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Causality Rules (Second Edition)
Dispersion theory in non-elementary particle physics

Vladimir Pascalutsa

Chapter 8

Compton-scattering sum rules for vector bosons

In this chapter we enter the relatively unexplored area of sum rules for a spin-1
target. This subject is interesting in connection with the massive gauge bosons of the
Standard Model (W±, Z0), but the formalism is just as well applicable to the (virtual)
massless gauge bosons, such as photons and gluons. The sum rules for the photon
structure functions can simply be obtained in the limit of vanishing electromagnetic
moments; we will come to that in the last section. We shall start, however, by
considering a charged massive spin-1 particle having a magnetic and quadrupole
moments, and more generally having arbitrary electromagnetic distributions (or,
form factors). The practical applications are therefore not limited to gauge bosons;
the resulting sum rules will apply, for example, to the deuteron or vector mesons
(ρ, ω, etc) as well. We shall see that consistent electrodynamics of spin-1 fields is only
realized within the Yang–Mills theory, which sets the classical values of the
electromagnetic moments to the, so-called, natural values. Some extra attention
will be paid to the role of the quadrupole moment, which is of course a novel feature
of the spin-1 case, as compared with spin-1/2. It, for instance, affects the sum sum
rule for the forward spin polarizability. We shall conclude with a look at the spin-1
structure functions and the sum rules for the photon structure functions in
particular.

8.1 Electromagnetic moments: natural values
A massive particle with spin S has, in general, S2 1+ intrinsic electromagnetic
moments. In the case of S = 1, these are: the electric charge e, the magnetic dipole
moment μ, and the electric quadrupole moment Q. It is interesting that for an
elementary (structureless) charged particle the electromagnetic moments are set to
the so-called natural values [1–4]. For example, in the spin-1 case, they are given by

Q
e

M
e

M
, , (8.1)nat. nat. 2

μ = = −
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where M is the mass. The natural value of the magnetic moment corresponds with
the gyromagnetic ratio g (i.e. the ratio of the magnetic moment value, in units of the
magneton: e M/2 , to the value of the spin) equal to 2. In fact, it is the natural value
for any spin:

g
e M S

2
( 2 )

. (8.2)nat.
nat.μ

= =

As shown in [3], the natural values arise from the point-like transverse charge
density. In simpler terms, this means the charge can only be distributed along the
direction of motion. The deviations of the electromagnetic moments from their
natural values are called the anomalous moments; we hereby introduce them in the
dimensionless fashion:

Q Q
e
M

e
M

2
2

, 2 , (8.3)nat. nat. 2
μ μ ς= + ϰ = +

where ϰ and ς are, respectively, the magnetic and quadrupole anomalous moments.
The normalization is chosen such that g( 2)/2ϰ = − , just as for the spin-1/2 particle.

Let us consider a field-theoretic description of a massive spin-1 particle with the
above-mentioned intrinsic moments. In relativistic theory, the particle is described
by a bosonic vector field W x( )μ . This is very similar to the electromagnetic field
A x( )μ , except for a charged particle the field is complex. The free Lagrangians for the
electromagnetic and vector-boson fields are similar too1:

L F F F A A
1
4

, , (8.4a)em = − = ∂ − ∂μν
μν

μν μ ν ν μ

L W W M W W W W W
1
2

, . (8.4b)Proca
2= − − = ∂ − ∂μν

μν
μ

μ
μν μ ν ν μ* *

The only real difference is the mass term; the factor of 2 difference arises because of
the convention to write the complex field in terms of two real vectorsW1

μ andW2
μ:

W W iW
1

2
( ). (8.5)1 2= −μ μ μ

Substituting this into the above Lagrangian, one can see that the normalization
factors for the real fields are all the same.

In the field-theoretic language, the electromagnetic moments arise from the cubic
WWγ couplings. To construct those, it is good to start with the minimal electro-
magnetic couplings, obtained by the minimal substitution,

D ieA , (8.6)∂ → = ∂ −μ μ μ μ

into equation (8.4b), leading to the following interaction Lagrangian (containing
both cubic and quartic couplings):

1 This description of the massive spin-1 particle is known as the Proca model.
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L i e W A W i e A W W e A W W . (8.7)min
2 2= − +μν

μ ν
μ ν

μν
μ

μ* * *

The minimal substitution ensures the electromagnetic gauge symmetry, exhibited
here by the invariance of the full Lagrangian under the following transformations:

A A W e W, , (8.8)ieφ→ + ∂ →μ μ μ
μ φ μ

with φ an arbitrary scalar field. As the result, the charge and electromagnetic current
are conserved.

