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Chapter 11

Modern physics

11.1 Relativity
On a conceptual basis, understanding relativity, especially at the intro level, is like
trying to understand Dr Seuss1. It’s just different and weird enough from the world
you are accustomed to, so it’s not going to be intuitive as classical physics can be
intuitive. The only time students seriously struggle with relativity is when they fight it
and decide they cannot understand it because it’s too different from the classical
world. Relax, accept the basic principles and you’ll figure it out. You might even
enjoy your new perspective on the world.

The two core principles of relativity are:
1. The speed of light is the same to all observers regardless of motion.
2. The laws of physics still hold in an inertial reference frame.

The first one gives that if you are looking for how fast light moves relative to an
observer, the answer is always c. In addition, if you ever get an answer greater than c
for any problem, you are doing it wrong. The second one is just saying that none of
our usual laws change in a moving reference frame as long as that reference frame is
not accelerating. This is why the so-called ‘Twin Paradox’ where one twin travels at
a very high velocity and thus ends up being younger is not a paradox. Though they
both see the other’s clock ticking more slowly, the ‘correct’ one is the one who stayed
in an inertial reference frame the entire time, namely the one who stayed on Earth.
The other one had to accelerate.

1You don’t need to know what a gardinka is to know why The Grinch was annoyed by them. It’s a noisy toy
of some sort and the details are unimportant.
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We can add three more to this that aren’t formal principles but do apply:
1. The system should reduce down to what you expect from classical physics if

the velocity is much lower than c.
2. You never see yourself changing.
3. We can disagree on when and where something happens, but we cannot

disagree that it happens

(4) is important for keeping the symbols straight and figuring out how to set up
the equations. If you are carrying a ruler and wearing a watch, you will never see
that ruler change length nor will you see the watch tick slower or faster. In order to
see relativistic effects, something must be moving relative to you. What follows next
is a quick discussion on time dilation, length contraction, and relative velocities
(Lorentz transformations). (5) helps you to keep yourself grounded in reality. When
something happens or where it happens is relative to an observer, but it always
happens. For an extreme example, you cannot dodge a bullet in one reference frame
and not in another due to relativity so that you are alive according to one observer
and dead according to another.

11.1.1 Time dilation

As the name implies, time dilation means time expands, or moves more slowly. You
should be at least vaguely familiar with the concept of space-time now and you can
think of this as the faster an object moves through space, the slower it moves through
time. The equation that governs this is

v

τΔ = Δ

−
t

c
1

(11.1)2

2

where τΔ is called the proper time interval and Δt is the observer time interval. Both
proper time and proper length are often given ridiculous definitions that are
confusing ways of saying ‘this is how an object views itself’. That means that if
you are carrying a ruler and wearing a watch, the time the watch keeps and the
length of the ruler are your proper time and proper length.

With that in mind, let’s go through the classic muon decay problem both ways,
using time dilation and length contraction, and show we get the same result from
different perspectives.

Example: Muons have a half-life of 1.56 microseconds ( × −1.56 10 6 s) and are
created in the upper atmosphere traveling at about c0.99 . Classically, virtually no
muons should reach the surface of the Earth, a distance of about 10 km, because
they will have decayed before they reach it. Due to relativistic effects, we do see quite
a few muons. If 1000 muons are created in the upper atmosphere, determine how
many will reach the surface of the Earth on average from the perspective of an
observer on the surface of the Earth.

A Handbook of Mathematical Methods and Problem-Solving Tools for Introductory Physics (Second Edition)

11-2



Solution:
First off we need to have a brief aside about half-life. The half-life of a substance is
how long it takes for half of it to decay. So after one half-life there is half of it left,
after two there is 1/4, after 3 there is 1/8, and so on. After n half-lives then, there are

× (1
2n original number of particles) remaining. If they are traveling at c0.99 , then the
time it takes will still just be given by

v

v

=

= = = ×
× ×

= ×−
−

d
t

t
d

c

,

10 km
0.99

10 10 m
0.99 3 10 m s

3.367 10 s,
(11.2)

3

8 1
5

or better written as 33.67 microseconds. Divide this by microseconds per half-life
(1.56) and we get number of half-lives, = 21.58333.67

1.56
half-lives. So this many half-

lives pass between when the particles are created and when they hit the ground. The
amount left after n half-lives is (1

2n original number), with =n 21.583 and original
number being 1000, is

= × −1
2

(1000) 3.183 2 10 particles, (11.3)
21.583

4

or less than one particle, which means none since you can’t have a fraction of a
particle remaining.

