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Appendix A

Measuring angles

The degree (°) is a unit of angle. A degree has 60min of arc (′) and each minute has
60 s of arc (″). In symbols 1° = 60′ and 1′= 60″. The terms seconds of arc, arc-
seconds, etc, are used to distinguish angle units from the corresponding units of time.
It follows from the above that 1° = 60 × 60″= 3600″. A 90° angle is formed between
two directions that are mutually perpendicular.

It is common to express angles in decimal form rather than sexagesimal form,
i.e. using minutes and seconds. To convert angles in decimal form to sexagesimal,
divide the minutes by 60 and the seconds by 3600. Add the results of these divisions
to the degrees in the original angle. The sum is the angle in decimal form. For
example, convert the angle 30° 20′ 40″ to decimal form. We will work with four
decimal places. The number of degrees in the original angle is 30°. To this value we
add the number of minutes (20) divided by 60 (20/60= 0.3333°) and the seconds (40)
divided by 3600 (40/3600= 0.0111°). Adding all together:

° + ° + ° = °30 0.3333 0.0111 30.3444 .

° ′ ″ = °Therefore, 30 20 40 30.3444 .

To convert a decimal to sexagesimal, the whole part of the number is the number of
degrees. Multiply the decimal part (right of the decimal point) by 60. The whole part
of the result is the number of minutes (′). Next multiply the decimal part times 60.
This is the number of seconds (″). For example, convert 18.2462° to sexagesimal.
The number of degrees is the whole part, i.e. 18°. The decimal part is 0.2462. We
multiply times 60, to obtain 0.2462 × 60= 14.772. The whole part, 14, is the number
of minutes. We multiply the decimal part, 0.772 times 60 to obtain 0.772 × 60=
46.32 which is the number of seconds. Therefore, 18.2462° = 18° 14′ 46.32″.

A.1 Angles in radians
Although the measurement of angles in degrees is more common, the measurement
of angles in radians (which appears as an option in most calculators) is more suitable
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in some cases. The radian is a unit that derives from a more rigorous definition of the
angle and is more helpful in understanding some important quantities in astronomy.

Figure A.1 shows a circle of radius R. The angle (ϕ) between the two lines can be
measured as follows:

Angle (in radians) is equal to the length of arc S divided by radius of circle R. In
symbols:

ϕ = S R/ (radians). (A.1)

For example, if the angle between the lines is 90° then we have a quarter of a circle.
To obtain S the length of the arc of a quarter circle we divide the circumference of
the circle (2πR) by 4, or

π π= =S R R(2 )/4 /2.1

Following the definition above, the angle corresponding to the quarter circle (90°) is

ϕ π π= = =S R R R/ /(2 ) ( /2) radians.

Therefore, 90° equals (π/2) radians or about 1.57 radians. The complete circle
(i.e. the 360°) corresponds to 2π radians.

From the above it follows that multiplying the angle in degrees by π and
dividing by 180 gives the angle in radians. For example, to convert 30° degrees to
radians:

π° × =30 /180 0.5236 radians.

Figure A.1. The angle ϕ in radians is the length of the arc S divided by the radius of the circle R.

1Here π is the familiar number 3.14...
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To convert radians to degrees, multiply the angle in radians times 180 and divide
by π. For example, to convert 1.5 radians to degrees:

π× = °1.5 180/ 85.9 .

A.2 Angular size
Figures A.2(a) and (b) show two different angles. The angle is decreasing from
A.2(a) to (b). Assume that the observer is at the center of the circle, observing the
object represented by the green line. We will call the length of the green line the size
of the object. The center of the object is at a distance d from the observer. The size of
the object is obviously smaller than the length of the arc S and the distance of the
object d is smaller than the radius of the circle R. As the angle becomes smaller, the
size of the object approaches the length of the arc S and the distance of the object
approaches the radius R. Therefore, we can rewrite (A.1) above as:

ϕ = (size of object)/(distance of object) (A.2)

and the ratio is the definition of the angle between the two lines in radians. This
angle is also referred to as the angular size of the object. The method is more
accurate if the angles are small, i.e. when the size of the object is small compared to
the distance, as is the case for astronomical objects.