In order to have arbitrary values of the magnetic and quadrupole moments, let us
supplement the Lagrangian with the following terms:

L i e ℓ W W F eℓ M D W W F W D W F( 2 ) ( ) ( ) , (8.9)extra 1 2
2= + ∂ + ∂μ ν

μν
μ ν

α
α

μν
α μ ν

α μν* * * *⎡⎣ ⎤⎦

where ℓ1 and ℓ2 are the coupling constants, which contribute to the anomalous
moments as follows:

ℓ ℓ ℓ
1
2

( 1),
1
2

(1 ). (8.10)1 2 1ςϰ = − = + −

Thus, the natural values of the electromagnetic moments arise when ℓ 11 = and
ℓ 02 = . These are precisely the values corresponding with the Standard Model
description of the charged gauge bosons, W±. To understand why this choice of
couplings is special, let us make a quick detour into the relation between gauge
symmetries and the so-called degrees-of-freedom counting.

8.2 Gauge symmetries and spin degrees of freedom
Gauge symmetry is a divine principle of all the relativistic field theories of particles
with spin-1 and higher, viz, ‘higher-spin’ field theories. The reason is that the number
of field components exceeds the number of spin degrees of freedom (DoF), and the
balance is established using gauge symmetries.

For example, a spin-1 particle ought to have three spin DoFs in the massive case
and two in the massless2. A real four-vector fieldW x( )μ , describing it in a relativistic
field theory, has four components. Writing the Lagrangian in a way analogous to the
scalar theory, i.e. W W∂ ∂μ ν

μ ν, would not work because all four components of the
field act independently, giving rise to four spin DoFs; we need fewer. The correct
Lagrangian is W W W( )2∂ ∂ − ∂ ·μ ν

μ ν , since it is invariant under a gauge trans-
formation, W W φ→ + ∂μ μ μ , which ensures that the number of independent
components is reduced to two. The mass term, M W2 2, raises this number to three,
as it should.

The gauge symmetry thus eliminates the extra DoFs. The exact number of
eliminated DoFs depends on the form of the gauge transformation. In general, the
transformation can be written as D x( )aφμ , where Dμ is a differential operator of
order d acting on the parameters of the gauge transformation aφ , with a n1, ,= … .

2 In general, the number of spin DoFs is S2 1+ and 2 for, respectively, massive and massless particles with
spin S.
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The number of eliminated DoFs is then equal to3 d n( 1)+ . In the above example of
a free spin-1 particle, the transformation φ∂μ has d n1= = , and hence the
corresponding symmetry eliminates two DoFs.

Now, we can look at the theory considered in the previous section from the point
of view of DoF counting. The free theory, equation (8.4), is alright: the kinetic terms
of both Aμ and Wμ are gauge invariant. To make the bookkeeping easier, let us
introduce A a

μ , with a 1, 2, 3= , and define

( ) ( )A W W A
i

W W A A
1

2
,

2
, . (8.11)1 2 3= + = − =μ μ μ μ μ μ μ μ* *

The above free Lagrangian for the photon andW± is then written simply as

L F F M A A F A A
1
4

1
2

, , (8.12)
a a1

3

1

2
a a a a a a a2∑ ∑= − − · = ∂ − ∂

= =
μν

μν
μν μ ν ν μ

and the first term is invariant under the gauge transformation: A Aa a aφ→ + ∂μ μ μ .
The minimal substitution, equation (8.6), can now be written as

A e A A( )a ab ab b3 3δ ε∂ → ∂ −μ ν μ μ ν , where the summation over repeated indices is under-
stood. Obviously, this substitution spoils some of the gauge symmetries of the free
massless theory, retaining only the symmetry under

A A e A( ) . (8.13)a a a ab b3 3 3δ ε φ→ + ∂ +μ μ μ μ

The easiest way to restore the lost symmetries for a = 1 and 2 is to treat all the fields
in the same fashion and do the minimal substitution as follows:

A D A D e A, . (8.14)a ab b ab ab abc cδ ε∂ → = ∂ −μ ν μ ν μ μ μ

The resulting theory is none other than the SU(2) Yang–Mills theory, invariant
under

A A D . (8.15)a a ab bφ→ +μ μ μ

The more general minimal substitution, equation (8.14), leads to the following
extra terms, in addition to the minimal coupling of equation (8.7):

L i e W W F e W W W. .
1
2

( ). (8.16)extraYM
2 2 4= + · −μ ν

μν*

The first term is the cubic coupling, which fixes the magnetic and quadrupole
moments of the W to the natural values (see equations (8.9) and (8.10)). The second
term describes the W self-coupling, which emphasizes the non-Abelian nature of the
Yang–Mills theory.