With time dilation though, the particles live longer in our reference frame.
Remember we are talking about how we’re seeing things so they still take the
same time to hit the ground, it’s just time passes more slowly for them (according to
us). The proper time interval is then going to be the half-life and we can figure out
how long the half-life of the muons appears to us by the following:

v

τΔ = Δ

−

Δ = ×

−
= ×

−
−

t

c

t
c

c

1

1.56 10 s

1
(.99 )

1.105 9 10 s.
(11.4)

2

2

6

2

2

5

They still take the same amount of time to hit the ground, so do the same calculation
we just did but with a new half-life

×

×
=

=

−

−

3.367 10 s

1.105 9 10
s

half-life

3.04 half-lives

1
2

(1000) 121.6

(11.5)

5

5

3.04

So about 121 particles actually hit the ground. This is a drastically different result.
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11.1.2 Length contraction

Length contraction means that if object A is moving relative to object B, object A
will appear smaller. The equation governing this is

v= −L
c

l1 . (11.6)
2

2

As before, proper length (l in this equation) is the length of the object as it appears to
itself; it will never see itself changing. L is the contracted length measured by an
observer who is stationary relative to it. Now to do the muon problem the other way

Example: Muons have a half-life of 1.56 microseconds ( × −1.56 10 s6 ) and are
created in the upper atmosphere traveling at about c0.99 . Classically, virtually no
muons should reach the surface of the Earth, a distance of about 10 km, because
they will have decayed before they reach it. Due to relativistic effects, we do see quite
a few muons. If 1000 muons are created in the upper atmosphere, determine how
many will reach the surface of the Earth on average from the perspective of the
muons.
Solution:
The speed will remain the same in both cases. However, now we’re talking about the
perspective of the muons, which means we can’t see time dilation effects for their half-
life. They will not see a change in how fast they decay. What they will see is the distance
to the surface of the Earth being contracted. In other words, we see the muons reaching
the Earth because they live longer, they see themselves reaching the Earth because the
Earth is actually closer to them. Finding the contracted length, we have

v= −

= − ×

=

L
c

l

L
c

c

1 ,

1
(.99 )

10 10 m,

1410.7 m.

(11.7)

2

2

2

2
3

Velocity will remain the same and thus we can find the time it takes to hit the ground

v
= =

× ×
= ×−

−t
d 1410.7 m

0.99 3 10 m s
4.75 10 s. (11.8)

8 1
6

And just as before, determine how many half lives this is and use that to determine
how many particles reach the ground

×

×
=

=

−

− s
4.75 10 s

1.56 10 s
half-life

3.04 half-lives,

1
2

(1000) 121.6.

(11.9)

6

6

3.04
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Which is the same number we got before. We can disagree on when something
happens, where it happens or even why it happens, but we cannot disagree that it
does happen.

11.1.3 Lorentz velocity transformations

The way most students get lost in the relative velocity problems is with keeping track
of all the primed and unprimed variables, a convention that is well-intentioned but
can be confusing. The best place to begin then is to carefully define everything. We
begin with figure 11.1 for a visual description, and then give prose descriptions.

v
′

′

′ ′

S
S

S S
u S
u S

: reference frame that you define to be stationary.
: reference frame that you define to be moving.
: relative velocity between frame and frame .
: velocity of an object as measured by someone in frame .
: velocity of an object as measured by someone in frame .

Now the two equations should make a little more sense. They are

v
v

v
v

′ = −

−

= ′ +

+ ′

u
u

u
c

u
u

u
c

1
,

1
.

(11.10)
2

2

Notice two important things about these equations. First, v doesn’t have a prime on
it anywhere, so this is the easy way to make sure you don’t get lost in all the symbols.
v is just the velocity between the two frames and they have to agree about that. What
they disagree on is how fast objects within those frames are moving. Second, they’ll

Figure 11.1. Visualization of the different reference frames and the velocity between them.
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reduce down to exactly what you’d expect to see if the velocity is much lower than
the speed of light, in which case they become

v
v

′ = −
= ′ +

u u
u u

,
.

(11.11)

In other words, if someone on a train moving at velocity v throws a ball with speed ′u ,
it will be moving at v= ′ +u u according to someone on the ground. This is how you
can check signs to make sure you’ve got the right equation and you’ve set it up right.
Reduce it to a nonrelativistic case (v ≪ c) and it should be what you expect to see.

Example: You are standing on the ground and see a train go by to your right at c0.9 .
Someone in the train throws a baseball to the left at c0.7 relative to him. How fast is
the ball moving according to you?
Solution:
We’ll define the ground to be the stationary frame and so we need to use

v
v= ′ +

+ ′u
u

u
c

1
.

(11.12)
2

v

′
u
u

: relative velocity between train and ground.
: velocity of an object as measured by someone on the ground.
: velocity of an object as measured by someone in the train.

As you may guess, just plugging in the numbers straight won’t give us the correct
answer because we need to be careful about signs. Define right as positive and left as
negative and we get

v
v= − ′ +

+ − ′u
u

u
c

1
.