Example. The angular size of the Moon
The diameter of the Moon is 3474 km and the average distance to Earth is
382 500 km. As the distance is much larger than the actual size of the Moon, we can
apply (A.2) above to find the angular size of the Moon in radians, thus:

ϕ = =(3474)/(382 500) 0.00908 radians.

Figure A.2. The angular size of an object as seen by an observer located at the center of the circle. See the text
for details.
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As above, we convert to degrees by multiplying by 180 and dividing by π to find:

ϕ = °0.52 .

At its closest, the distance of the Moon is 357 000 km and the angular size is

ϕ ϕ= = = °(3474)/(357 000) 0.00973 radians or 0.56 ,

about 7% more than average. When the full Moon phase occurs at about the near
distance, the disk appears about 7% larger and is referred to as the super Moon.

A.3 The small angle formula
The angle calculated by (A.2) is in radians. We can convert the radians
into degrees by multiplying by 180 and dividing by π, and further convert degrees
to arcseconds by multiplying times 3600, and since 180 × 3600/π = 206 265
we have:

ϕ = ×206 265 (size)/(distance)

in arcseconds (″). The above equation is called the small angle formula and is
important because it allows the calculation of size or distance. For example, the
brightest star Sirius has an orbiting companion star, Sirius B. As observed from
Earth, the average angular size of the orbit is about 7.5″ and the average distance
from Earth is 8.6 light years (ly). We can estimate the average size of the orbit by
rearranging the terms in the small angle formula. Thus

ϕ= × = × =(size) (distance) ( )/206 265 8.6 7.5/206 265 0.00031 ly.

There are 63 271 astronomical units (AU) in one light year, therefore the size of the
orbit of the Sirius binary system is 19.6 AU (= 0.00031 × 63 271), i.e. about 20 times
larger than the average size of the Earth’s orbit, i.e. slightly larger than the orbit of
Uranus (see table 5.2).

The small angle formula is used to define the parsec. As the Earth orbits the Sun,
the nearby stars appear to shift with respect to the background of distant stars2. The
parallax is half the angle of shift between two observations from Earth made
6 months apart. We can rearrange the small angle formula to read

ϕ= ×(distance) 206 265 (size)/( ).

In this case, the angle refers to the parallax in arcseconds and the size is the semi-
major axis of the Earth’s orbit, i.e. 1 AU. Therefore

ϕ= ×(distance) 206 265 (1 AU)/( ).

2 See appendix B for details.
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The parsec is defined as a distance equal to 206 265 AU. In terms of parsecs, the
small angle formula reads

ϕ=(distance) 1/( )

where the angle is in arcseconds.

A.4 A practical way of measuring angles
The precise measurement of angles is of prime importance in astronomy and
requires accurate instruments called goniometers. For stargazing purposes, a
simple yet very practical method can be used, as described below. For most
people, the ratio of the width of their hand to the length of their arm is nearly
constant. There are several hand positions that can be used: fist, fingers fully
splayed, one finger, etc. Each of these positions measures a different angular
distance. By using these hand positions, angular distance/size measurements can
be made that are adequate for most naked-eye observations. The basic procedure
is as follows.

Hold your arm at full length, close one eye and sight along the arm with the other
eye. Then, based on how you hold your hand, you can measure different angles.

An angle of 20° corresponds to the span of your open hand at arm’s length (see
figure A.3). The width of the fountain spans about 20° or, equivalently, the angular
size of the bowl is 20°. Note that the (linear or actual) size of the bowl is about 1.2 m
(we are referring to length in this case!) but the angular size is an angle. If the dis-
tance of the object from the observer is increased, the angular size decreases, as
shown in the following two figures.

Figure A.3. An open hand at arm’s length. The angular size of the fountain is about 20°.
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An angle of 10° corresponds to the width your full fist at arm’s length (see
figure A.4).

An angle of 1° corresponds to the width of the tip of the little finger at arm’s
length (see figure A.5).

Figure A.4. A fist at arm’s length. The angular size of the fountain is about 10°.

