
π

∣ ′∣ = ∣ ′∣ =
−

→ ∣ ′∣ =a a a
(4 )

1
14.3. (11.19)2

opt
2

2

opt

This value of the optimum intracavity power is completely independent of the
design of the optical resonator! For this value of ∣ ′∣a opt, the electrons undergo
0.6 phase space revolutions (see figure 11.3), so the assumption that sidebands do not
turn on is a sensible one. It is perhaps not surprising that optimum energy extraction
should correspond to electrons that have descended to the bottom of the phase space
buckets. The associated saturated gain is

π

= ′

+
−

= ′
π⎡

⎣⎢
⎤
⎦⎥

G
G G

1
1

1

4.36
, (11.20)sat

and the optimum cavity losses from (11.14) are

δ =
+

= ′
+ ′

G

G
G

G1 4.36
. (11.21)c

opt sat

sat

Finally, the optimum output power from (11.17) is proportional to

η η∣ ′∣ = ∣ ′∣ = ′a a G G46.9 . (11.22)out
2

opt
2

sat oc oc

Of course, greater accuracy is obtained in this analysis using the previous
expansions for the coefficients ‘ π4 ’ and ‘ π ’ from (11.11) and (11.12).

Figure 11.6. Outcoupled optical power as a function of cavity loss.
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These results exemplify a fundamental difference in the saturation mechanism in
FELs as opposed to conventional lasers, which distinction can be traced back to
the appearance of the exponent π in the denominator of (11.10): in conventional
lasers, the corresponding exponent does not exceed unity and it is not possible to
optimize the total cavity loss δc. Instead, it is only possible to optimize the out-
coupled cavity loss δoc for a specified value of the non-outcoupled cavity loss δfixed,
where δ δ δ= +c oc fixed.

Optical power. The conversion of optical power between ∣ ′∣a 2 and ∣ ∣a p
2 was

calculated in (10.13),

∣ ′∣ = ∣ ∣a q a2 , (11.23)E p
2 2

where qE is defined in (10.11). The optical power in the TEM00 mode (with the
subscript indicating optical ) is

∫∫ π
= ∣ ˆ ∣P x y

c
Ed d

4
(11.24)op

2

∫∫π
π

π
= ∣ ∣ *c

w
x y

w
c u u

4
d d

(11.25)p p p0
2

0
2

2

π
π= ∣ ∣c
w c

4
; (11.26)p0

2 2

γ

π λ

π
= ×

ˆ
· ∣ ∣−
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⎤
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m c

e N K

w
aor [watts] 10

joules
erg 32 2

, (11.27)
w w f

pop
7

4 2 5

3 2 4 2 2
0
2

2

where all physical quantities on the rhs are in CGS units and we converted from cp to
ap using (8.14).

If we calculate ∣ ′∣a out
2 as a function of δc (with η = 1oc ), we find that the factor of

‘46.9’ in (11.22) varies as

π
δ

δ
δ

δ
∣ ′∣

′
=

′ −
−

′ −

π⎛
⎝
⎜⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟⎟

a

G

G

G
(4 )

(1 )
1

(1 )
. (11.28)out

2
2 c

c

1/
c

c

These curves are shown in figure 11.6 for ′ =G 0.5; 1; 2, and are quite broad; the
range of δc for which ∣ ′∣a out

2 exceeds 90% of its maximum value is on the order of δc
itself. Thus, the net round-trip, small-signal gain can be substantially increased by
decreasing the cavity loss δc at little expense to the outcoupled power at saturation.

Example. What are the optimum cavity losses and output power for the example in
section 10.5? Use both the mnemonic values of π4 and π and their numerical
expansions. Assume =γq 1 and η = 1oc .

Solution. In that example we calculated jF = 7.792, for which

′ =G j( ) 1.355 (11.29)F
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from (10.15). Using mnemonic results from (11.21) and (11.22), we find
δ = 23.7%c

opt and ∣ ′∣ =a 63.5out
2 . With the previous value of qE= 0.700 we have

∣ ∣ =
∣ ′∣

=a
a

q2
45.4. (11.30)p

E
out
2 out

2

Substituting this value for ∣ ∣a p out
2 into (11.27), together with the parameters

listed in the original example in section 9.1, yields an outcoupled power of
=P 8.81out MW.