(11.13)
2

The way we can be sure we have got it right is to then reduce this down to a classical
case. If someone is moving and throws a ball in the opposite direction to their own
motion, you would expect an observer on the ground to see it move more slowly.
Reducing this to that case we see that v= − ′ +u u gives the correct answer since that
will give a velocity of c0.2 . Do it the other way and you get a velocity of c1.6 , which
means it would be going faster and that isn’t what we would see even in the classical
world. Now we can do the actual calculation

= − +

+ − =u
c c

c c
c

c
.7 .9

1
( .7 )(.9 )

0.540 54
(11.14)

2

11.2 Quantum mechanics
Despite what pop culture tells you, quantum is not physics-speak for cool, it merely
means countable. The quantum world is simply then a world where we are dealing
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with individual particles, which have discrete descriptive qualities, such as energy.
Everything you have learned still applies just fine as long as you quantize it, meaning
that it must take on an integer multiple of some number.

The way this is linked into the math is with boundary conditions. There is always a
physical reality that must be obeyed and that is where many of the equations come
from. For instance, the solutions to the particle in a box problem come from noting
that if it’s stuck in the box, the wave amplitude must be zero at the edges of the box.
This forces the wavelength to take on certain quantized values that will obey this
boundary condition. You probably will not do too much with the actual math in an
intro course but it will help your conceptual thinking considerably to use these
boundary conditions as part of the link between the classical and quantum world.

11.2.1 The photoelectric effect

Your friend is sitting on the couch. You pull on him but not very hard and he doesn’t
move. You pull a little harder and you make him stand up. He sits back down, you
pull really hard and he stands up and runs forward. This is exactly how you can
think of the photoelectric effect. The actual equation describing it is

ϕ= −E hf , (11.15)

where the variables describe the following:

ϕ

E ejected electron
hf incoming photon

: kinetic energy of the ,
: energy of the ,
: work function of the metal.

So then what this says physically is that a photon with energy hf (which is always the
energy of a photon) strikes an electron in a metal. If the energy of the photon is at
least the work function of the metal, which is how much energy is required to break
the electron out of the metal, then the electron will move. If there is more energy
than is needed to break it out, it just means the electron moves faster (because it has
extra kinetic energy). If the E in this equation is zero, that means there’s just barely
enough energy to break the electron free and no more.

Example: A photon with a wavelength of 310 nm strikes a metal and the electron
released crosses a 3 V potential difference. What is the work function of the metal?
Solution:
Energy is energy, if the electron had enough energy to cross a 3 V potential
difference, then that’s how much was left over after it broke free from the metal.
Since the electron-volt is defined as the amount of energy required to move 1
electron across a 1 V potential difference, it had 3 eV of ‘leftover’ kinetic energy, or

ϕ
ϕ

= −
= −

E hf
hf

,
3 eV .

(11.16)

A very nice shortcut though is that since λ=c f (this is light) you can write
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λ
=

= =

hf
hc

hc

,

constant 1240 eV nm,
(11.17)

so you do not have to convert everything to SI units. This gives

λ
ϕ

ϕ

= −

= −

hc
3 eV ,

3 eV
1240 eV nm

310 nm
.

(11.18)

Notice how the units of nanometers cancel out and we are left with just energy in eV.
Solving

ϕ
ϕ

= −
=

3 eV 4 eV ,
1 eV.

Look back over it and make sure it seems right now. The incoming photon had an
energy of 4 eV. The ejected electron had an energy of 3 eV. The difference has to go
somewhere and so it must have gone into breaking the electron free (getting it off the
couch).

11.2.2 Electron transitions

In an atom, electrons can occupy different quantized energy levels. This means they
all must be some integer multiple of the same number. A subtle point that is often
missed though is that atoms stay in their ground state unless something makes them
get out of it. This is why the absorption spectrum is a subset of the emission
spectrum. Not all wavelengths that are emitted can be absorbed because absorption
requires the atom to be in the ground state. An example will be helpful here.

Example: An atom has a ground state of 1 eV and excited states of 2 eV, 3 eV, and
4 eV. How many lines are in the absorption and emission spectrums?
Solution:
Absorption requires that an electron goes from the ground state to a higher state, so
the initial state must be 1 eV. It only has three places to go (2 eV, 3 eV, and 4 eV), so
there are only three lines in the absorption spectrum.