Figure A.5. The tip of the little finger at arm’s length. The angular size of the fountain is slightly over 1°.
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Appendix B

Measuring distance in astronomy

Measuring the distance of celestial objects is a fundamental and difficult task. For
nearby stars (less than about 500 light years (ly) away) the method of parallax is
used. For more distant objects, more indirect methods are used, which are ultimately
based on the parallax method.

B.1 The parallactic shift
The essential idea is that of perspective: the apparent shift of an object’s position
against a distant background, when the object is observed from different positions.
Figure B.1 illustrates the concept. The two photographs were taken from the same
distance from the signpost. Figure B.1(a) was taken first. The camera was moved
4m to the left and figure B.1(b) was taken. Note that the signpost shifted from left to
right relative to the background. The two photographs (observations) were taken
from different positions and the result is a parallactic shift, or parallax for short.
There is an inverse relation between the magnitude of the parallactic shift and the
distance of the object (signpost) to the observer (camera).

The distance between the two observation points is called the baseline. In this
example the camera was moved by 4m, therefore the baseline was 4m.

Figure B.1. Photographs of a signpost from different positions. See the text for details.
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Using simple trigonometry one can find the distance of the object if the baseline
and the shift are known. The parallax method can be applied to measure the distance
of celestial objects. The method is the basis of the High Precision Parallax Collecting
Satellite (Hipparcos) mission and also of the Panoramic Survey Telescope & Rapid
Response System (Pan-STARRS) in Hawaii. Pan-STARRS can detect approaching
comets and asteroids. Pan-STARRS uses four charge coupled device cameras of
1.4 billion pixels (gigapixels) each. The four cameras are mounted on a single
telescope to provide four (rather than two) observation perspectives. In what follows
we will discuss the application of the parallax method to measuring star distances
and the distance to an asteroid.

B.2 A method for measuring the distances of stars
As the Earth moves around the Sun, our position in space is constantly changing.
Figure B.2 shows the Earth in two different positions, in January and July.

As shown in figure B.2, our line of sight to a nearby star appears at a different
point among the distant stars. The angle between the two lines of sight can be
measured by making two observations 6 months apart, for instance in January and
July. The baseline is 2 AU. Here we will work with half the angle and half the

Figure B.2. The shift in the apparent position of a star, as seen from Earth in January and in July. Drawing not
to scale.
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baseline. The angle p is the parallax angle. The distance to the star d in astronomical
units (AU) is related to the angle p (half the shift) and the Earth–Sun distance (which
is 1 AU) by:

=d p206 265/

where the parallax angle p is measured in seconds of arc1.

B.3 The parsec
For star distances it is convenient to define a unit of length equal to 206 265 AU.
This unit is the parsec (pc).

=1 pc 206 265 AU

and the distance formula becomes

=d p1/

where the angle p is expressed in seconds of arc and the distance d in parsecs.
As expected, the parallax angle is inversely related to the distance, i.e. the parallax is
smaller for the more distant stars. The star Pollux (one of the twins of Gemini) has a
parallax of about 0.1 arcseconds. Using the formula, we find that the distance of
Pollux is 10 (= 1/0.1) pc. The star Acrux, the brightest in the Southern Cross, has
parallax angle of about 0.01 arcseconds. Using the formula we find the distance of
Acrux to be 100 (= 1/0.01) pc. Stars at distance of 1000 pc would have a parallax
angle of 0.001 arcseconds, which is a very small angle (about 10 000 times smaller
than a human hair held at arm’s length) and beyond present measurement
capabilities.

The parsec and the light year are commonly used units to express star distances.
One can convert parsecs to light years using the formula:

=1 pc 3. 26 ly.

B.4 Measuring the distance of nearby objects
The parallax method can be used for measuring the distance of nearby objects, such as
asteroids, comets and the path of meteorites2. The principle of the method is the same
as for stars: two observations are made from two different locations and the distance
is determined by knowing the baseline and measuring the parallax angle. Nearby
objects shift position in the sky faster than stars. Therefore, the two observations must
be done simultaneously.

For nearby objects we can use two simultaneous observations from two different
parts of the Earth, as shown in figure B.3.