If we now use the full expansions for ‘ π4 ’ and ‘ π ’ from (11.11) and (11.12), we
calculate ‘ π =4 ’ 12.10 and ‘ π =’ 1.756. From (11.19) we have

π
π

∣ ′∣ = ∣ ′∣ =
−

=
−

→ ∣ ′∣ =a a a
(4 )

1
(12.10)

1.756 1
13.92, (11.31)2

opt
2

2 2

opt

and the corresponding saturated gain from (11.20) is

π

= ′

+
−

= ′

+
−

= ′
π⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

G
G G G

1
1

1
1

1
1.756 1

4.39
. (11.32)sat 1.756

The optimum cavity losses and output power from (11.14) and (11.17) are then

δ =
+

= ′
+ ′

=
G

G
G

G1 4.39
23.6%, (11.33)c

opt sat

sat

∣ ′∣ = ∣ ′∣ = ′ =a a G G44.1 59.8. (11.34)out
2

opt
2

sat

The resulting output power is =P 8.3out MW.Measured outcoupled optical powers
from the Mark III FEL are actually of this magnitude—divided into four separate
pulses, one from each surface of the intracavity Brewster plate output coupler.

11.5 Extraction efficiency
Into the second of (11.9) for energy conservation,

ν− 〈Δ 〉 = Δ∣ ∣ξ
j

R
a2 , (11.35)L

F
p0

2

substitute the expressions for νΔ , jL, RF and Δ∣ ∣a p
2 in CGS units from (7.36, 8.15,

8.32, 8.38, 11.27):

π λ

γ π
π γ

γ

π

π λ

γ

− ·
ˆ

· · Δ

= Δ · ·
ˆ

e N K
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I e

c A

A
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e N K
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2
8 ( / )

4

2 32
. (11.36)

w w f
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w w f

2 2 3 2 2

3 2
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2
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2

3 2 4 2 2

4 2 5
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This simplifies to

γΔ = 〈Δ 〉P I e mc( / ) ( ) (11.37)op MKS
2

γ γ
γ

Δ = Δ
P I

mc
e

(11.38)op MKS

2

MKS

γ
γ

Δ = Δ
P I V , (11.39)op MKS MKS

where ΔPop is now in watts. If the laser is oscillating in steady state, the power
extracted from the electron beam on a single pass must leave the cavity on that
pass, i.e.Δ =P Pop out. Thus, we have a quick way to calculate Pout, if we know the
extraction efficiency γ γ〈Δ 〉/ . To obtain this, use the first of (11.9) for energy
conservation,

ν〈Δ 〉 = Δ∣ ′∣ = ∣ ′∣ξj a G a2 (in general) (11.40)F 0
2

sat
2

= ′G
4.36

(14.3) (optimum cavity loss; mnemonic). (11.41)2

For optimum cavity losses we thus have, using mnemonic coefficients,

π γ
γ

νΔ = 〈Δ 〉 = ′
N

G
j

4 46.9
2

, (11.42)w
F

γ
γ

Δ = ′ → →
⎛
⎝⎜

⎞
⎠⎟

G
j N N

jor 1.866 ;
1

4
as 0 . (11.43)

F w w
F

As an illustration, in the previous example we had jF = 7.792 and ′ =G 1.355,
so γ γ〈Δ 〉 =/

N
0.3245

w
. The output power from (11.39) is γ γ= 〈Δ 〉 =P I V /out MKS MKS

=(30 A)(42.511 MeV)(0.006904) 8.80MW,as calculated previously usingmnemonic
coefficients.

More generally, if jF and δc are arbitrary, so that the cavity losses are not
optimized, then the procedure for calculating the extraction efficiency is to find
Gsat from (11.14) and ∣ ′∣a 2 from (11.10). Then the decrease in phase velocity is

ν〈Δ 〉 = ∣ ′∣G a j/2 Fsat
2 , the extraction efficiency is γ γ ν π〈Δ 〉 = 〈Δ 〉 N/ /4 w, and the output

power is η γ γ= 〈Δ 〉P I V /out oc beam beam .
The extraction efficiency is inversely proportional to the number of undulator

periods Nw (11.43). Therefore, an FEL with fewer undulator periods will yield
larger optical power at saturation (11.39), all other things being equal. Of course, the
laser gain also decreases with fewer periods, so there is a trade-off in the design of
the FEL. However, we do not have to change the design of the FEL to observe an
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enhancement in extraction efficiency: there is an interesting phenomenon related to
this effect that appears in numerical FEL pulse propagation simulations and pro-
vides a nice illustration of the physics involved.