3A more rigorous formulation of this theorem (conveyed to me by Misha Vasiliev, who is world’s greatest
expert on higher-spin fields) can be found in [5].
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To conclude, the consistent electrodynamics of a charged spin-1 particle is only
realized within the Yang–Mills theory4, where, due to the gauge symmetry, the
electromagnetic moments are set to their natural values. The coupling (8.9) with
arbitrary ℓ1 and ℓ2 is nevertheless useful in the sense of effective theory, and
particularly in obtaining the low-energy theorems, which we now consider.

8.3 Tree-level unitarity: GDH sum rule
An important step towards deriving the sum rules is the forward Compton
scattering. Recall from chapter 4 that the number of independent scalar amplitudes,
in case of a real photon scattered off a massive spin-1 particle, is S2 2 4+ = . As the
four Lorentz-covariant structures it is convenient to choose

O O
O O

q q, ,
, ,

(8.17)1 2

3 4

ε ε χ χ ε ε χ χ
ε χ ε χ ε χ ε χ ε χ ε χ ε χ ε χ

= * · * · = * · · * ·
= * · * · − * · · * = * · * · + * · · *

where ε and χ are the polarization vectors of, respectively, the photon and the spin-1
target; q is the photon four-momentum. The tree-level forward Compton-scattering
amplitude computes (using equations (8.7) and (8.9)) as follows:

A OT t M( , 0) 2 ( ) , (8.18)
i 1

4
W W

i i∑ν ν= =
=

γ γ→

A

A

A

A

e
M

e
M

ℓ ℓ
e

M
e
M

ℓ
e

M
ℓ

e
M

e
M

e
M

ℓ ℓ
e
M

( ) ,

( )
2

(1 )
2

(1 )( ),

( )
4

(1 )
16 4

( ) ,

( )
4

(1 ) ( ),

(8.19)

1

2

2

2

3 2 1

2

3

3

2

2 1
2

2 3

4 2
2

2

2
2

2 3

4
2

4

2 2

3 2 1

2 2

3

ν

ν ς

ν ν ν ν ν ς

ν ν ν ς

= −

= − + = − + ϰ ϰ +

= − − − = − ϰ − ϰ +

= − = − ϰ ϰ +

where s M M( )/22ν = − is the photon energy in the lab frame, Ai are scalar
amplitudes.

The first amplitude represents the Thomson term. It is interesting that for the
natural values (ℓ ℓ1, 01 2= = ), only the Thomson term survives, while the rest of the
contributions vanish. In this case, the tree-level amplitude does not diverge at high
energy and, therefore, is said to satisfy the ‘tree-level unitarity’. The tree-level
unitarity is a necessary condition for the theory to be renormalizable at one-loop
level.

The various polarizabilities begin to contribute at order 2ν , and hence, as far as
the sum rules involving only the electromagnetic moments are concerned, we need to
focus on the terms of O(1) andO( )ν . The first one is the Thomson term (note thatO2

4A better argumentation of this claim can be found in an insightful paper by Weinberg and Witten [6].
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contains photon momenta and hence A2 contributes at O( )2ν ), which, as already
discussed, does not lead to a convergent sum rule. The term of O( )ν , seen in the
amplitude A3, is the anomalous magnetic moment contribution which leads to the
GDH sum rule for the spin-1 case:

M
d

2 1
2

( ) ( )
. (8.20)

2
2

2 0

0 2∫α
π

ν σ ν σ ν
ν

ϰ = − −∞

The quantity in the numerator on the right-hand side is the helicity-difference
photoabsorption cross section. This form is basically the same as in the spin-1/2 case,
see equation (4.18), which allows one to conjecture the following expression for the
GDH sum rule for any spin S:

M
S d

2 1
2

( ) ( )
, (8.21)S S

2
2

2 0

1 1∫α
π

ν σ ν σ ν
ν

ϰ = − −∞
− +

with the anomalous magnetic moment defined universally, for any spin, through the
gyromagnetic ratio as g( 2)/2ϰ = − .