1 The number 206 265 is used to convert the radians to seconds of arc. See appendix A.
2 The distances of the planets and the Moon are currently measured using radar techniques.
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Knowing the (linear) distance between the two observers, we can calculate the
distance of the object d. The precision of the method increases if the distance
between observers is large, e.g. 500 km. To determine the height of meteorites,
photographs taken by two observers separated by a distance of approximately 20 km
are adequate.

Figure B.3. The shift of a nearby object (e.g. an asteroid) as seen simultaneously by two observers on Earth.
Distances not to scale.
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Appendix C

Time keeping

The repeating cycles of celestial motions have been used to mark time and make
calendars since ancient times. The Earth’s rotation provides one such measure,
although seasonal variations made several refinements necessary. One complete
rotation of the Earth with respect to the Sun is a solar day. It can be measured by
marking two successive transits of the Sun through the meridian of the observer.
An ordinary clock can be used to measure the time interval between two successive
noon positions as marked by a sundial. This is known as the apparent solar day.

The length of the apparent solar day is not the same from day to day. This is
primarily the result of the tilt of the Earth’s rotation axis with respect to its orbit and
the elliptical shape of the orbit. The apparent solar day in December could be as
much as 50 s longer than in September1. The cumulative effect of a succession of
shorter days could lead to a difference of several minutes between the Sun transit as
marked by the sundial and noon as indicated by an ordinary clock.

The time as measured by the 24 h clock is referred to as the mean solar time and
the mean solar day starts at midnight. All locations with the same longitudes have
the same mean solar time. This is different from time zones, as discussed below. The
numerical difference:

–‘apparent solar time’ ‘mean solar time’

is referred to as the equation of time and is shown in figure C.1.
To understand the significance of the numbers in the vertical axis of figure C.1,

let us assume an observer at the prime meridian at Greenwich, using standard time
(as opposed to daylight savings time; explained below). For January 1, the number
of minutes indicated on the vertical axis of the figure is −4, meaning that the Sun
will cross the meridian at 12:04 according to the clock. For the end of October, the
number of minutes is 16, meaning that the Sun will cross the meridian 16 min

1The apparent solar day should not be confused with the daylight hours.
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before the clock reads 12 noon, i.e. the Sun will cross the meridian when the clock
reads 11:44.

In summary, to find when the Sun crosses the meridian read the number of
minutes from figure C.1:

– if the sign is negative, the number of minutes is added to 12 noon;
– if the number of minutes is positive, it is subtracted from 12 noon.

The curve in figure C.1 crosses the 0 line at four points, meaning that the Sun crosses
the meridian at 12:00 mean solar time four times every year.

C.1 Civil time and the 24 h day
As the mean solar time is different for each longitude, a more standardized and
uniform civil time system became necessary. The mean solar time at the Greenwich
Observatory in the UK is referred to as the Greenwich Mean Time (GMT) and was
the first international standard time to be adopted. It served as the basis for standard
time and time zones used across the globe. The time zones are approximately 15°wide,
which is the equivalent of 1 h.2 The civil time is the same for the entire time zone and
coincides with the mean solar time of the nominal center of the zone.

Greenwich (longitude 0°) is the center of time zone 0 which extends from long-
itudes 7.5° E to 7.5°W. Time zone +1 is centered at longitude 15° E, extending from
longitude 7.5° E to 22.5° E. If the time in Greenwich is 06:00 (6 a.m.) then the civil
time in zone +1 is 07:00 (7 a.m.). In zone +2 it is 08:00 (8 a.m.), etc. Similarly time
zone −1 is centered at longitude 15°W, extending from longitude 7.5°W to 22.5°W.
If the time in Greenwich is 06:00 (6 a.m.) then the civil time in zone −1 is 05:00 (5 a.m.).

Figure C.1. The equation of time. Credit: Astronomical Applications Department, U.S. Naval Observatory,
http://aa.usno.navy.mil/faq/docs/eqtime.php.

2 See the discussion of RA in chapter 3.
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In zone −2 it is 04:00 (4 a.m.), etc. There are notable irregularities in the boundaries
to accommodate for national and provincial borders, as well as zones with fractional
time changes (30 min or 15 min).

The daylight savings time affects civil time by moving the clocks one hour forward
in the spring (daylight savings time). In the autumn the clocks are moved back one
hour and this is the standard time.