Figure 11.7 is the result of a numerical simulation showing the formation of a
saturated optical pulse at 3.2 μm in the Mark III FEL, operating near the syn-
chronous cavity length. The FEL is driven by a train of rectangular electron bunches
located between =t 0 ps and =t 4 ps in the numerical window, with the leading
edge on the left. The figure shows the relative overlap between the two pulses at the
start of the undulator at ten-pass intervals in the resonator. We see two interesting
effects. First, by the time the optical pulse enters the large signal regime around pass 50,
laser lethargy in the small signal regime has pushed the optical pulse towards the
trailing edge of the electron bunch. The laser evidently saturates before the optical
pulse walks off entirely, at which point lethargy is ‘frozen’ and the leading edge
moves forward again under the combined action of the laser interaction and the
finite (albeit small) cavity detuning. The second thing we observe is the abrupt
formation of a narrow spike at the leading edge of the optical pulse with more than
twice the peak power of the trailing section of the pulse.

What is the origin of this spike? The answer is the N1/ w dependence of the FEL
extraction efficiency. As the laser evolves more deeply into saturation, most of the
electrons in the bunch (between ∼1.5–4 ps on the latter passes) overlap and interact
with the optical pulse for the entire length of the undulator, the full Nw periods. But
the electrons at the leading edge of the bunch are not overlapped at all when the
pulses first enter the undulator. Electrons positioned within one slippage length in
advance of the sharp, leading edge of the optical pulse will not participate in the
FEL interaction until the optical pulse slips past them some distance along the
undulator. These electrons interact with the optical field over a reduced number
of undulator periods <N Nw w

eff . As a result, they experience greater extraction

Figure 11.7. Numerical simulation of laser oscillation near the synchronous cavity length.
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efficiency, and dump their energy at the leading edge of the optical pulse in an
increasingly tall and narrow spike roughly one slippage length wide. This spike often
serves as a seed for the formation of sidebands: the smaller ripples following the
leading spike in the optical pulse are actually the onset of the sideband instability.

11.6 Incorporation of energy spread
To include energy spread in the analysis of saturation, we perform a numerical
integration of the CW coupled equations, (9.52) and (9.53),

τ
′ = − 〈 〉ξ

ξ ν
− ′

′ ′
a

j
d
d

e (11.44)F
i

,0 0

ν
τ

ξ ϕ′ = ∣ ′∣ ′ + ′a
d
d

cos( ), (11.45)

but we include a second dimension in the initial phase space distribution to impose
a normalized Gaussian energy spread in ν ′0, (10.22), on the initially uniform
distribution in phase ξ′0 . The same physical constraints—absence of frequency
pulling, sideband formation, and short-pulse perturbations—are assumed to apply
here as in section 11.3. For small optical fields, the small-signal gain obtained from
the numerical integration of (11.44) and (11.45) agrees with the gain obtained from a
numerical integration of the weak field solution, (10.27), with an accuracy of
∣Δ ∣ <G G/ 0.36% over the full range σ ⩽ 4 and ⩽j 22F . Integration of the coupled
equations for large optical fields satisfies energy conservation to within roughly twice
this error.

To achieve useful approximations to the solution for large optical fields over the
full range of σ and jF, we first derive an improved approximation to the inhomo-
geneous gain reduction factor γq in the calculation of the small-signal gain, (10.28).
The revised calculation allows the two numerical coefficients in (10.24) to include a
dependence on jF, yielding a new gain reduction factor ′γq given by

σ
′ ≃

+

γ ⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥

q

A j

1

1
( )

, (11.46)

F

B jF2 ( )

where

= + −A j j j( ) 3.27 0.0183 0.000169 (11.47)F F F
2

= + −B j j j( ) 1.80 0.0138 0.000160 . (11.48)F F F
2

The use of this gain reduction factor in the calculation of the small-signal gain,

′ = ′ ′γ γG G j q( ), (11.49)F
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where ′G (...) is the three-term expansion defined by (10.15), yields an accuracy of
∣Δ ′∣ ′<γ γG G/ 1% for σ ⩽ 4 and ⩽j 22F .

The intensity dependence of the saturated gain Gsat in the presence of energy
spread is then obtained by fitting each of the coefficients ‘ π4 ’ and ‘ π ’ in (11.10) to a
series expansion in products σjF

n m. Upon solving (11.44) and (11.45) numerically at

peak ν ′opt
0 , we can approximate the results by the following expression:

α

′ ≡ Δ∣ ′∣
∣ ′∣

=
′

+ ∣ ′∣

γ

γ

βγ⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥

G
a

a

G

a
1

, (11.50)sat

2

2 2

where the parameters αγ and βγ are given by the power series expansions

∑ ∑ ∑ ∑α α σ β β σ= =
= = = =

γ γj j; , (11.51)
n m n m0

3

0

4

0

3

0

4

nm F
n m

nm F
n m

and the numerical coefficients αnm and βnm are the corresponding elements of the
following coefficient matrices:

α =

− −
− − −

−
− − × × × − ×− − − −

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

13.60 0.277 2.09 0.367 0.0198
0.257 0.00833 0.0465 0.0170 0.00164
0.00942 0.000107 0.000272 0.000307 0.0000409
0.000150 3.31 10 5.87 10 2.08 10 4.44 10

,

(11.52)

nm

6 6 6 7

β =

− −
− − −

− − ×
− × − × × − ×

−

− − − −

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

1.800 0.0287 0.177 0.0463 0.00352
0.0114 0.00150 0.00924 0.00330 0.000321
0.000864 0.0000115 0.000157 0.0000798 9.13 10
0.0000159 8.44 10 1.36 10 1.02 10 1.32 10

.

(11.53)

nm 6

8 6 6 7

For σ ⩽ 4 and ⩽j 22F these coefficients convey an accuracy of
∣Δ ′ ∣ ′ <G G/ 3.5%(8%)sat sat for ∣ ′∣ ⩽a 18(29).

Numerical values for ′γG , αγ and βγ obtained from the above expressions can be
used directly in the analysis of optical resonators developed in section 11.4. For
example, the optimum intracavity power, saturated gain, cavity loss and output
power from (11.19)–(11.22) are

α
β

β

δ η∣ ′∣ =
−

′ =
′

+
−

=
′

+ ′
∣ ′∣ = ∣ ′∣ ′γ

γ

γ

γ

βγ⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

a G
G G

G
a a G

( )

1
;

1
1

1

;
1

; .

(11.54)

opt
2

2

sat c
opt sat

sat
out
2

opt
2

sat oc

The application of these results will be illustrated in section 12.2, where the effects
of energy spread are of particular significance for lasing on higher harmonics.
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Numerical approximations notwithstanding, the above analysis reveals some
interesting physics about the effects of energy spread on the saturation mechanism
in FELs. First, examine the dependence of the coefficients αγ and βγ on the energy
spread σ. These dependencies are plotted in figure 11.8.

The coefficient βγ increases only slightly with energy spread, from ∼1.8 to 2.4 over
the range of σ shown, but the coefficient αγ roughly doubles over the same range.

Since αγ
2 plays the role of a ‘saturation intensity’, the increase in αγ with energy

spread leads to larger saturated powers than would otherwise ensue if αγ and βγ were
independent of σ. This behavior counteracts the detrimental effect of inhomoge-
neous gain reduction in the small-signal regime. The corresponding effect on the
output power ∣ ′∣a out

2 is illustrated in figure 11.9 for a current of =j 8F . These curves

Figure 11.8. FEL saturation coefficients αγ and βγ versus energy spread σ; = …j 0.01, 2, 4, 6 , , 22F .

Figure 11.9. Optimum output power versus energy spread at saturation; =j 8F ; η = 1oc .
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show the optimum output power calculated from (11.54) assuming the full variation
of ′γG with energy spread according to (11.49)—but the dashed curve is the optimum
output power calculated with constant coefficients α σ =γ ( 0); β σ =γ ( 0), while the

solid curve assumes the full σ-dependence α σγ ( ); β σγ ( ) given by (11.51). We see that
the σ-dependence of the coefficients yields a significant increase in power at all values
of the energy spread. Equation (11.54) reveals that the optimum output power ∣ ′∣a out

2

with fixed coefficients is strictly proportional to the small-signal gain ′γG , i.e. the
output power is afflicted by the full effect of inhomogeneous gain reduction. The
enhancement of output power that actually occurs for variable coefficients motivates
the aphorism that ‘the FEL interaction is more accommodating of energy spreads at
saturation’.

The energy acceptance of the FEL can be equivalently defined in both the small
signal and large signal regimes. In the small signal regime, the form of the
small signal gain curve requires that the e1/ energy half-width satisfy νΔ ⩽ 2.60 , so
that all the electrons contribute a positive gain. In the optimized FEL interaction at
saturation, the behavior of the electron orbits in phase space similarly requires

νΔ ⩽ 2.60 , so that all the electrons undergo half a phase space revolution in
the downward direction. Since ν σΔ = 20 , we require in either case that
σ ≲ ≃2.6/ 2 2, or δγ γ ≲ N( / ) 1/2e w1/ (10.25). This is the energy acceptance of the
FEL and yields a fundamental constraint on the quality of the energy spread in the
electron beam.
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