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Preface

Overview

The evolution of humanity owes much to the resilience of Homo sapiens against the
challenges of Nature through changing lifestyles as knowledge became widespread.
In prehistoric times, from about 3.5 million years ago until writing emerged around
5500 years ago, there was less spread of knowledge because there was little long-
distance travel. Writing did not become a widespread tool for disseminating
knowledge until the nineteenth century when education became more accessible.

The end of the era of prehistory occurred at very different dates in different
places. It came earlier in regions such as Mesopotamia, the Indus River Valley, and
Egypt, where the development of medicines was recorded. However, myths were
also believed widely, such as osteoarthritis being caused by lifting heavy objects,
which was routine work for most.

Throughout human history, it has proven to be advantageous to utilize other life
forms as resources. The use of genetic engineering to transform yeast, bacteria,
mammalian cells, plants, and viruses into recombinant therapeutic proteins show-
cases a continuous timeline of discovery and exploration, beginning with hunting
and gathering, then the domestication of animals and crops, ultimately leading to
the production of therapeutic proteins.

In prehistoric cultures, plant products (herbs and chemicals derived from natural
sources) were among the oldest cures for illness. Earths and clays may also have
offered some of the first medicines of prehistoric peoples. Moving from prehistoric
times to ancient civilizations, the Egyptian Imhotep describes the diagnosis and
treatment of 200 diseases in 2600 BC. The birth of Hippocrates in 460 BC created
much of the concept of medicine, and Galen brought much to the science of medicine
in 130 AD. Pedanius Dioscorides wrote De Materia Medica in around 60 AD.
Vaccination against communicable diseases occupies a large portion of medicine’s
history, starting with the Persian physician Rhazes, who identified smallpox in 910
(although Pylarini gave the first smallpox inoculations in 1701). Avicenna wrote The
Book of Healing and The Canon of Medicine in 1010. Anton van Leeuwenhoek
observed bacteria under a microscope in 1683. However, it was not until 1857 when
Louis Pasteur identified germs as the cause of disease and developed vaccines for
anthrax, rabies, and tuberculosis. Many vaccines have followed.

The first chemically synthesized drug was chloral hydrate, in 1832, and aspirin
was first produced in 1899. Since then millions of new molecules have been
synthesized. A large number have ended up as effective drugs to treat just about
every type of ailment, from modulating immune systems to inactivating viruses.

The discovery of insulin in 1922 revolutionized biological medicine. Insulin was also
the first biopharmaceutical drug developed by recombinant technology. Penicillin
became available in 1928 thanks to Fleming and streptomycin thanks to Waksman.

Individual enzymatic transformation phases with micro-organisms in chemical
manufacturing pathways, such as the biotransformation of steroids in 1950,
expanded the scope of biotechnological pharmaceutical manufacturing. Growing

xiv



knowledge of the regulation of primary and secondary metabolite production, as
well as expertise with microbes as biological agents brought significant advances in
the field of biotechnology drugs.

In 2006 the first vaccine directed against a specific cause of cancer was approved.
The first mRNA vaccine was approved in 2021 to treat the coronavirus COVID-19.
This is a significant milestone that has opened the door to many new and novel
biopharmaceutical products.

Definitions

Biopharmaceuticals
In writing this book, we need to define clearly what a ‘biopharmaceutical product’ is.
This is necessary to bring a focus to the scope of the book. Chapter 1 describes how
the definition of biopharmaceutical products varies between regulatory agencies and
within the scientific literature, and why we created a new definition to encompass the
concept that is described in this book:

A biopharmaceutical drug product, a biologic(al) medical product, or a
therapeutic biologic, is any nonendogenous macromolecule manufactured in,
extracted from, or semi-synthesized from an engineered living entity.

Biotechnology
A similar dilemma arose in defining ‘biotechnology’, which is the critical technology
for the manufacturing of biopharmaceuticals. The term ‘biotechnology’ has only been
defined recently. It is important to look at how it is understood in different regions
since this affects how regulatory controls on biotechnology-derived items are assessed.
The definitions of the world’s principal regulatory regions are listed in table P.1.

The use of biological entities to manufacture industrial products is known as
biotechnology. The term ‘biotechnology’ defines numerous areas of application,
including alcohol brewing, antibiotic production, and dairy processing.

For hundreds of years, brewers have used yeast to ferment grain into alcohol.
Similarly, farmers and breeders use ‘genetic engineering’ to develop crops and
livestock by selecting desirable traits in plants and animals. Scientists have only
recently altered an organism’s genetic material at the cellular or molecular level thanks
to ‘new’ biotechnology techniques. Although these approaches are more accurate, the
findings are comparable to those obtained using traditional genetic techniques that
include whole species. The word ‘biotechnology-derived products’ (BDPs) refers to
things produced using modern biotechnology techniques. The development of BDPs
presents several obstacles, including the convergence of numerous sciences and an
almost artful application of technology to produce consistent results.

However, the current interest in biotechnology is primarily the result of two
major advances:

• Gene transplantation made possible by recombinant DNA (rDNA) technol-
ogy (gene coding). For example, a desired protein could be inserted into a
prokaryotic or eukaryotic cell, and that cell could express the desired protein.

Biopharmaceutical Manufacturing, Volume 2
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• The spike in the production of monoclonal antibodies during times of
increasing demand (i.e. antibodies arising from a single lymphocyte).

According to the Biotechnology Industry Organization, ‘[b]iotechnology [is] the
combination of biology and technology, includ[ing] biologic applications, diagnostic
tools, and businesses that improve everyday life by providing solutions to some of
life’s most vexing problems’.

We are adopting a simple definition of biotechnology as:

Any nonendogenous macromolecule made in, extracted from, or semi-synthe-
sized from an engineered living entity produced by any technology and labeled
as a biopharmaceutical product.

Biopharmaceuticals are macromolecules produced in a genetically modified
organism, excluding naturally derived macromolecules. There are several conflicting
definitions of biopharmaceuticals; for example, the FDA considers proteins pro-
duced by a recombinant process as a biological product subject to a biological
license application (BLA) filing. Protein molecules with less than 40 amino acids are
not considered proteins, regardless of how they are produced. These proteins are
called peptides, some of which are produced using the same technology as used for
recombinant antibodies; in this context, biopharmaceuticals are products such as
liraglutide with fewer than 40 amino acids produced by recombinant technology
with multiple unit processes.

Table P.1. Global definitions of biotechnology.

Jurisdiction Definition Comments
Britain A strategy for applying biological systems,

structures, or processes to both
manufacturing and service industries.

Manufacturing and services industries are
non-committal, broad, technology-
driven, and bureaucratic.

European Biotechnological applications applied to
the manufacturing and service
industries.

Changes in the definition of ‘components
and targets,’ with the word ‘integrated’
playing a prominent role in defining
biotechnology.

Japan The integration of biochemistry,
microbiology, and engineering sciences
for the technological application of
microbiological, biotechnological, and
engineering sciences.

The complete utilization of technological
means, such as copying and various
other types, can be deemed significant
because it is helping to produce ‘useful’
substances.

USA Under the supervision of a licensed
specialist, the use of biological agents
such as bacteria or cellular components.

Harmful effects of using micro-organisms
are evident, and it is also apparent that
control and concerns about the
technology being used unlawfully are
also important.
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The impact of biopharmaceuticals

Approximately 400 biotechnology medications and vaccines have aided hundreds of
millions of people since 1982. Even more are in development, treating illnesses that
were once thought to be incurable, such as AIDS, Alzheimer’s disease, and stroke
prevention. Diseases such as cancer tend to be preventable in a limited period. For
example, many enzymes used in the food industry are likely to cause cancer.

Most biopharmaceuticals are recombinant proteins manufactured by expression
in genetically modified biological entities such as mammalian cell lines, bacteria,
insects, fungi, and plants. The productivity of these entities continues to improve as
we learn more about the ways to change their genomes. These technological
advances have led to well-characterized genomes, plasmid vector versatility, the
availability of different host strains, and cost-effectiveness compared to other
expression systems. Biopharmaceuticals are expected to account for up to 50% of
all drugs in production over the next five to ten years.

The total number of biopharmaceutical entities approved by the FDA is 218, with
multiple BLAs for some. The highest number of BLAs assigned was for somatropin,
followed by albumin, which was also the first BLA approved. Trend analysis shows
that the trend for new biological entity approvals is becoming significantly higher,
albeit slower (figure P.1).

Moreover, while injections have been the primary delivery method for the first
biopharmaceuticals, future products will be supplied through, for example, oral and
dermatological routes, with inhibited formulations using a range of encapsulation
approaches to reduce the biological instability resulting from protein aggregation
and denaturation, due to physicochemical changes such as deamination.

Figure P.1. BLAs licensed by the FDA from 1942 to March 2020. (Source: FDA Purple Book, https://www.
fda.gov/drugs/therapeutic-biologics-applications-bla/purple-book-lists-licensed-biological-products-reference-
product-exclusivity-and-biosimilarity-or).
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Another derivative of organic medicines has been specialist products, a new
classification of medicinal products for advanced treatment based on ‘genes, cells or
tissue engineering’, including medicines for gene therapy, somatic cell therapy drugs,
and combinations thereof. Advanced therapy medical products (ATMPs) are the
most recent classification of pharmaceuticals for advanced therapy products.
In European Medicines Agency contexts the term ‘advanced therapy’ specifically
refers to ATMPs, although outside these contexts this term is relatively unspecific.

For example, gene-based and cellular biologics are often at the forefront of
biomedical science to treat several medical conditions for which no other therapies
exist. The DNA and RNA vaccines will fall in the category of gene therapy, as
described in this book.

The FDA has approved several cellular and gene therapy products as of early
2020. Cancer, genetic disorders, and infectious diseases are among the diseases for
which gene therapy drugs are being researched. Plasmid DNA is one of the many
forms of gene therapy products available. Therapeutic genes may be genetically
modified into circular DNA molecules and delivered to human cells. In addition,
several cord blood products are permitted for use only in the ‘hematopoietic stem
cell transplant’ procedure in patients with blood-forming (hematopoietic) system
disorders. Cord blood contains blood-forming blood cells, which can be used to treat
blood cancer patients with conditions such as leukemia and lymphomas, and certain
blood-forming and immune system disorders, such as sickle cells and Wiskott–
Aldrich syndrome.

Biopharmaceutical development

Drug development is a time-consuming and costly procedure. The costs for a new
medicine range from $314 million to $2.8 billion on average, with a 15 year
regulatory clearance process. To support the return on investment, research
companies have embarked on extensive intellectual property protection that goes
well beyond protein identity and gene sequence expression; the patents now include
protection of formulations, manufacturing process, cell lines, indications, delivery
devices, and many more. Figure P.2 shows the top 20 biopharmaceuticals and their
associated patents. A complete list is provided in chapter 8.