The mean solar time varies within the zone. For each degree west of the center of
the zone, the mean time is 4 min behind the civil time of the zone. For each degree
east of the center of the zone, the mean solar time is 4 min ahead of the civil time
of the zone. For example, if the center of the zone is at longitude 30°E and the
civil time of the zone is 10:00 (10 a.m.), then the mean solar time in a location at
longitude 31° E is 10:04 and the mean solar time in a location at longitude 29°E is
09:56, assuming of course that the locations are not separated by an irregular
boundary. A 24 h interval is the mean solar day, and is measured from midnight to
midnight. Note that in the common a.m. and p.m. designations, noon is 12 p.m. and
midnight is 12 a.m.

At present, the Universal Coordinated Time (UTC) is a 0–24 h clock and is the
current basis for civil time. It is an extension of the GMT in that it refers to the same
meridian (Greenwich) and combines data from several timekeeping centers world-
wide. The UTC makes use of timers based on the so-called atomic clocks. Atomic
clocks allow time measurement with a precision of one billionth of a second. As a
result, minor irregularities in the UTC are corrected by including ‘leap’ seconds.

The UT1 system tracks the Earth’s rotation using signals from powerful radio
sources in space (quasars). The difference between UTC and UT1 is less than 1 s. For
most practical purposes the difference between various time systems is of little
importance. The time of astronomical events (equinoxes, eclipses, Moon’s phases, etc)
are usually posted in UTC. The conversion methods outlined in the beginning of this
chapter apply to UTC as well.

Online access to UTC, UT1 and others is available at http://time.gov/HTML5/ or
http://www.usno.navy.mil/USNO/time.

C.2 Sidereal time
For astronomical measurements, a convenient way of marking time is based on
successive transits of a star through the local meridian. This time interval is known
as the sidereal day. The word sidereal derives from the Latin sidus, meaning star. By
convention, the sidereal day is marked by the transits of the March equinox. The
length of one sidereal day is approximately 23 h 56 min and 4 s. It should be noted
that the rotation of the Earth is slowing down because of the Moon’s gravitational
interaction. The Earth’s rotation is also affected by shifts of material in the Earth’s
crust and interior. In addition, as the sidereal time is marked by the transit of the
March equinox, the sidereal day is also affected by the precession of the equinoxes
and small irregularities in the Earth’s spin axis3.

3 See the discussion of precession in chapter 2.
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The local apparent sidereal time (LAST) equals the hour angle (HA)4 of the
March equinox, corrected for precession and other fluctuations of the spin axis.
As the right ascension (RA) of stars is measured relative to the March equinox,
all stars that have a RA equal to the LAST cross the local meridian at the same
time at that location. For example, both Iota Orionis and Lambda Orionis have
RA 5 h 35 m. Both these stars will cross the meridian of a location when the
sidereal clock in that location reads 5 h 35 m. In other words, a star will cross
the meridian of the observer when the local sidereal time at the observer’s location
equals the RA of the star. This is the main reason why the RA is measured in units
of time rather than in units of angle.

There is a simple relation between LAST, the HA of a star and the RA of a star:

= –HA LAST RA.

Therefore, if we know the local sidereal time and the RA of a star, we can locate the
meridian of the star (the hour circle of the star, defined in chapter 3). If the star’s
declination is also known, then the position of the star in the sky is completely
defined.

Listings of the sidereal time can be downloaded from http://aa.usno.navy.mil/
data/docs/siderealtime.php.

An instant reading of the local sidereal time is available on line at http://tycho.
usno.navy.mil/sidereal.html.

4 For HA and RA see the discussion of equatorial coordinates in chapter 3.
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Appendix D

Star magnitude systems and the distance
modulus

The brightness of the stars we see in the sky is determined by the amount of light
emitted from the star and the distance of the star. We use the apparent and absolute
magnitude systems to describe how bright the star appears to an observer on Earth
and how bright the star actually is. Both systems use a scale that is inverse: the larger
the number the dimmer the star. Also, the numbers used in both systems indicate
ratios rather than differences. The two magnitudes are related to each other. The
relation between the two magnitudes is given by the distance modulus and involves
the distance of the star, as will be described below.