The anomalous quadrupole moment starts to enter at O( )2ν and cannot be
disentangled from polarizability contributions; at least, not by means of sum rules
derived from real Compton scattering. Conversely, some of the sum rules, which in
the spin-1/2 case involved only polarizabilities, may now involve the electromagnetic
moments. A remarkable example is provided by the sum rule for the forward spin
polarizability (FSP) 0γ . Introducing it for a spin-1 particle in exactly the same way as
for the spin-1/2 case results in the following sum rule [7]:

M
d

4
( )

1
4

( ) ( )
. (8.22)

4
2

0 2 0

0 2
3∫α ς γ

π
ν σ ν σ ν

ν
− ϰ + + = −∞

This has to be compared with the analogous spin-1/2 sum rule, equation (4.19),
where the anomalous moment term is absent.

The FSP of the deuteron is conventionally defined to be a factor of two smaller [8]
(i.e. 0γ in equation (8.22) should be replaced with 2 0γ ). In addition, the contribution
of anomalous moments is assumed to be absent from this sum rule. Fortunately, the
contribution of the deuteron anomalous moments into this sum rule is numerically
very small and may indeed be ignored5. The deuteron is, however, quite a peculiar
system. It is a loose bound state of the proton and neutron, and as such, has rather
large polarizabilities, enhanced by inverse powers of the binding momentum, which
is two orders of magnitude smaller than the deuteron mass. For a ‘more elementary’

5Using the currently known empirical values of the deuteron anomalous moments and mass (see [7] for
details):

M0.143, 13.5, 1.8756 GeV, 1 137.036,d d dς αϰ ≃ − ≃ ≃ ≃

the correction due to the first term in equation (8.22) is about 0.0263 GeV 4 104 5− ≃ − ×− − fm4, whereas 0γ of
the deuteron is expected to be of the order of a few fm4, so, five orders of magnitude bigger. See [9] for a first
experimental determination of the deuteron FSP.
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particle, the interplay between the electromagnetic moments and the polarizability in
the above sum rule can be entirely different.

8.4 Forward VVCS and virtual LbL scattering
As in the spin-1/2 case, considered in chapter 5, the doubly-virtual Compton
scattering (VVCS) is the place to look for sum rules. The spin structure of the
VVCS is of course more complicated for a spin-1 particle. The number of spin
structures triples: six instead of two in the previous (spin-1/2) case6. The number of
sum rules should increase accordingly. In the spin-1/2 case, the lowest order spin-
dependent sum rules in the (quasi-)real-photon limit are GDH and Schwinger, so
one per each independent spin structure function. Does the number of such sum
rules for the spin-1 case triple as well?

A simple answer to this question is ‘No.’ There are not that many sum rules
involving the electromagnetic moments without polarizabilities. A proper descrip-
tion of those sum rules requires us to dwell into the formalism a la chapter 5, except
three times lengthier, which would certainly be too much for the ‘concise’ format we
are bound to. In what follows we give only the highlights.

A good indication of sum rules for the electromagnetic moments of massive
vector bosons can be obtained by looking at the sum rules for the γ γ* * fusion,
considered in the previous chapter. The forward LbL scattering is exactly analogous
to the VVCS on massive vector bosons, provided the electromagnetic moments are
set to zero, whilst the role of polarizabilities is played by the low-energy coefficients
ci from the effective Lagrangian (6.15), (6.16). The sum rules which do not involve
polarizabilities appear in the LbL case as the superconvergence relations, i.e. the ones
where the integral converges to zero.

Let us re-examine two of those relations:

d K Qlim
1

( , , ) 0, (8.23a)
Q 0

a
TT

2 2
2

0
∫ ν

ν
τ ν˜

˜
˜ =

→ ν̃

∞

d
Q

K Qlim
1

( , , ) 0, (8.23b)
Q 0

a
TL

2 2
2

0
∫ ν τ ν˜ ˜ =

→ ν̃

∞

where a
TTτ and a

TLτ are cross section quantities describing the fusion of two virtual
photons into everything ( Xγ γ* *→ ), see [10].7 The photons have the space-like
virtualities K2 and Q2, respectively, the invariant s K Q( )/22 2ν = + +∼ , and 0ν̃ is the
inelastic threshold. By definition, ( )/2a

TT 0 2τ σ σ= − , and hence the first relation is
identified as the GDH sum rule in the absence of electromagnetic moments. To see