The technology for the development and manufacturing of biopharmaceuticals
has transformed significantly over the past couple of decades, with the introduction
of single-use systems and novel concepts such as continuous manufacturing. The
drivers for new technology include the regulatory constraints for assuring product
safety in addition to the cost of goods. For example, not long ago many companies
were manufacturing blood products across the globe. However, when the FDA
brought in new guidelines in the 1980s on the virus clearance of animal products, the
entire industry almost collapsed, leaving only a few ventures into this complex
product that requires extensive testing to assure safety.

Automation is becoming a norm for most industries, the biopharmaceutical
industry being no exception, but the regulatory constraints make the adoption of
such modifications cumbersome and expensive.

Biopharmaceutical Manufacturing, Volume 2
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Global markets

The global pharmaceutical market amounted to $1.2 trillion in 2018, up from $100
billion in 2017, and will rise to $1.5 trillion (based on invoice pricing) in 2023 with a
composite annual growth rate (CAGR) of 4%–5%. This is below 6.3% of the CAGR
for 2014–2018. In 2018 expenditure in the United States amounted to $485 billion,
5.2% above the previous year, and spending in 2023 will rise to $625 billion.

The top-ten selling products in 2019 included seven biotherapeutic products
(figure P.1). All except three, Xarelto, Revlimid, and Eliquis, are biopharmaceut-
icals. In 2019 biopharmaceutical products had a total market of about $300 billion,
growing at a CAGR of 12%. With more than 50% of all new drug applications now
constituting biological drugs, biological medicines will soon reach 50% of the global
market. In addition, a significant push in the biopharmaceutical industry comes
from biosimilars as more patents expire (figure P.3).

About this book

This book on biopharmaceutical manufacturing is divided into two volumes. The
first volume, Regulatory Aspects, provides an overview of the science behind
biopharmaceuticals pivotal to securing regulatory approval for commercial

Figure P.2 The number of patents awarded to biological molecules—top candidates.
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biopharmaceutical products. The second volume,Unit Processes, is a detailed review
of the manufacturing steps, technology implementation, and systems analysis
leading to the commercial production of biopharmaceuticals.

The leading technology used in the manufacture of biopharmaceuticals is
relatively new, and we foresee many spin-offs of the current recombinant engineer-
ing to manufacture many products in the future. Therefore, to expand the utility of
this book we have included descriptions of a few emerging technologies that have yet
to be approved for human use.

In writing this book we focused on the emerging role of recombinant technology
in the manufacture of biological products, evaluated the scientific changes that are
arriving rapidly in biotechnology, examined the fast expansion of the industry, and
realized that there is a need to combine multiple disciplines to achieve successful
commercial manufacturing. The workforce needed for this fast-expanding industry
is in extremely short supply, while higher qualification requirements continue to
increase as newer concepts and applications come to the market. This treatise should
serve well the students who intend to adopt this industry as their career, graduate
students who are specializing in biotechnology, and above all those who are actively
engaged in the development, regulatory filing, manufacture, and assuring regulatory
compliance to secure the market authorization of BLA for these products.

One indication of how fast the field of biopharmaceutical manufacturing is
expanding can be gauged from the publications listed under the heading of

Figure P. 3. Sales of the top-ten drugs in 2019 (in billions of dollars). All except three are biopharmaceuticals.

Biopharmaceutical Manufacturing, Volume 2

xx



‘biopharmaceutical manufacturing’, with over 5000 publications over the last five
years and 10000 publications over ten years1. A search for ‘biopharmaceuticals’ shows
more than 1.4 million hits in ten years and a half as many over five years.

We have developed and manufactured biopharmaceutical products, and this
experience is offered in writing these chapters. SKN has written several books on this
subject, including the first book on the topic, Handbook of Biogeneric Therapeutic
Proteins, followed by the two-volume Handbook of Biosimilars and Interchangeable
Products, the book Disposable Manufacturing, a book on regulatory aspects, FDA
Perspective of Biosimilarity, and the textbook Modern Bioprocessing. Each of these
books presented a different view of the industry and technology, with a focus on
biopharmaceuticals. While we have focused on the scientific principles, we have
merged the learning with practical examples. The diversity of topics in this book is
intentional. In our experience, the scientists and engineers involved in development
and manufacturing need to be fully aware of the patent systems and regulatory
compliance needs, and stay informed on the fast-emerging trends in the art and science
of biopharmaceuticals. Given below is a summary of the chapters in each volume.

Volume 1. Biopharmaceutical Manufacturing: Regulatory Processes
The commercial manufacture of biopharmaceuticals is challenging because of the
highly rigorous regulatory compliance requirements that may not be as restrictive
for other types of drugs. The reason for this is that any change in the structure of
biopharmaceuticals during the manufacturing process can result in severely altered
responses and side effects. The impact of these changes cannot be readily established
since many effects of these drugs appear in the long term, such as in the form of
altered immune response that may create new diseases such as diabetes, multiple
sclerosis, and other autoimmune disorders. Understanding the regulatory concerns
requires a deep understanding of the nature of the products, the strategic and tactical
challenges in their manufacture, and a keen sense of their development process.

Volume 1 encompasses all the necessary details intended to teach and train the
scientists and technicians involved in commercial manufacturing. Their role extends to
assuring the quality of the product and the manufacturing facility’s compliance. In all
types of pharmaceutical manufacturing it is important that all those involved in any
stage of the manufacturing be fully engaged since it is impossible to maintain current
good manufacturing practice (cGMP) compliance without the collaboration of all
teams—this is the focus of this volume.

Chapter 1. Introduction to biopharmaceuticals
This introductory chapter provides a clear definition of biopharmaceuticals, including
biosimilars, commercial production, and global regulatory compliance requirements.
Detailed descriptions of the nature and properties of biopharmaceuticals and how these
macromolecules have shifted the arena of drug therapy are provided. A classification of
the drug types that constitute biopharmaceuticals is given and examples are provided.
There is extensive discussion of protein structure and the properties of hormones,

1 https://pubmed.ncbi.nlm.nih.gov/?term=biopharmaceutical+manufacturing&sort=pubdate&sort_order=asc.
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peptides, enzymes, protein scaffolds, antibodies, and others, and the structural
modifications that can change the disposition characteristics of biological molecules
are described in detail. The critical concern in using biological drugs is their
immunogenicity, which we cover in detail to understand the structural elements that
can produce an immune response. The factors that affect the pharmacokinetics of
therapeutic proteins are essential for understanding in developing a safe and effective
product. The manufacturing of biopharmaceuticals involves recombinant technology,
and detailed analyses of the expression systems and their relative advantages and
disadvantages are provided. This chapter’s main objective is to educate scientists and
technicians engaged in the manufacture of biopharmaceuticals about the essential
science elements required to develop and manufacture these products and secure their
regulatory approval.

Chapter 2. Antibody biopharmaceuticals
Antibodies form the most significant commercial category of biopharmaceutical
products; this chapter describes in detail their structure and mode of action, with a
listing of 83 FDA approved monoclonal antibodies, types of antibodies, and their
targets including bispecific, multi-specific, antibody fragments, single chain, human-
ized, chimeric, and fully human monoclonal antibodies. Related topics include
affinity maturation, antigenized antibodies, IgG1 fusion proteins, and drug or toxin
conjugates. The development technologies of mouse hybridoma, transgenic animals,
phage display, and single B-cells are detailed and compared for clinical and cost
advantages. The commercial production of monoclonal antibodies is summarized,
and an extensive list of online databases to find antibody properties is provided.

Chapter 3. Gene and cell therapy biopharmaceuticals
The newer technologies of gene and cell therapy and gene editing are described in a
summary form in chapter 3. Gene and cell therapy constitute recent advances in the
field of biopharmaceutical products. An overview of the diseases, risks, develop-
ment, and ethical issues is provided, along with a comprehensive list of currently
approved products. Gene therapy and cell therapy, including DNA and mRNA
vaccines and CAR-T (T-cell therapy using chimeric antigen receptor (CAR))
techniques, are introduced. Gene editing technologies define the methodologies
and their relative advantages. Upstream and downstream technologies for gene and
cell therapy products and allogenic products are described, including regulatory
controls, characterization of the cell population, release testing, and radioisotope
tagging. Issues related to vectors and vector preparation are discussed. Finally,
preclinical evaluation methods of evaluation and challenges in commercializing gene
and cell therapy products are described.

Chapter 4. Formulation of biopharmaceuticals
The delivery of biopharmaceuticals is highly complex due to their structural instability,
quick physical degradation, and complex chemical interactions with excipients and
degradation that can lead to immunogenicity and other side effects. Extensive
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descriptions of chemical degradation and the methods to obtain stability in the
formulated products are provided with examples of commercial formulations. While
the current methodology for the delivery biopharmaceuticals remains parenteral, a
large number of new dosage forms have emerged, including oral, nasal, transdermal,
pulmonary, ocular polymer-based, hydrogels, lipid-based emulsions, liposomes, and
nanoparticle systems. Also included is a description of nontraditional dosage forms.

Chapter 5. Drug development cycle
Regulatory approval of biopharmaceutical products is subject to strict compliance
and the creation of a registration dossier. In this chapter we describe in sufficient
detail all the steps related to the filing of a BLA in the US or a marketing
authorization application (MAA) in the EU. The topics include early discovery
documentation, pharmacopeia, preclinical research, and IND steps to phase 4. The
expectations of regulatory inspections (audits) are presented based on the authors’
long experience in both the US and EU systems. This chapter also details the
stepwise approach taken in the US, EU, and Japan to evaluate a regulatory dossier.
Biopharmaceutical manufacturing has changed significantly since the 1980s, pri-
marily because of the regulatory authorities’ stricter controls on therapeutic
products. This chapter will provide a global view of how the agencies approve
products and facilities to manufacture these products. A comprehensive approach
requires a complete understanding of these steps to make the large-scale commercial
manufacturing of biopharmaceuticals possible.

Chapter 6. Biosimilar biopharmaceuticals
Biosimilars represent the fastest growing category of biopharmaceuticals, where a
copy of the originator’s biological drug is developed as a low-cost competitor to the
first BLA product. The regulatory agencies have placed extreme caution on safety,
and the development process takes a stepwise approach, described in detail in this
chapter. Regulations across the globe are compared, and advice is provided on cost
optimization of development. The key elements to establish biosimilarity, including
analytical assessment, nonclinical testing, clinical pharmacology testing, and clinical
efficacy testing, are described to focus on expediting the development process. A
summary of FDA licensed products with more information on the studies submitted
and the status of biosimilars in the EU is also provided.