D.1 The apparent magnitude system
The apparent magnitude system refers to the apparent brightness, i.e. the brightness
as perceived by an observer on Earth. The system was introduced by the Greek
astronomer Hipparchos over 2000 ago and in its original form used six magnitudes:
1 through 6. The brightest stars were assigned magnitude 1. The dimmest stars were
assigned magnitude 6.

The symbol m is used to indicate the apparent magnitude. The magnitude scale
works as follows. If the magnitudes of two stars differ by 1 unit, then the star with
the smaller m is 2.51 times brighter than the star with the larger m1.

For example:
– If star A has m= 1 and star B has m= 2 then star A appears 2.51 times
brighter than star B.

– If star A has m= 2 and star B has m= 3 then star A appears 2.51 times
brighter than star B.

1The number 2.51 is used here approximately for the fifth root of 100, which is 2.511886…
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If the magnitudes of two stars differ by 2 units, then the star with the smaller m is
2.512 times (approximately 6.3 times) brighter than the star with the larger m.

For example:
– If star A has m= 1 and star B has m= 3 then star A appears 2.512

(approximately 6.3) times brighter than B.
– If star A has m= 4 and star B has m= 6 then star A appears 2.512 times
brighter than B.

More generally, if the magnitude of object A is mA and the magnitude of object B
is mB then object A appears 2.51(mB−mA) times brighter than object B.

For example, ifmA= 1 andmB= 6 then star A is brighter than star B by 2.51(6−1)=
2.515= 100. Therefore, a decrease of magnitude by 5 units means a 100 times increase
in brightness.

Before the invention of the telescope, the system was based on observations with
the naked eye. The invention of the telescope allowed observation of stars dimmer
than 6, therefore magnitudes larger than 6 were introduced. The use of modern
instrumentation makes the magnitude scale more precise, so the units are sub-
divided into decimals. For example, the magnitude of the star Deneb is 1.25. The
system also extends to negative magnitudes. For example, the magnitude of the
star Sirius is −1.46.

Table D.1 shows the brightness ratio (brightness of larger m to brightness of
smaller m) for given differences in magnitude.

An increase of 5 units in m corresponds to a decrease in brightness by a factor of
100. An increase of 10 units in m corresponds to a decrease in brightness by a factor
of 10 000.

Table D.2 shows the reduction in brightness as m increases in steps of 5.
The brightest stars in the sky have magnitudes around −1 to 0. A magnitude of 25

is about the limit of what can be detected using telescopes at present. Stars of
magnitude 25 appear 1010 (ten billion) times dimmer than the brightest stars! The
Sun appears as the brightest object in the sky. For the Sun m=−26.7.

Magnitudes apply also to objects that do not emit their own light, for example
planets and the Moon, although the values may change because of their changing
distances from Earth. The full Moon on average reachesm=−12.7 and Venus at her
brightest can reach m=−4.8.

Table D.1. The brightness ratio for given differences in apparent magnitude.

Difference in m 1 2 3 4 5
Brightness ratio 0.40 0.16 0.06 0.03 0.01

Table D.2. The brightness ratio for given differences in apparent magnitude.

Difference in m 5 10 15 20 25
Brightness ratio 10−2 10−4 10−6 10−8 10−10
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D.2 Absolute magnitude
The Sun appears brighter than any star in the sky. But in terms of actual light output
(so-called luminosity)2, the Sun is an average star. For example, the star Deneb emits
50 000 times more light than the Sun, meaning that if Deneb were in place of the
Sun, we would receive 50 000 times more light! The absolute magnitude is a system
that compares the actual light output of stars. The basic idea is as follows.

The star Arcturus (apparent magnitude m = −0.04) is about 37 light years (ly)
away and emits 200 times more light than the Sun. If we could place the Sun at
37 ly away from Earth, it would look about 200 times dimmer than Arcturus.
Using the same thought experiment, we can place all the stars at the same distance
from Earth and compare their brightness at this equal setting. This method would
eliminate the dependence on distance. For the standard distance we choose
10 parsecs (pc)3.