6Recall from chapter 4 that the number of independent forward VVCS amplitudes is S5 3+ for bosons (with
nonvanishing spin), and S5 3/2+ for fermions. For any S, two of these amplitudes are spin independent.
Hence, the number of spin structure functions is 6 for S = 1, and 2 for S 1/2= .
7 The response function a

TLτ is interchanged with TLτ in [11], as compared with [10], because of a different
convention for the longitudinal polarization vector: 0 0ε ε=* versus 0 0ε ε= −* , respectively. Here we assume the
latter convention.
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that the other one is the analogue of the Schwinger sum rule, let us introduce the
spin-1 structure functions, if only very schematically.

The structure function formalism, analogous to the spin-1/2 case, was developed
in the context of the deuteron by Hoodbhoy, Jaffe, and Manohar [12]. The Lorentz-
covariant form of the forward VVCS amplitude splits again into the symmetric and
antisymmetric parts, T T TS A= +μν μν μν, which contain six and two amplitudes,
respectively. The imaginary parts of those amplitudes are given by the following
eight structure functions,

F x Q F x Qscalar: ( , ), ( , ), (8.24a)1
2

2
2

g x Q g x Qvector: ( , ), ( , ), (8.24b)1
2

2
2

b x Q itensor: ( , ), 1, , 4. (8.24c)i
2 = …

They are referred to, respectively, as the scalar, vector, and tensor structure
functions. The latter are new compared to the spin-1/2 case. They involve the
longitudinal polarization of the spin-1 target. Just as the scalar ones, the tensor
structure functions enter through the symmetric part of the VVCS tensor, whilst the
vector ones through the antisymmetric part.

These structure functions can be matched to the cross section quantities,

, , , , , , , , (8.25)a a
TT TL LT LL TT TL TT TLσ σ σ σ τ τ τ τ

used to describe the γ γ* * collisions in chapter 7. Of course, one needs to keep in mind
that one of the virtual photons in the LbL case corresponds with the massive boson,
hence, the virtuality must match the mass: K M2 2= − . The energy invariants are
matched as M Q x/22ν ν˜ = = . The precise matching of the structure functions can be
worked out by comparing the helicity amplitudes for the two cases. As the result we,
in particular, have

g
Q

, (8.26a)a a
1 TL TTν

τ τ∼ +

g
Q

, (8.26b)
a a

2 TL TT
ν τ τ∼ −

and the analogy with the spin-1/2 case becomes apparent, see equation (5.4). The
superconvergence relation (8.23b) thus corresponds with the Schwinger sum rule.

To show this more explicitly, let us cast the above superconvergence relations into
sum rules for spin structure functions of a real photon, denoted as g x Q( , )i

2γ . For
this, we interchange the virtualities, K Q2 2↔ , such that K2 is set to zero whereas Q2

is arbitrary. The exact relation between gi
γ and τ in this case becomes:

g
K Q

KQ1
4

lim
1

, (8.27a)
K 0

a a
1 2 2 2

TL TT
2π α

ν
ν ν

τ τ= ˜
− ˜ ˜

+
→

γ ⎛
⎝

⎞
⎠
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g
K Q KQ

1
4

lim
1

. (8.27b)
K 0

a a
2 2 2 2 2

TL TT
2π α

ν
ν

ν τ τ= ˜
− ˜

˜ −
→

γ
⎜ ⎟
⎛
⎝

⎞
⎠

Solving these for τ and substituting in equation (6.20) with Q x/22ν̃ = we,
respectively, have

dx g x Q( , ) 0 (8.28a)
x

0
1

2
0∫ =γ

dx g x Q g x Q( , ) ( , ) 0 . (8.28b)
x

0
1

2
2

2
0∫ + =γ γ

⎡⎣ ⎤⎦

Given that the elastic contribution is absent in the case of LbL scattering, we can
extend the upper limit of integration to unity, and thus these two sum rules imply as

well the BC sum rule: dx g x Q( , ) 0
0

1

2
2∫ =γ .

The third superconvergence relation (7.23b), derived originally in [11], has no
spin-1/2 analogue. When extended to the massive boson case, it may, potentially,
yield a sum rule for the quadrupole moment. Some work in this direction has been
done, e.g. for the tensor structure function b1, see [13] and references therein. Yet, a
sum rule involving a quadrupole moment (and no polarizabilities!) has not been
written down. For now, this task is given away as an exercise to this chapter.
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