Chapter 7. Intellectual property considerations
The development of biopharmaceuticals is an expensive exercise and the burden of
reducing the risk of litigation for the infringement of other patents and protecting
one’s own intellectual property requires close collaboration between scientists and
legal teams. This chapter describes the protection of intellectual property and walks
the reader through a process to avoid infringing on that of others. The finer points of
the definition of the vocabulary used in a patent application and the legal language
are described in simple language. All types of patents, differences in global patent
laws, and a detailed description of patents related to biological drugs are provided.
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Details on writing freedom-to-operate documents are provided, along with a
comprehensive list of the patent expiry of biological drugs and the approved
BLAs and their patent expiry.

Volume 2. Biopharmaceutical Manufacturing: Unit Processes
In recent years, most biopharmaceutical manufacturing operations have nar-
rowed down to upstream processes. A product is produced (expressed) and
separated from a culture medium and purified (downstream) to a quality
suitable for human use. Commercial manufacturing differs from a laboratory-
scale set-up where the cost and time for production are often not pivotal. Today
antibodies are made in quantities of thousands of kilograms, and some cytokines
only into the hundreds of grams; both scales require different scopes of the same
unit operations and processes. Volume 2 is geared toward providing a practical
plan for deploying recombinant manufacturing technology, starting with the
creation of a productive cell line and finishing with packaging a product for
human use. Economy and safety of the process may not always be mutually
exclusive; the key is to assure a consistent high yield while maintaining the quality
standards assured in the regulatory filing. This volume provides practical training
for technicians and advises scientists on modifying the process and maintaining
cGMP compliance.

Chapter 1. Understanding bioprocessing
Biopharmaceutical manufacturing is complex due to the multiple steps that must
integrate well within meeting cGMP compliance requirements. This chapter
summarizes the manufacturing process, which is discussed in greater detail in
the following chapters of this volume. This chapter further includes sections that
do not fit into other unit processes, such as cost containment, documentation, and
cGMP compliance assurance. The personnel involved in biopharmaceutical
manufacturing must understand the entire process regardless of their specific
role, which may be limited to a specific unit process, to enable smooth integration.
A biopharmaceutical manufacturing chain’s strength is only as strong as its
weakest link, making it essential that the entire team understands each step. This
chapter provides a stepwise description of clearly distinct unit processes or
actions, a discussion of how they are connected, and the routine practices and
development choices that make a manufacturing process commercially feasible.
We strongly urge the reader to read this chapter with great scrutiny to make best
use of the rest of the book.

Chapter 2. Recombinant manufacturing system
The manufacturing engine for biopharmaceutical products is a living entity—a
bacterium, a yeast, a mammalian cell, or transgenic cells and species. The DNA is
modified to combine with a foreign gene of expression entity. The genetically modified
entity can express proteins of interest. This chapter discusses recombinant DNA
technology, the types of entities available for recombination of their DNA, and a
detailed comparison of each of these expression systems’ advantages and
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disadvantages. Understanding the fundamentals governing these processes is
extremely important to process design. This chapter focuses on the fundamentals
of protein expression, the availability of various host systems, and the selection
basis for the intended application.

Chapter 3. Cell line development
The cell line expressing the desired target protein is the core of the recombinant
therapeutic process. Given the various choices of expression system available, the
simplicity of microbial systems (Escherichia coli) and the popular mammalian systems
(Chinese hamster ovary cells) are preferred. The advantages of microbial systems lie in
their fast growth and easy manipulation, but the lack of post-translational modifica-
tions (glycosylation) is a major drawback. In contrast, mammalian cell cultures are
more complex than microbial cultures. They have a longer doubling time, but this is
compensated for in their mechanism to allow posttranslational modifications essential
for protein functionality. Stable cell line development, a time-consuming process,
entails incorporating linearized plasmid DNA encoding the therapeutic protein into
the host genome. When the cells divide the transgenes are transferred to the subsequent
generations. Screening for recombinants is performed by including a selectable marker
on the plasmid. This can be an antibiotic resistance gene or a metabolic gene. The
recombinants are heterogeneous concerning their growth characteristics, expression
(productivity), and product quality. Therefore it is essential to screen the potential
clones to establish the right production cell line based on these features. A necessary
consideration for mammalian cell lines is to ensure that the cell line is clonally derived
from a single cell, confirming the homogeneity (genotypic and phenotypic). The
chosen cell line (production) must demonstrate proper growth, productivity, and
product quality over the generations required to run the manufacturing process.

Chapter 4. Upstream equipment and systems
The technology for the upstream unit process has evolved significantly over the past
few decades through new uses of systems initially developed for fermentation to
allow the growth of many different cell cultures to yield a target protein molecule.
The biological process of cell growth and expression when a genetically modified
organism is involved is more sensitive to bioprocess conditions. To overcome these
shortcomings, bioreactors are now designed with high-level technology to enable
reproducible batch yields. This chapter describes many types of equipment
and operational processes that now find their place at the core of biopharma-
ceutical production. While the science of bioprocessing requires a greater depth of
learning about the physics and chemistry of bioprocess, in this chapter the most
commonly used equipment and how it is made operational in a commercial setting
is the focus.

Chapter 5. Upstream process
Theupstreamunitprocessyieldsa crudeproduct eitherasan inclusionbody inbacteriaor
a secreted product from a bacterial or a mammalian cell. Optimization of the upstream
process is pivotal in producing a cost-effective product at a commercial scale. This
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requires making an optimal choice of the cell line, culturemedia, and types of operation,
and then, once the product is expressed, removing it from the bioreactors and separating
cell debris and other impurities to prepare the yield for downstream purification. If the
upstream process is not optimized the downstream process will not achieve the desired
productsafetyandefficacy.Thischapterdescribes theupstreamsystemsandthematerials
used in achieving a highly productive yield of a recombinant biopharmaceutical.

Chapter 6. Downstream process
The target protein synthesized by the cells, either by secretion in the medium
(mammalian cells) or intracellularly as inclusion bodies, must be isolated from the host
cells and purified to remove or reduce product-related and process-related impurities to
produce a final product with sufficient purity. Downstream processing involves several
unit operations, including but not limited to centrifugation, filtration, chromatography
purification, precipitation, and concentration ultrafiltration/diafiltration (UF/DF). The
impurities vary in their nature. The overall downstream process design should be
robust and consistent in ensuring that these impurities are removed or maintained
within established limits that do not pose a safety concern. In the case of mammalian
processes or processes that use raw materials of animal or human origin, adventitious
viruses should be addressed in the process design to ensure there is no risk of viral
contamination in the final product. Downstream processes may include more than one
orthogonal step for impurity removal. Platform processes allow for a starting point for
the process design of molecules that belong to the same class, but further optimization
specific to the target protein is necessary.

Chapter 7. Process and product lifecycle development
Production starts with a batch record for a commercial product that is primed for
economically viablemanufacturing. The process evolves from a development laboratory
setting step-by-step procedures into a final andmature manufacturing process. Focusing
solely on qualification efforts without recognizing the development constraints is an
imperfect exercise. A good process design and building quality into the process are of
primary importance for ensuring a robust process. The process development is initiated
with process design, wherein the target product is identified. The development of the
product profile is followed by identifying the process steps, characterization, and
validation using a risk assessment, prior knowledge, and process and product under-
standing to establish a robust system that allows consistent manufacturing of the desired
product quality. These activities help establish a well-defined control strategy.
Manufacturers must maintain the process in a state of control for the product’s lifecycle
and manufacture after defining and verifying the process, even as the environment, raw
materials, equipment, personnel, and manufacturing process shift.

Chapter 8. Quality and compliance systems
Commercial manufacturing mandates compliance with regulatory requirements that
are determined by the quality system in place. While scientists and technicians are
familiar with the technology aspect, cGMP and good laboratory practice (GLP)
compliance require a different level of understanding that is documentation based
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and also continued compliance with the systems. This chapter describes how to
create a cGMP and GLP compliant system starting with the responsibility of the
management, resource allocation, design and qualification of manufacturing sys-
tems, and continuous monitoring of quality attributes. The quality assurance system
emphasizes the need for a validation master plan that includes elements specific to
biopharmaceuticals, including virus validation, virus inactivation, and analytical
methods validation. Details of process validation from a statutory and analytical
perspective are presented. The discussion of good laboratory practice covers the
current regulatory requirements, creating a plan and documentation to stay
compliant, and specific analytical methodologies issues. A valuable database of
the regulatory inspection results from over 20 years of FDA audits is included to
provide a self-audit analysis to assure full compliance.

Chapter 9. Single-use technology
Single-use technology has long been part of biopharmaceutical manufacturing but
remained limited to a few components until a couple of decades ago when the
regulator imposed requirements to isolate contamination, at a higher capital cost of
establishing traditional manufacturing facilities. Improved yield and quality become
evident, resulting in the fast growth of single-use components that now range from
starting a cell culture to upstream, downstream, and fill and finish. Since big pharma
had already invested in fixed-pipe technology, single-use technology remains favored
by smaller or newer companies. This chapter presents a detailed outlook of the
present and the future of single-use technology, that is expected to become the
primary technology in the next couple of decades. This chapter provides introduc-
tions to single-use technology companies’ sources, the regulatory compliance details,
and suggestions for creating a comprehensive single-use train.

Chapter 10. Advancements and trends in biomanufacturing
Recombinant protein therapeutics is the single most important product group
driving today’s pharmaceutical development with a broad range of indications—
oncology to cardiovascular and other infectious diseases. With several developments
and blockbuster drugs on the market, there is an increasing need to enable
technologies and other supporting functionalities to keep pace with this demand.
Monoclonal antibodies have emerged as top-class in the recombinant protein group.
Since the first licensed product, manufacturing processes have evolved over the years,
starting with improving low productivity processes, expanding the use of host cell
systems, and engineering these systems to their full potential to express both simple and
complex proteins. These upstream advancements have shifted the process constraints
to the downstream processes, mainly due to a lack of flexibility in handling high
productivity processes. The projected future demand for recombinant therapeutics will
probably shift the emphasis onto developing processes that can accommodate multiple
products in a flexible production facility. However, this is likely to be limited in the
current operation state due to the current plant designs and a lack of flexibility with
facilities. The next-generation facilities will maximize facility utilization, have a
reduced footprint, ease scalability, and reduce the downtime between batches or
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even products in a multiproduct facility, but most importantly, reduce processing time
and cost, and improve efficiencies. Single-use technologies, process intensification
strategies for upstream and downstream operations, and modular facilities enable
technologies to be widely integrated into bioprocessing.

Additionally, a glossary of terms is included for quick reference and teaching of
terminologies and concepts.
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Sarfaraz Niazi and Sunitha Lokesh

Chapter 1

Understanding bioprocessing

Biopharmaceutical manufacturing is complex due to the multiple steps that must
integrate well while meeting the cGMP compliance requirements. This chapter
provides an overview of the manufacturing process as detailed in the rest of the
chapters in this volume. This chapter further includes sections that do not fit in other
unit processes, such as cost containment, documentation, and cGMP compliance
assurance. The personnel involved in biopharmaceutical manufacturing must
understand the entire process regardless of their specific role,which may be limited
to a particular unit process, to enable a smooth integration. A biopharmaceutical
manufacturing chain’s strength is only as strong as its weakest link, making it
necessary for the the entire team understand each step. This chapter provides a
stepwise description of clearly distinct unit processes or steps, a discussion of how
they are connected, and the routine practices and development choices that make a
manufacturing process commercially feasible. We strongly urge reading this chapter
with great scrutiny to make best use of the rest of the book.