We define the absolute magnitude as the magnitude the star would have if set at
a distance of 10 pc from Earth. The absolute magnitude is designated by M. For
example, for the Sun M = 4.9 which means that if the Sun was set at a distance
of 10 pc (33 ly) away from Earth, it would be a star of apparent magnitude 4.9,
i.e. barely visible to the naked eye!

As a rule, if the absolute magnitude is smaller (and remember −100 is smaller than
−10) than the apparent magnitude, then the star is farther away than 10 pc.

The reverse is also true: if the apparent magnitude is smaller (and remember −100
is smaller than −10) than the absolute magnitude, then the star is closer than 10 pc.
There is a direct relation between the numerical difference between the two mag-
nitudes and the distance, which is discussed next.

D.3 The distance modulus
The relation between absolute magnitude M and apparent magnitude m is

= + −M m d5 5 log( )

where d is the distance of the star in parsecs and log is the logarithm to base 10.
For example, Arcturus has m=−0.04 and is about 37 ly away, i.e. in parsecs

d= (37/3.3)= 11 pc.
Therefore, for Arcturus, M=−0.04+ 5− 5 log(11)=−0.04+ 5− 5× 1.05=−0.29.
Note that log(10)= 1, therefore, if a star is already at a distance of 10 pc, its

absolute and apparent magnitudes are the same. In the example above, Arcturus is
at a distance of 11 pc, very close to 10 pc, therefore it is not surprising that M and m
for Arcturus are about the same. If the star is farther away than 10 pc, the absolute
magnitude is a smaller number than the apparent magnitude. Remember that −5 is
smaller than −4 and that smaller in the magnitude systems means brighter.

2 See the discussion of luminosity in chapter 8.
3One parsec equals about 3.3 ly. See the discussion on the small angle formula in appendix B.
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For example Canopus, the second brightest star in the sky, has apparent mag-
nitude m=−0.72 and distance 310 ly (310/3.3= 94 pc). The absolute magnitude of
Canopus is:

= + − = − + − × = − + − × = −M m d5 5 log( ) 0.72 5 5 log(94) 0.72 5 5 2 5.7.

In other words, if Canopus was 10 pc away it would outshine Venus at her best
(for Venus m=−4.8).

On the other hand Sirius, the brightest star in the sky, has m=−1.46 and a dis-
tance of 8.6 ly (8.6/3.3= 2.6 pc). The absolute magnitude of Sirius is:

= + − = − + − × = − + − × =M m d5 5 log( ) 1.46 5 5 log(2.6) 1.46 5 5 0.42 1.44.

Thus if both Sirius and Canopus were placed at 10 pc from Earth, Canopus would
appear 2.5(5.7+1.44), over 700 times brighter than Sirius!

The difference m−M is the distance modulus, because it is a direct measure of the
distance of the star. This can be seen by rearranging the relation between m, M and d
above. From M=m+ 5− 5 log(d ) it follows that:

= + −d m Mlog( ) 1 ( )/5.

Therefore, the larger the distance modulus (m−M) the larger the distance is. If
m =M the star is at 10 pc, because log(10)= 1.

We can extract the distance from the logarithm, recalling that a= log(x) means
that x= 10a. For example if log(x)= 3, then x= 103. From log(d )= 1+ (m−M)/5
we find the formula for the distance in terms of m and M:

= + −d 10 .m M1 ( )/5

We can use this formula directly to calculate the distance of a star in parsecs, once
the apparent and absolute magnitude are known. For example, Polaris has m= 1.96
and M=−3.65; therefore

= = = =+ + +d d10 or 10 10 132 pc.1 (1.96 3.65)/5 1 1.122 2.122

The distance formula is very useful, because we can always find m by directly
observing the star, and we can ‘guess’ M from the HR diagram. As discussed in
chapter 8, the spectral type of the star and the luminosity class allow us to
approximately locate the star in the HR diagram. From the point representing the
star in the HR diagram we can read on the vertical axis the luminosity of the star in
units of the Sun’s luminosity. From the luminosity we can calculate M. Inserting M
andm in the above equation yields the distance of the star in parsecs. This method of
determining the distance is known as spectroscopic parallax, although there is no
angle involved in the procedure.
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