The emission spectrum occurs when an electron drops down a level and it can
drop down into any other lower energy level. So the possibilities are

⟶ ⟶ ⟶
⟶ ⟶
⟶

4 3, 4 2, 4 1,
3 2, 3 1,
2 1,

which gives six lines in the emission spectrum.
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11.2.3 Wavefunctions and probability

The usual definitions of a wave function Ψ( ) are highly mathematical in nature.
Though it is not a complete description, the best way to think of a wave function for
now is that it is the particle itself. The wave function contains all the information
about the particle, you just have to take a measurement on it to get that
information. The problem of course is that it’s not easy to get the wave function
since it’s buried in a second-order differential equation, but that is not a topic for
this book.

The most common mistake made when dealing with wave functions is getting
them confused with probability density functions, so here we will focus on the
difference.

Wave functions Ψ( ):
This is a wave just like wave on a string and will probably look the same, being a
sine or cosine function (or an exponential which can be written as sines or cosines).
It has an amplitude just like any other wave and it must follow boundary conditions
as discussed above. By itself it doesn’t really tell you much and in fact it cannot
correspond directly to a physical quantity because it can be imaginary. What the
wavefunction does do is allow you to perform operations on it that will give you
physical quantities, such as momentum, position, or probability.

Probability density ∣Ψ∣( )2 :
This is the probability per unit length, area, or volume, depending on how many
dimensions you’re using (most likely just length in an intro course) of finding the
particle. Formally speaking it’s finding any property of the particle if the wave
function is a function of something other than position, but for our purposes here
you will not be using anything but position. That’s all this tells you.

The most common use of this will be normalization. Normalization is another
boundary condition, what it says is that the particle has to be somewhere. An
integral is just a sum and so if you add up all the probabilities of the particle existing
at various places over all the possible places, it has to be 1, since the particle must
exist somewhere. Mathematically this is written as

∫ ∣Ψ ∣ =
−∞

∞
dx 1. (11.19)2

Normalization example: Normalize the wavefunction

Ψ = ⩾
Ψ = <

−Ae x
x

, for 0
0, for 0.

(11.20)
ax

Solution:
Normalizing a wavefunction means finding this constant A. Remember that an
integral is just a sum, so even though it goes from negative infinity to positive
infinity, all the negatives don’t matter since the wavefunction is zero there.
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So technically we’re still adding them in but we’re just adding zero. The integral
then becomes

∫
∫

∣Ψ ∣ =

=

∞

∞
−

dx

A e dx

1,

1.
(11.21)

ax

0

2

0

2 2

This is an integral that is doable analytically, the result is

∫ = − ∣

= +

∞
− − ∞A e dx

A
a

e

A
a

2
,

0
2

.
(11.22)

ax ax

0

2 2
2

2
0

2

This is equal to 1, so we can now find the normalization constant A

=

=
Ψ = −

A
a
A a

a e

2
1,

2 ,

2 .

(11.23)

ax

2

Don’t make normalization harder than it needs to be, it should never be difficult
unless you have an integral that requires some calculus tricks to do.

11.3 Brief aside on energy equations
Modern physics usually comes fairly hard and fast at the end of the year when you’re
already tired and ready to be done with physics, then gives you several different
equations that seem to all be the same thing. Here is a summary of most of them,
giving what they mean and how they are different.

γ

=
= −

=

= −

=
=

=

E hf
E hf E

E
n h
mL

E
n

E mc
E mc

E
p

8
13.6 eV

2 m

(11.24)

0

2 2

2

2

2

2

2
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=
= −

=

= −

E hf
E hf E hf E

E

E
n h
mL

L m

n

E
n

n

: energy of a photon, Planck’s constant times frequency
: Photoelectric effect. Photon coming in with energy uses

of it to break an electron free and whatever is left over goes to kinetic energy
of the electron( in this case).

8
: Energy of a particle in a box of length . The particle has mass

and is in state .
13.6 eV

: Energy of an electron in the hydrogen atom in state .

(11.25)

0 0

2 2

2

2

γ

=

=

=

E mc m

E mc m

E
p

mv

: Rest energy of something with mass , meaning the energy it
has simply by virtue of existing

: Total energy of something with mass , kinetic energy plus rest energy.

2 m
: Standard kinetic energy of

1
2

written in a more

convenient form for quantum calculations

(11.26)

2

2

2
2

11.4 Summary and important notes
1. Both quantum and relativity only change a few things. Quantum physics

requires things to be quantized and fit specific boundary conditions while
relativity causes the numbers to change when you start getting very fast.
Everything else you’ve learned still applies.

2. Nothing should ever exceed c and light itself always travels at c (in a vacuum)
regardless of the motion of anything. If you get an answer that contradicts
either of these, there’s something wrong.

3. To keep proper time and proper length straight, remember that you never see
yourself changing2. Proper time and proper length are just how the observer
measures their own time and their own length.

4. There are quite a few equations for energy, be sure you know what each one
means.

2Or my favorite analogy: relativity is like lifting; you never see yourself getting bigger, you just see other guys
getting smaller.
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