1.1 Overview
This chapter attempts to provide an overview of the fundamental concepts of
biotherapeutic manufacturing methods, with a focus on recombinant proteins.
Despite the modernization and adaptation of applicable technology, these concepts
have remained constant over time. The manufacturing processes follow the same
basic requirements for a cGMP compliant production process as other pharma-
ceutical products, such as process validation, environmental control, aseptic
manufacturing, and quality control/quality assurance systems, but with a lot more
complexity, because cell propagation, purification methods, and analytical controls
are all important.

To obtain the required product from the starting components, product and
process development necessitates many unit activities (figure 1.1).
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1.1.1 Unit operation

To obtain the required result from the raw materials, product and process develop-
ment necessitates several unit operations. The expression method, upstream, down-
stream, fill and finish, and packaging, for example, are all unit operations associated
with building the overall process in recombinant manufacturing.

The unit operation of a process is a critical stage. Unit processes that include a
physical change or chemical transformation include separation, crystallization,
evaporation, filtration, polymerization, isomerization, and other reactions.

Upstream, downstream, and formulation processing are all part of the manu-
facturing process. Cell culture, which leads to fermentation, is referred to as
upstream. The harvesting step separates the cells, followed by the separation of
target proteins from the host and process-related contaminants, an intermediate
purification step (or further separation from the host), and a polishing step to
separate target proteins from impurities. At this point, the yield is referred to as a
drug substance. By turning drug ingredients into drug products, the formulation
phase creates a dosage form ready for human administration. This is an equally
critical stage, as studies have shown that how the batch is handled can drastically
alter protein structures.

Figure 1.1. A recombinant manufacturing train’s typical unit procedures. The target protein can be found in
bacteria, mammalian cells, and insect cells, as well as transgenic animals and plants (upstream). The harvest is
purified by a series of purification unit activities that include capture, intermediate purification, and polishing
(downstream), resulting in pure bulk material (drug substance). Finally, the drug substance is converted into a
human-friendly product (drug product). Upstream refers to protein expression and harvesting, while down-
stream refers to drug ingredient conversion, intermediate purification, polishing, and formulation. The primary
strategic question in the upstream process is whether the cell culture should be done in batch, fed-batch, or
continuous mode. Because of the greater yields in continuous processing, the latter is extremely appealing at
low expression levels. The expression system utilized often determines the recombinant process outline,
however, most recombinant processes follow a similar pattern.
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1.2 Key considerations for the production of biotherapeutics
1.2.1 Cell-substrate

The beginning material for biopharmaceutical synthesis is bacterial, yeast, insect, or
mammalian cell cultures. The cell seed lot system is used by manufacturers to assure
the identification and purity of the initial raw material. A cell seed lot is made up of
aliquots from a single culture. The master cell bank (MCB) has enough culture
ampoules to supply the operational cell bank with source material. It is made from a
single colony (bacteria, yeast) or a single eukaryotic cell and frozen to maintain
genetic stability (WCB). The WCB is a collection of cells derived from one or more
MCB ampoules that have been cryogenically frozen and used to kick off the
production batch.

The most popular cellular expression systems used to generate biopharmaceut-
icals include bacteria (E. coli, Bacillus subtilis, Lactococcus lactis), yeast
(Saccharomyces cerevisiae, Pichia pastoris), mammalian cells (Chinese hamster
ovary (CHO), baby hamster kidney (BHK)), and insect cells. The baculovirus
expression system, on the other hand, is in use to some extent and has the potential
to become a future biopharmaceutical. A comprehensive list of cell lines and
providers may be found at https://www.biocompare.com.

The choice of expression system is influenced by the type of target protein, post-
translational changes, expression level, intellectual property rights, and manufactur-
ing cost. While the E. coli expression system allows for quick and low-cost
expression, it does not allow for complicated protein expression or the integration
of in vitro folding and tag removal into the downstream process. Yeast generally
expresses the target protein in its native form in the medium, but the levels of
expression are very low. Many of the same advantages apply to insect cells as do to
mammalian cells. Table 1.1 lists the advantages and disadvantages of each of these
methods.

The origin and history of both the MCB and the WCB conversion passes are
crucial to understand since the cell bank’s genetic stability throughout storage and
replication is a critical problem. A single MCB ampoule is used and then frozen or
lyophilized. The newMCBmust be extensively tested and characterized before being
released. For biological products, a product licensing application or amendment
must be submitted and accepted before a new MCB can be formed from a WCB.
The information on the expression vector’s fabrication, the fragment containing the
genetic material that encodes the desired product, and the host cell’s genotype and
phenotype are all included in a product application(s). Biological systems are
concerned about the genetic integrity of cell banks during development and storage,
contaminating microbes, and endogenous viruses in particular mammalian cell lines.
As part of the application document, manufacturers must include a list of all tests
performed to describe and qualify a cell bank.

The tests needed to classify a cell bank are determined by the final product’s
intended use, the host and expression system, and the manufacturing process,
including purification techniques. In addition, as technology progresses, the types of

Biopharmaceutical Manufacturing, Volume 2

1-3

https://www.biocompare.com


tests can change. The MCB is rigorously evaluated using the following tests, though
they are not the only ones used:

• Detection assays for viral contamination.
• DNA fingerprinting is used to characterize genotypes.
• Nutrient requirements, isoenzyme analysis, development, and morphological
characteristics are used to characterize phenotypes.

• Other microbial pollutants are detected using a sterility test and a myco-
plasma test.

• Restriction enzyme mapping and sequence analysis characterize the vector/
cloned fragment at the molecular level.

• Retrovirus detection using reverse transcriptase assay.
• The desired product can be generated in a repeatable manner.

Table 1.1. Comparison of various expression systems, advantages and disadvantages. (After Niazi S 2005
Manufacturing overview Handbook of Biogeneric Therapeutic Proteins Regulatory, Manufacturing Testing and
Patent Issues (Boca Raton, FL: CRC Press).)

Qualifier Bacteria Yeast Insect cells
Mammalian
cells

Transgenic
animals

Cost Low Low High High Medium
Example E. coli Saccharomyces

cerevisiae,
Pichia
pastoris

Lepidoptera CHO Cattle

Extracellular
expression

No Yes Yes Yes Yes

Host cell protein
expression

No No No No Yes

In vitro protein
refolding

Yes No No No No

Level of
expression

High Medium Medium Medium Very high

Major impurities Endotoxins Glycosylated
products

Viruses Viruses Viruses and
prions

Met-protein
expression

Yes No No No No

Post-translation
modifications

No No Yes Yes Yes

Regulatory track
record

Good Good N/A Good N/A

Time to produce
expression
system

Fast: 5 days Fast: 14 days Medium:
4 weeks

Slow:
4–8 weeks

Very slow:
6–33 months

Unintended
glycosylation

No Possible Possible Possible Possible
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The WCB does not need to be tested as fully as the MCB, although WCB
characterization is required. The WCB is submitted to the following tests, albeit this
is not a complete list:

• Characterization of phenotypes.
• Enzyme mapping for restriction.
• Testing for sterility and mycoplasma.
• Testing the red product’s ability to be produced in a consistent manner.

The MCB and WCB must be processed in a way that maintains genetic stability.
Cells stored in liquid nitrogen (or its vapor phase) are more stable than those kept at
−70 °C. In the case of a freezer failure, it is also advised that the MCB and WCB be
placed in multiple locations.

1.2.2 Media

The medium is chosen to offer the requisite growth rate and nutrients to the species
producing the intended result. There should be no dangerous or poisonous compo-
nents in component materials that could be passed to the finished product through cell
culture, fermentation, or purification. There is a huge amount of water in the medium.
The recombinant method utilized, the production phase, and the intended application
of the result will all influence the consistency of the water. Before being used, raw
materials must meet approval standards if they are supplied by a certain manufacturer.
A small-scale pilot run followed by a full-scale production run is recommended when
employing raw materials from a different manufacturer to confirm that growth
parameters, yield, and final product purity stay the same.

For the growth of most mammalian cell cultures, serum is frequently required.
Companies must take care to guarantee that the serum is sterile because it can be a
source of contamination by unwanted species, particularly mycoplasma. It is also
possible that bovine serum includes the agent that causes bovine spongiform
encephalopathy (BSE). Because there is no sensitive in vitro test to detect the
presence of this agent, it is vital that the makers know the source of the serum and
receive verification that it is not from BSE-endemic areas. Proteases and other
enzymes generated from bovine sources can also contain BSE. Biological product
makers must declare the provenance of the components they employ in their
production.

The medium must be sterilized using either sterilization in situ (SIP) or continuous
sterilization systems (CSS). Any nutrients or chemicals introduced after this must be
sterile. The air lines must have sterile filters and must meet the following criteria on a
regular basis, although not exhaustively:

• Confirm that the serum source is compliant.
• Ensure that the medium is sterile, confirm that the sterilization cycle has been
properly checked.

• Ensure that quality management has checked all raw materials.
• Determine whether the bovine source contains contaminates.
• Document any cases where the medium did not meet any of the requirements.
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• Verify that no expired raw materials were used in the manufacturing process.
• Check to see if the medium and other additives were stored properly.

1.2.3 Process overview

Table 1.2 lists the processes that are specific to expression systems.

1.2.4 Upstream production process

Cell cultures can be operated in batch, fed-batch, or continuous mode, depending on
the expression system employed. Continuous systems might take weeks to complete,
resulting in multiple harvest pools and needing a detailed batch strategy definition.
For bioreactor inoculation, transition, and harvesting, validated aseptic procedures
must be applied. To add or remove materials from industrial bioreactors, steam-
sterilized lines and steam-lock assemblies are frequently utilized. It may not be
essential to turn off the steam supply if the heating of the line or bioreactor vessel
wall will not affect the culture.

To achieve proper and effective expression of the desired product, a bioreactor
device must be closely monitored and precisely regulated. Other fermentation
process characteristics such as growth rate, pH, waste byproduct level, viscosity,
chemical additives, density, mixing, aeration, foaming, and others must be estab-
lished and monitored. The final product may be affected by shear pressures, process-
generated heat, seals, and gasket effectiveness.

A number of growth factors regulate protein synthesis. Any of these parameters
can alter deamidation, isopeptide synthesis, and host cell proteolytic processing.
While nutrient-deficient media are frequently utilized as a selection mechanism,
media low in certain amino acids can result in replacements. During development
E. coli is depleted of methionine and leucine, causing it to manufacture norleucine
and insert it into a site ordinarily held by methionine, yielding a wild-type protein
homologue. Because these products are so closely linked, chromatographic separa-
tion can be challenging; this might affect how release requirements are implemented
and how successful the product purification process is.

It is necessary to validate computer programs for fermentation control, data
logging, data reduction, and analysis.

In bioreactor systems built for recombinant micro-organisms, a pure culture must
be maintained, and the culture must be kept within the devices. Containment can be
achieved by using a host-vector system that is less capable of surviving outside of a
laboratory setting and, when necessary, physical methods.

1.2.5 Downstream process

The first chromatographic capture phase sample was prepared using centrifugation,
filtration, and micro-filtration. In other circumstances, expanded bed technology
was employed to integrate the harvest and capture phases. Because of the huge
volumes treated, significant improvements in ionic strength or pH are not suggested.
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Table 1.2. Process overview for different expression systems. (After Niazi S 2015 Upstream systems
optimization Biosimilars and Interchangeable Biologics (Boca Raton,FL: CRC Press).)

General Cell culture Batch-fed or perfusion; 3–40 days.
Harvest Centrifugation/filtration; omit if using an expanded bed.
Capture Chromatographic unit operation is typically based on

affinity or IEC. Remove major host and process-
related impurities and water.

Variable unit
operation

The unit operation may be refolding (if E. coli is used) or
virus inactivation if insect cells, mammalian cells, or
transgenic animals are used.

Intermediate
purification

The chromatographic unit operation is typically based on
HIC, IEC, or HAC stepwise gradient technology used
to remove host and process-related impurities.

Variable unit
operation

This unit operation may include tag removal (if E. coli is
used) or virus removal by filtration if insect cells,
mammalian cells, or transgenic animals are used.

Polishing The chromatographic unit operation is typically based on
HP-IEDC or HP-RPC stepwise/linear-gradient
technology used to remove product-related impurities.

Variable unit
operation

SEC or ultrafiltration to assure proper drug substance
formulation.

Drug substance The drug substance’s conversion to drug product
typically includes a change of buffer, precipitation, or
crystallization.

Formulation Batch manufacturing often including stabilizers such as
albumin.

Finished drug
product

Filling in appropriate containers such as vials or pre-
filled syringes.

E. coli (gram-
negative)

Fermentation Expression of N-terminally extended target protein to
overcome the formation of Met-protein.

Harvest Harvest of cells by centrifugation before cell disruption.
Cell disruption Disruption with a French press or similar; wash out

inclusion bodies.
Extraction Extraction under reducing and denaturing conditions

(e.g. 0.1 M cysteine, 7 M urea pH 8.5).
Capture Purification under reducing and denaturing conditions

(e.g. IEC or IMAC if the protein is His-tagged).
Renaturation Controlled folding of the target protein using hollow

fiber, SEC, dilution, or buffer exchange.
Intermediate

purification
Purification of the folded target protein (e.g. IEC, HIC,

HAC).
Enzyme cleavage Cleavage of the N-terminal extension with exo- or

endoproteases.
Polishing 1 Purification of the target protein (e.g. HP-IEC,

HP-RPC).
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Table 1.2. (Continued )

Polishing 2 Purification of the target protein by SEC (not always
included).

Drug substance The purified bulk product.
Formulation Re-formulation of the drug substance preparing for

administration to humans.
Drug product The final product.

Gram-positive
bacteria

Fermentation The expression of the target protein to the periplasmatic
room or medium.

Harvest Harvest of cells by centrifugation before cell disruption.
This step may be bypassed using expanded bed
technology.

Capture Purification of the target protein from the supernatant.
Intermediate

purification
Purification of the target protein (e.g. IEC, HIC, HAC).

Polishing 1 Purification of the target protein (e.g. HP-IEC, HP-
RPC).

Polishing 2 Purification of the target protein by SEC (not always
included).

Drug substance The purified bulk product.
Formulation Re-formulation of the drug substance preparing for

administration to humans.
Drug substance The final product.

Yeast Fermentation The expression of the target protein to the medium.
Harvest Harvest of cells by centrifugation before cell disruption.

This step may be bypassed using expanded bed
technology.

Capture Purification of the target protein from the supernatant or
by expanded bed technology.

Intermediate
purification

Purification of the target protein (e.g. IEC, HIC, HAC).

Polishing 1 Purification of the target protein (e.g. HP-IEC, HP-
RPC).

Polishing 2 Purification of the target protein by SEC (not always
included).

Drug substance The purified bulk product.
Formulation Re-formulation of the drug substance preparing for

administration to humans.
Drug product The final product.

Insect Cells Cell culture The expression of the target protein to the medium.
Harvest Harvest of cells by centrifugation before cell disruption.

This step may be bypassed using expanded bed
technology.

Capture Purification of the target protein from the supernatant or
by expanded bed technology.
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Virus inactivation Inactivation using low pH, high temperature, detergents,
etc.

Intermediate
purification

Purification of the target protein (e.g. IEC, HIC, HAC).

Virus filtration Nano-filtration.
Polishing Purification of the target protein (e.g. HP-IEC, HP-RPC,

SEC).
Drug substance The purified bulk product.
Formulation Re-formulation of the drug substance preparing for

administration to humans.
Drug product The final product.

Mammalian
cells

Cell culture The expression of the target protein to the medium.
Harvest Harvest of cells by centrifugation before cell disruption.

This step may be bypassed using expanded bed
technology.

Capture Purification of the target protein from the supernatant or
by expanded bed technology.

Virus inactivation Inactivation using low pH, high temperature, detergents,
etc.

Intermediate
purification

Purification of the target protein (e.g. IEC, HIC, HAC).

Virus filtration Nano-filtration.
Polishing Purification of the target protein (e.g. HP-IEC, HP-RPC,

SEC).
Drug substance The purified bulk product.
Formulation Re-formulation of the drug substance preparing for

administration to humans.
Drug product The final product.

Transgenic
animals

Raw milk Milking of animals according to good agricultural
practices.

Skim milk Centrifuged raw milk with low-fat content.
Capture Purification of the target protein from the skim milk.
Virus inactivation Inactivation using low pH, high temperature, detergents,

etc.
Intermediary

purification
Purification of the target protein (e.g. IEC, HIC, HAC).

Virus filtration Nano-filtration.
Polishing Purification of the target protein (e.g. HP-IEC, HP-RPC,

SEC).
Drug substance The purified bulk product.
Formulation Re-formulation of the drug substance preparing for

administration to humans.
Drug product The final product.
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Instead, a purification principle that is compatible with the features of the
application sample should be adopted. The initial stage in the recovery procedure
is to remove the target protein from the fermentation or cell culture media, which is
often contaminated. In cell culture and yeast-derived products, many of these
proteins are released directly into the medium, needing just cell separation to achieve
considerable purification. Lysis of the bacteria is frequently required to recover the
appropriate protein from E. coli derived products. Because the desired product can
be cleaved by proteases generated by lysed organisms, fast purification of the desired
protein is crucial in each situation. Because they are difficult to remove, complicate
the recovery process, and have a considerable impact on the final product’s stability,
these trace proteases are a key source of worry in the purification of biotechnology-
derived goods. The recovery process is usually designed to purify the final product to
a high degree. The purity required for a product is determined by a variety of factors,
but chronic use products will be required to have a significantly higher purity than
single-use ones. Impurities in biotechnology products have been created to be
removed or minimized throughout the recovery process. Impurities in the media
include trace amounts of DNA, growth factors, residual host proteins, endotoxins,
and residual cellular proteins.

1.2.5.1 Harvest and clarification
After the fermentation process is completed, the desired product is extracted and, if
necessary, refolded to restore configuration integrity and purity. The first steps in the
downstream process to retrieve the produced protein are harvest and clarity. Its goal
is to remove significant impurities from the expressed protein (water, cell waste,
lipoproteins, lipids, carbohydrates, proteases, glycosidases, colored compounds,
adventitious agents, fermentation additives, and fermentation by-products) and
prepare the sample for intermediate purification.

To retrieve intracellular proteins, cells must be disturbed during fermentation.
This is accomplished through chemical, enzymatic, or physical methods. After
the disruption, cellular debris can be recovered using centrifugation or filtration.
To recover extracellular protein, centrifugation or membrane filtration are used to
separate products from processing organisms. Initial separation procedures such as
ammonium sulfate precipitation and aqueous two-phase separation can concentrate
the components after centrifugation. Chromatographic procedures to eliminate
contaminants and get the product closer to the final specifications are the most
common additional purification processes. Extraction and isolation require filtration
or centrifugation (table 1.3).

1.2.5.2 Capture
The target protein should be concentrated and stored in a way that will preserve its
biological activity. The capture phase removes contaminants from the host and the
process, serving as an initial purification step for the target molecule. Due to the
enormous volumes handled and the nature of the application material, the first
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chromatographic purification stage is based on the on/off principle based on
selective binding of amino acids to the matrix. Large particle size materials are
employed to prevent the column from clogging, and low resolution is expected.
Because purity is not an issue at this point, one of the primary concepts of capture
operations is to focus on the target protein features to accomplish a successful
binding and pay less attention to impurities. If the affinity ligand stability does not
impose excessive limits on the use of effective cleaning and sterilization protocols,
affinity chromatography’s high selectivity may be an interesting approach for
capture. The most popular purification principles are ion-exchange chromatogra-
phy, packed bed affinity, and extended bed affinity. With extended bed technology,
direct application of the cell culture is feasible, reducing unit procedures. Simple
technologies, broad parameter intervals, high flow rates, affordable chromato-
graphic medium, and large particle sizes should be used in capture operations to
provide process resilience, accuracy, and economy. The sample volume is reduced
significantly, the quantity of contaminants is reduced, and the sample is ready for the
next stage.

1.2.5.3 Intermediate purification process
The intermediate purification step is the first purification step where most principal
contaminants are eliminated, including cellular proteins, culture media components,
DNA, viruses, endotoxins, and others. Best results are obtained when medium-size
particles are employed to alter the protein chemically and enzymatically and
increasing the resolution of related molecules. Using desorption principles that are
more selective, such as multi-step or continuous gradient elution processes.

The SEC (size exclusion chromatography) can be used as a final step to:
• Remove polymers
• Formulate bulk drug substances
• Do a buffer swap to any buffer
• Improve protein stability
• Make the bulk material’s composition uniform.

Table 1.3. Key features of the harvest and recovery processes commonly used.

Harvest and
clarification Features

Centrifugation Cells, cell debris, and residues are usually removed from the harvest using
centrifugation. The primary way of elucidation.

Filtration The separation of particles from the solution using high pore size filters is
known as depth filtration. It is good for both primary and secondary
clarification. For the removal of designated contaminants such as
endotoxins, viruses, or prions, filtering techniques include conventional
filtration, micro-filtration, ultrafiltration, and specialized filters.
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1.2.5.4 Final purification process
Chromatography is one of the most effective methods for purifying proteins. Over
the years this method has been turned into a commercial tool. The capture,
intermediary, and polishing principles are used in most biopharmaceutical methods,
and at least three separate chromatographic steps are used. The sample’s compo-
sition determines the type of chromatographic medium to use. The co-solvents, in
most cases, do not affect the protein’s ability to bind to the column. Every
chromatographic technique employs a balance of resolution, speed, power, and
recovery. Choose rational chromatographic technique combinations based on the
technique’s key benefits and the state of the sample at the start or end of each step.
Techniques may be mixed, but only when they are mutually beneficial. The
purification method is mainly accomplished using one or more column chromatog-
raphy techniques.

1.2.5.5 Virus removal
When using mammalian cells or transgenic animals as the expression system, virus
inactivation and active filtration add an extra unit activity.

1.2.5.6 Product concentration and DS formulation
Ultrafiltration and diafiltration are two typical filtration operations for concentrat-
ing the final distilled product solution and, if necessary, performing a buffer
exchange into the respective drug substance (DS) formulation components at the
desired concentration. The low molecular weight impurities are pressed through the
membrane with the aqueous liquid in the ultrafiltration phase, while the substance
stays on the primary side. The particles do not settle on the membrane because of the
crossflow direction.

Additional processing (e.g. the addition of surfactant) may be needed to achieve the
final DS formulation, after which the DS is filtered through a 0.2 μm filter.
Representative samples of the DS are collected and analyzed following specified
guidelines. The bulk DS is often kept frozen (−20 °C), and the stability of the product
is tested under various conditions to determine the best storage time and temperature.
These conditions are validated to assure that the DS remains usable over time.

1.2.6 Formulation process

The drug product composition is critical; most biopharmaceuticals are packed in
liquid or lyophilized form, which necessitates a certain minimum volume to contain
the final drug product. Therefore, a size-exclusion or desalting phase might be
required to reduce the volume. Although the upstream and downstream steps in
deciding the final characterization of a product have received a lot of attention, the
formulation phase can greatly impact the product’s safety and efficacy. There are
unlikely to be any additional ingredients in a lyophilized product, but a liquid
formulation can contain many common ingredients. Albumin, sucrose, polysor-
bates, buffer salts, and other substances are examples.
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1.3 Chromatography methods
1.3.1 Affinity chromatography (AC)

Identifying structural epitomes is how AC works. Low protein concentrations,
vast application volumes, changing pH levels, and low to moderate ionic strength
are all possible. AC is a selective technology that allows for large-scale impurity
removal since the on/off concept is perfectly matched to the capture mode.
Because proteins elute at low pH, the sample should be given at a neutral to
slightly alkaline pH.

1.3.2 Anion exchange chromatography (AEC)

AEC is the most commonly utilized chromatographic technique. It is suitable for
capture, intermediate purification, and polishing because it uses very specific media
with predetermined particle sizes, spacers, and ligands. HIC has a poorer resolution
than IEC, but when the proper ligand is found it can have a high selectivity.

1.3.3 Cation exchange chromatography (CEC)

CEC is suitable for low protein concentration, large application volumes and low
ionic strength application. It is also tolerant of ethanol, urea, and non-ionic
detergents.

1.3.4 Hydroxyapatite chromatography (HAC)

HAC is typically an effective answer when it comes to purification issues. The high-
resolution reversed phase chromatography is mostly utilized for molecular weight
proteins less than 25 KDa since the binding constant for larger molecular weight
proteins is too high. Because of elution in organic solvents, protein stability in these
buffers is a major issue. It is suitable for low protein concentration; large application
volume; pH > 7.0; however, the matrix does not tolerate acidic pH.

1.3.5 Hydrophobic interaction chromatography (HIC)

At high salt concentrations, HIC is frequently employed in conjunction with ion
exchange, binding proteins, and elution at low salt concentrations. If HIC is used in
the capture step, the hydrophobic substances in the fermentation broth and cell
cultures may reduce the binding capacity. If the feed volume is significant and salt is
required to boost the ionic strength of the solution, it may be a less appealing capture
strategy. Large quantities of salt would consequently be required, which increases
manufacturing costs and creates a waste disposal issue.

1.3.6 Immobilized metal affinity chromatography (IMAC)

The International Metal-Ligand and Protein Complex Binding Center focuses on
metal-ligand and protein complex binding. Low protein concentrations, large
application volumes, neutral pH, strong ionic pressure, and denaturant, detergent,
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and ethanol tolerance are all requirements. IMAC is rarely utilized in industrial
downstream manufacturing. It is a versatile protein capture approach that is also a
one-of-a-kind tool for histidine-tagged proteins. Given the ionic strength of bio-
logical starting materials, it is also a salt-tolerant process. The combined efforts of
proteins’ primary, secondary, and tertiary structures can result in exceptionally high
selectivity.

1.3.7 Reversed-phase chromatography (RPC)

Alkaline pH is not tolerated by hydrophobic contact silica-based matrices. Low
protein concentrations, high application sizes, low pH, and organic solvents are all
well tolerated in this chromatography.

1.3.8 Size-exclusion chromatography (SEC)

High protein concentration; small application volumes; any pH; any ionic
strength; any solvent; steric exclusion from the intraparticle volume; sample
volume limited to a maximum of 5% of the column volume. It is suggested that
SEC be used as the last purification step. Even though the sample volume rarely
exceeds 5% of the column capacity, the approach allows for the removal of di- and
polymeric compounds, transfer to a well-defined buffer, and increased protein
stability in many circumstances. The relative value of each of the unit operations
is shown in table 1.4.

The chemicals employed in chromatography operations might create contami-
nants in the end product, whether in the stationary (bonded) or mobile phases.
Confirmation is the responsibility of the manufacturer (i.e. demonstrating the
elimination of potentially harmful chemicals). Chemical leaching certification
from a column material provider is insufficient because contamination is process
and product based. Validation is required when isolating product monoclonal
antibodies or when utilizing a technique that includes a monoclonal antibody
purification phase. The procedure must demonstrate the removal of leaking anti-
body or antibody fragments. As a result, it is critical to make sure the cell line used
to make monoclonal antibodies is devoid of infectious organisms such as viruses and
mycoplasmas. The biggest concern is that the product could be tainted with an
antigenic medication, posing a risk to patients. The process must be continuously
monitored to prevent or limit contamination.

Antigenicity connected to the active drug component and host proteins is unique
to biotechnology-derived medicines when compared to conventional drugs.
Manufacturing processes that use specific solvents should be scrutinized to see if
they can generate chemical reorganizations that alter the antigenic profile of the
medicine. The manufacturer must also show that the output accuracy of the
innovative chromatographic column is accurate. Because single-use goods, such as
vaccines, are not provided on a regular basis, different concerns apply, and
antigenicity is desired in this scenario.
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On the other hand, validation of the removal of ligand or extraneous protein
contamination is required. Biotechnology-produced goods, unlike those gener-
ated from natural sources, must have nucleic acid elimination verified during
purification.

1.4 Process lifecycle
1.4.1 Maturity

As soon as a project enters the production phase, material delivery for preclinical
and clinical studies becomes a big issue. The numbers necessary, according to cGMP
rules, much exceed what can be generated in a production laboratory, hence clinical
trial material must be manufactured. Process designers are faced with a dilemma: to
what degree should process design be sacrificed in order to supply the desired
material in the lowest amount of time? An immature process would demand process
change late in the project, resulting in laborious analytical and biological testing
repetitions. It is critical to recognize the magnitude of the situation. Consider
developing drug substance and drug product stability testing, sources, toxicological
research, and virus validation investigations on a mammalian pilot scale. Any data
acquired using the old method would be thrown into doubt if a substantial process
change occurred. While comparability studies can accomplish a lot, stability and
viral validation investigations must be replicated, which will severely delay the
project. Process economy, which should not compromise safety but can lead to a no-
go decision, is another element that project managers must examine.

Until scaling up, the process maturity level must be defined, or, in other words,
process maturity requirements must be defined a priori. Before tech transition, the

Table 1.4. The relative time importance of various chromatographic methods in various downstream
processes.

Principle Capture Intermediary purification Polishing

Ultrafiltration +++ +++ +++
SEC + + +++
RPC + + +++
Precipitation + +++ +++
Microfiltration +++ + +
IMAC +++ ++ +
IEC +++ +++ +++
HIC ++ +++ +
HAC + +++ +
Filtration +++ +++ +++
Crystallization + ++ +++
Affinity +++ + +
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conditions specified in the table below should ideally be met. Even the real world is
not flawless, and some tasks can go unfinished during scale-up, resulting in
significant changes and possibly process overhaul later on. As a balance between
time to market and additional construction costs, some businesses intend to redesign
processes between phases 2 and 3. Below are the maturity requirements for the
technology transfer scale (table 1.5).

1.4.2 Scale-up

Except for the column diameter in chromatographic unit operations and the
membrane region in filtration operations, the downstream approach is designed so
that most parameters are adjusted (in a linear fashion). The most significant
roadblock—the human factor—remains the eternal conflict between the pilot-scale
mindset and commercial selling criteria. At the small-scale production level, the US
FDA’s Process and Analytical Technology (PAT) Initiative (http://www.fda.gov/
cder/OPS/PAT.htm) recommends implementing the concept of ‘build in’, in which
process protection, robustness, cGMP enforcement, facility constraints, economy,
and time to market are all built into the process. The process is tested on a small

Table 1.5. Maturity of process.

Maturity criteria Comments

Cell line QA release of the MCB is required before transferring cells into the cGMP
facility.

Drug product Formulation to be flexible enough to change the composition of the bulk;
short-term stability documented.

Drug substance Short-term stability of the intermediary compounds to be documented.
In-process control Parameters stated in intervals (validated and proven acceptable ranges) and

monitored; analytical method description plus data for in-process analyses
to be provided.

Intermediary
compounds

Data from three small-scale batches should be provided; critical parameters
and their interaction should be defined. Holding times of relevance to
large-scale operations should be provided.

Process design The design should be robust with provisions for removal of the host, process,
and product-related impurities. Refolding is involved, including a well-
defined renaturation step, where virus contamination can be an issue,
integrate virus removal and inactivation steps with due consideration for
the protein’s denaturation.

Quality control DS and DSP quality control plan defined and analytical method description
plus typical data provided.

Raw materials A list of raw materials should be provided; do not use materials not qualified
to be used in cGMP manufacturing (see DMF discussion).

Specifications Acceptance criteria for DS and DSP provided where possible.
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scale against predetermined process maturity factors, such as parameter intervals,
in-process control points, essential parameters, interactions, robustness, yield,
documentation standard, raw material certification, and analytical maturity
procedures, before being transferred to a larger scale. The typical step-by-step
scaling-up procedure is incompatible with this notion (a short-cut approach to
accommodate unrealistic timelines). The cell culture and first purification proc-
esses (e.g. capture) are scaled up before the technology is established on a small
scale. Stepwise scaling up creates a lot of uncertainty, takes a long time, and
results in a late process overhaul. This level of work is also popularly outsourced,
in particular if the organization intends to outsource manufacturing. Transferring
an immature process into a pilot environment can delay phases 1–2 of clinical
material manufacture because process modifications can put doubt on the
stability, viral validation, and preclinical data. As a result, any symptoms of a
developing mechanism should be handled as soon as possible. Immature process
signs include the following:

• Many batches are discarded or fail to meet requirements.
• During production, the manufacturing process comes to a halt.
• Impurity profiles are changing.
• Unit processes need to be reworked.
• UV diagrams may not be superimposed over each other.
• Yields are poor or differ from batch to batch.
• Protein stability is a concern.
• The process is frequently redesigned.

1.4.3 Optimization

The process design is locked once the process has been scaled up, but there are
room for improvement within the specified (proven acceptable range) parameter
intervals. Adjusting the process to increase yields, process economy, process
robustness, column lifespan, raw materials, and labor savings is part of the
optimization process.

1.4.4 Tech transfer and documentation

Before moving the procedure from the production laboratory to the pilot plant,
many considerations are taken into account. There are significant cultural variations
between the two areas. The research team focuses on protein chemistry, aiming for
the highest resolution and technically elegant solutions. On the other hand, the pilot
worker is more concerned with engineering problems and making the best use of the
equipment. As a result, good coordination between the two domains is essential,
highlighting the need for ‘design in’. The size of the tech transfer package reflects the
efficiency and maturity of the process, as well as its supporting operations. The
following sections discuss issues related to the technological shift from the produc-
tion laboratory to the pilot facility.
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The recombinant protein manufacturing technology transfer kit is a detailed
document that discusses different issues in enough detail for the transferee to
reproduce the procedure. The transfer package comprises:

• The rationale for the method, as well as a summary of the manufacturing
schedule.

• Physical and chemical properties of the target protein molecule.
• Safety profile; reworking and propagation paperwork; cell line history; MCB
vials, WCB vials, WCB release documentation.

• Method: Small batch data; key parameters; relevant impurities description;
host, process, and product-related; process flow sheet; significant impurity
removal processes; batch production plan are included.

• Any missing information in the master production document, batch record,
formulation deviation criteria, creation history document, and compliance
record.

• In-process materials, medication components, and drug products are all kept
in controlled environments.

• Shipping: Terms and conditions for both the drug substance and the drug
product, as well as packing requirements.

• Controlling the process: For pH, conductivity, redox potential, protein
concentration, temperature, holding duration, load, transmembrane strain,
linear flow, and other parameters, required tests and, if needed, parameter
intervals (tolerances and requirements) are required.

• Acceptance criteria for appearance, identity, biological activity, purity, and
quantity; pharmacopeial requirements, if applicable.

• For analytical techniques, there are descriptions, typical data, a method
qualification standard, methods transfer procedures, and reference material.

• Stability: Real-time and extrapolated data are required for both drugs and
drug products.

• Virus validation: documentation and policy, as well as a compliance analysis.
• Validation: The master plan, the employee training process, end-of-training
goals, and follow-up support have all been modified.

1.4.5 Validation process

Purification techniques are usually tested on a small scale to see how effective the
processing stage is. Many differences must be considered when comparing a laboratory-
scale operation to a scale-up operation. Longer processing times may have a detrimental
influence on product quality since the product is exposed to buffer and temperature
conditions for longer periods of time. Product stability must be thoroughly documented
under purifying circumstances. It is critical to understand a step’s flaws and how
successful it is. After process validation on the output size batch, the impact of scale-up
should be compared. Although data on a small scale may improve validation,
validation on production batch sizes is crucial. Validation protocols must be followed
when columns are regenerated to allow for recurrent usage, and the process must be
monitored for chemical and microbiological contamination on a regular basis.
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When batches are rejected, it is vital to figure out what went wrong in the
manufacturing and control procedures. To avoid the issue from occurring again, a
proper action plan can be implemented.

1.5 Costing
Multiple factors influence the best scale-up and scale selection in an integrated
model. The model for cost estimation is provided below.

The production process (facility depreciation, raw material pricing, quality
control, and quality assurance) must match the intended results. As a general
guideline, manufacturing costs should not exceed 15% of the price per dose (vial).
The cost of labor, chromatographic media, filters and membranes, buffers, other raw
materials, the amount and kind of in-process control analyses, and total output are
all elements that affect the process economy. The expense of complying with
environmental rules is increased. After they have been utilized, chemical solvents
are more expensive to dispose of. The necessity that any material in contact with
genetically modified cells be sterilized and disposed of properly adds a significant
amount to the total production costs.

The expression system used, cultural needs, and the necessity for process robust-
ness are all factors to consider in terms of cost. Thus this is part of the suggested
‘design in’ method. Outsourcing is strongly suggested for newcomers to the
biopharmaceutical business because constructing a cGMP facility is costly. This
advice is not only affordable, but it also exclusively offers logistical solutions. Few
pharmaceutical companies understand how to treat animal farming and follow
excellent cattle-raising methods when a transgenic animal is involved. Upstream,
downstream, and quality control expenses are closely connected to differences in
process design and batch sizes versus in-process monitoring and analytical control
systems. Large batches can be processed in a methodical manner, reducing the
workload on the workforce and the quantity of samples to be evaluated.

Table 1.6 can be used to calculate the expenses of processing a batch of
recombinant-derived products. For cost estimates and individual costs not given
in the table, an excel spreadsheet is advised.

Below are the expense contributions at different stages. Cost-cutting opportu-
nities should be identified, particularly when determining the extent of scale-up. The
relative contribution of each step should be the first criterion for deciding which step
should be reworked to save money. In terms of long-term effects, the relative costs
should be considered. Reduce a 1% annual expense, for example, and you will save a
lot of money.

Upstream = (B1 × B2)/12 + B3 × B4 + B5
Downstream = (C1 × C2)/12 = (B3 × A1 × C5 × C3)/(C4 × C6 × 1000) + (C7 ×

C8) + C9 + C10 C11
Fill and pack = D1 × D2 + D3
Total cost/batch = upstream + downstream + fill and pack + E1 × E2 + F1 ×

F2 + G1 × G2 + H1
Yield/batch = (B3 × A1 × A3)/100 000
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Table 1.6. Input figures for cost calculations. (Source: Niazi S 2005 Manufacturing overview Handbook of
Bigeneric Therapeutic Proteins (Boca Raton, FL: CRC Press).)

Category Issue Index Comments

General Expression level A1 Amount in g/l expressed
# of batches A2
Process yield A3 % of purified protein (drug product)
Dose A4 mg/dose
Pack size A5 mg/vial
Vials needed A6 # of vials/dose

Upstream Facility B1 Yearly cost ($) of using an upstream component of
cGMP facility (including maintenance and
workforce)

Utilization B2 #Months the upstream component is used for the
given project

Culture volume B3 Volume in liters in a given batch
Media cost B4 Price in $/l of culture media
Utensils B5 Price in $ for utensils used (e.g. filters, bags, etc)

Downstream Facility C1 Yearly cost ($) for using a downstream component
of the cGMP facility (including maintenance
and workforce)

Utilization C2 # months the downstream component is used for a
given project

Chromatography
steps

C3 Number of chromatography steps

Binding capacity C4 Average binding capacity in mg/ml
Media cost C5 Chromatography media cost in $/l
Buffer volume C7 Total consumption in l (on average, 15 column

volumes are used/step)
Buffer cost C8 $/l
Utensils C9 Cost in $ for components used (filters, membranes,

bags, etc)
Raw materials C10 Cost in $ for expensive reagents, enzymes, etc
Formulation C11 The cost in $ for the formulation of the drug

substance
Fill and pack Number of vials D1 Vials/batch

Price D2 Price/vial
Shipping cost D3

In-process
control

# of analyses E1 Total number per batch.
Cost of analysis E2 Average in $/IPC analysis

DS quality
control

# of analyses F1 The total number of drugs substance quality
analysis per batch

Cost F2 $/ analysis
DP quality

control
# of analyses G1 Total number per batch of the drug product
Cost G2 $/analysis

QA release Cost H1 $/batch
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Cost/G = total cost/yield (per batch)
Cost per vial = cost per batch/D1
Cost per dose = (cost per batch/D1) × A6

Based on this model we can study what components of the entire process can be
altered to achieve the best possible production costs.

1.5.1 Batch

A batch is the amount of cell culture volume processed downstream as a cumulative
amount of material resulting in the medicinal product. Batch definition is more
challenging with continuous cell cultures or transgenic animal technology since the
harvest is pooled in sub-fractions. Information on the flow, harvesting methods,
pools, analytical in-process control systems, and intermediate compounds must all
be included in the batch scheme. If numerous columns are used, or if parallel
processing or processing separation is anticipated, details are frequently supplied.
Because inclusion bodies from multiple fermentation batches may be mixed and
processed together, the initial sub-batches must be specified.

The aggregate of each purification process’ outputs is called yield. A ten unit
downstream process with a 95% average recovery produces a 57% overall yield,
which is sufficient. In most cases, however, an average recovery of 80% would result
in a total yield of 11%, which is unacceptably low. In some circumstances, more than
ten unit operations are required to ensure a healthy product, thus expect more than
95% recovery in most, if not all, unit operations. Pegylation, one of the most recent
advances in molecular structure modification, has poorer yields. Due to the
statistical nature of proportional reduction, small variations in step yields result in
large changes; a 95% step yield with 15 steps yields 46% total yield; the same 15 steps
in a 75% step yield just 1% total yield. The majority of the time, only five to ten steps
are required. As a result, the total yield ranges from 60% to 6% in a 95% to 75%
phase yield change.

Several factors influence batch size, all of which have an economic impact.
Automated equipment is required for large batches, however, the number of samples
to test is rather small. Insulin costs roughly $50 g−1, monoclonal antibodies cost
$150–200 g−1, and certain cytokines cost $1000 or more per gram, all of which are
inversely proportionate to the quantity produced. A batch culture, also known as a
fed-batch culture, lasts seven days and generates 100 g each day. With a 2× flow
rate per 24 h and a one g/l expression stage, a 1000 l perfusion bioreactor produces
200 g day−1. Assuming a daily milk volume of 20 l, a transgenic cow producing
20 g l−1 milk produces 400 g each day. In terms of productivity, the transgenic cow is
far more successful than cell culture-based systems, but it is also possibly less
dangerous. Animal-based expression systems should be actively investigated for
large-scale activities, although this has not been successful.

The batch variations document describes variability and lack of repeatability; this
could be due to a scale-up procedure that results in concentration gradients in big
reactors or containers. The most prevalent reason of batch failure is contamination;

Biopharmaceutical Manufacturing, Volume 2

1-21



large-scale mammalian cell cultures with long cell growth periods, many bioreactors,
and long time intervals have higher risk factors than other expression systems. Due to
the high cost of cell culture media, the financial loss could be enormous. Consider a
100 000 l bioreactor—a single infection would necessitate discarding the entire batch.

Buffer planning on a large-scale needs automation and robotics management,
resulting in a new set of validation requirements and techniques, including device
validation (for automated systems, mechanized racks, and computers, see FDA
CGMP section 211.68 (a, b)).

1.5.2 Upstream

Cell cultures offer the most opportunities as well as the most problems when it comes
to scaling up. Large-scale animal cell cultures differ significantly from traditional
microbial fermentation due to the fragility of mammalian cells. Mechanical stress
causes the cells to be destroyed quickly, making high aeration and agitation
problematic. Animal cells, on the other hand, expand slowly and at lower densities,
and do not require the high oxygen inputs required by microbial cultures. The
composition of the cell culture supernatant changes often as cell culture scales up,
affecting the downstream process. Except for reactor capacity, all other parameters,
including culture medium, pH, temperature, redox potential, osmolality, agitation
rate, flow rate, ammonia, glucose, glutamine, lactate concentrations, pCO2, and
pO2, remain constant within the given interval limits.

The most crucial decision early in the process is to select an expression system
and, finally, a cell line. The target protein’s nature (glycosylation, phosphorylation,
acylation, size, and so on), expected expression levels, expression system develop-
ment time, batch failure risk, safety considerations, the amount required, and
regulatory history all factor into the decision.

The level of expression varies based on the type of target protein and the host
organism. The yield in most hosts is less than 1 g l−1. E. coli produces a better yield of
1–4 g l−1, while mammalian cells produce much higher amounts when used for
antibodies. Transgenic animals produce the highest yield of 5–40 g l−1. The yield in
transgenic plants is unknown and not commonly available for evaluation. The kind
and consistency of the expressed protein have an impact on purification yield.
Although E. coli expression levels are normally high, in vitro refolding and the
production of N-terminal extended target proteins have a significant impact on total
process output. Furthermore, stressed cells produce less stable proteins, resulting in
large losses during the purification or processing of shelf-stable medicinal compounds.

The amount of time it takes for various expression systems to evolve varies
significantly. Most hosts, on the other hand, would take 4–6 months to set up the
system. The length of time required to achieve target protein expression is
determined on the bioreactor technology employed. Still, it takes a few days for
E. coli and other bacteria, two weeks for yeast, four weeks for epithelial cells, and
two to sixteen weeks for mammalian cells, to name a few. Transgenic goats and cows
have a longer development time due to the relatively high expression levels and
quick access to target protein once the system has been optimized (18–24 months).
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Microbial, insect, and mammalian cell culture media, as well as commercial-scale
fermenter media, are all priced differently, with the former being the most expensive
per liter. Unfortunately, mammalian cell cultures often have lower expression levels
than microbial systems, making cultural medium a considerable cost consideration.
In an expression system yielding 1000 g l−1 with a 40% yield, the media cost
contribution is roughly $25 g−1 of protein; when the expression level drops to
10 g l−1, the media cost contribution rises to $2500 g−1 of protein. Low mammalian
cell expression has a detrimental impact on the efficiency of the process.

The storage of inclusion bodies for a longer period can be validated in most large-
scale activities (such as two years).

In industrial production, holding periods can be long and costly; these are
frequently disregarded when developing processes; it is advised that
suitable timeframes be confirmed early on. This is a practical issue rather than a
scientific one. It takes far longer to empty a 4000 l tank than it does to empty a 2 l
flask. When designing a process that takes more than 8 h, realistic shift-change
considerations are sometimes required. The validity of holding times is required.

Because there is always a maximum capacity for a process to be scaled
economically, the scale-up factor utilized is dictated by the process economy. The
manufacturing of insulin, for example, is measured in tons rather than grams. Due
to CAPEX depreciation, the cost of scaling up a process from a 100 l fermenter to a
30 000 l fermenter is not always similar, making scaling less practical. This assertion
goes against the belief that bigger bioreactors are more cost-effective. Because not all
CMOs have all sizes of bioreactors, it is also a good idea to adjust the technique to
the available bioreactor size when outsourcing. When only tiny fermenters are
employed to process bacterial cultures, pooling inclusion bodies can be beneficial.
Batch size and analytical procedures should, however, be carefully matched because
the cost of analytical tests rises as batch size decreases.

All other volume parameters such as sample pH, conductivity, temperature,
concentration, redox potential, holding time, reagent concentration, and precipita-
tion time are held constant within interval limits, so the sum of sample and volume is
the sole alteration in the phase scale-up. The precipitation procedure has not altered.

1.5.3 Downstream

The recombinant technology is linked to the expression method utilized, cell
banking, fermentation and cell cultures, raw materials used, downstream processing,
and the inadvertent introduction of adventitious agents (bacteria, viruses, myco-
plasma, prions). Any hazardous contaminants or adventitious agents should be
eliminated from the process design. In a downstream process at least three different
chromatographic stages should be used, according to a rule of thumb. If insect cells,
mammalian cells, or transgenic animals were used, a virus inactivation phase and an
active virus filtering step should be considered. Except for microbial systems,
endotoxins, nucleic acids, bioburden, viruses, and prions are all difficulties in all
forms of expression. Viruses and prions are not a problem; prions are rarely a
problem in other systems, except for transgenic animals. It is important to look at
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the basic material used. Only biopharmaceutical-grade raw materials with extensive
documentation on safety and quality should be utilized. Extending column life saves
money; downstream processing expenses account for almost 70% of total production
costs, principally in the cost of chromatographic media. Longer use, recharging, and
other methods for extending column life must all be well validated and documented.
Despite the high cost of chromatographic media, it is wise to select media based on
criteria other than price per liter. Service, troubleshooting, procuring connecting
media, columns, and equipment from the same vendor, as well as regulatory
assistance, may be even more important. Such initiatives will aid in reducing the
number of batches that fail. The key elements affecting the economy of chromato-
graphic unit operations are media cost, binding power, recovery, column lifetime,
linear flow, and shelflife.

Chromatography scaling generates more problems than any other phase in the
process. Extra-column zone broadening can occur due to the various lengths and
diameters of outlet pipes, valves, display cells, and other larger equipment. An
increase in column diameter can limit flow rate due to diminished, supporting wall
force (at constant pressure drop). The flow diminishes as the diameter of a column
filled with Sepharose 6 FF is increased from 2.6 to 10 cm. Longer sample retention
durations on the column can generate precipitation, which can clog pipes, valves, and
chromatographic columns. The sample volume, sample load, column diameter,
column area and volume, and flow rate are all proportionally changed (linear
scale-up). However, the residence time is not changed (an alternative approach would
keep residence time constant and allow for changes in both column areas and height).
Within the interval limitations, sample pH, conductivity, temperature, concentration,
redox potential, holding time, bed height, residence duration, linear flow rate,
binding power, back pressure, buffers, equilibration, wash, elution, and clean-in-
place (CIP) procedures all remain constant. Gradients should be changed in steps
rather than in a linear method.

The filtering phase scale-up has no effect on the interval limits, pH, redox
potential, temperature, concentration, conductivity, holding time, membrane type,
transmembrane pressure, retentate pressure, feed pressure, crossflow velocity, filtrate
velocity, wall flux, or CIP methods. Two factors that are linearly increased are
sample volume and membrane area.

1.5.4 Facility

Facility expenses can be very high due to specialized area needs, specialized people
requirements, environmental controls, and waste management requirements, among
other things. If numerous drugs require distinct processing suites, a prospective
biopharmaceutical marketer should consider outsourcing manufacture. Monitoring
the environment is one of the control areas that is sometimes disregarded in
budgeting; simply complying with monitoring regulations for a 5000 square foot
plant will cost upwards of $2 million per year. Because the regulatory environment is
still evolving, area standards are likely to change, resulting in large redesigning
expenses, which is another reason to outsource production before the sector matures.
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The price per gram of drug product is significantly decreased and the production
period is cut by integrating process design, scale-up factor, and batch logistics to
facility design. Many stages of set-up are required, including one for transferring
technology to pilot scale, one for converting from pilot scale to first-stage
production, and one for migrating from first-stage manufacturing to full-scale
manufacture.

As part of the manufacturing process, all columns, tools, and utensils are cleaned,
sterilized, and stored. Despite the fact that these issues are prevalent in small-scale
production, they can add significant costs to a poorly constructed process and
facility, as well as offer contamination hazards those regulatory authorities may not
be comfortable with.

Labor-intensive procedures are expensive, and they can be reduced by automat-
ing and reducing unit operations. Each unit procedure raises the price while lowering
the yield. If, on the other hand, insect cells, mammalian cells, or transgenic animals
are employed for protein expression, the number of process steps will be limited due
to the necessity to remove impurities and inactivate viruses. There is a tremendous
drive to automate operations as more generic corporations enter the market to
install more cost-effective technologies. Robots, continuous processing systems, and
wave bioreactors are all being used to cut human resource expenses. A prospective
manufacturer must evaluate all present and soon-to-be-available options when
creating the technique. On the other hand, the FDA’s validation guidelines for
automated processes and computer systems in the United States should be
implemented as soon as practicable.

When enormous amounts of trash are disposed of, environmental issues occur;
for example, ammonium sulfate in large-scale projects can have a substantial
detrimental influence on the environment.

The microbiological quality of the environment during various processing
phases is crucial, in particular as the process moves downstream; stricter manage-
ment and monitoring are recommended. In the atmosphere and locations where
biopharmaceuticals are isolated, microbiological and other international contami-
nants should be maintained to a minimum. Biopharmaceuticals should be segre-
gated and disposed of in the same way as biomaterials are. The National Institutes
of Health (NIH) Guidelines (https://osp.od.nih.gov/wp-content/uploads/NIH_
Guidelines.pdf) describe how to make and handle recombinant deoxyribonucleic
acid (DNA) molecules, as well as organisms and viruses that include them. In the
context of the NIH Guidelines recombinant DNA molecules are defined as:
(i) molecules produced outside of living cells by joining natural or synthetic DNA
segments to DNA molecules capable of replication in a living cell; or (ii) molecules
produced by the replication of those mentioned in (i); or (iii) synthetic DNA segments
that are likely to produce a potentially harmful polynucleotide or polypeptide. If the
synthetic DNA segment is not produced in vivo as a physiologically active poly-
nucleotide or polypeptide product, it is exempt from the NIH Guidelines.

Genomic DNA of plants and micro-organisms that have acquired a transposable
part, even if the latter was provided via a no longer existing recombinant vector, is not
subject to the NIHGuidelines unless the transposon itself contains recombinant DNA.
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When processing biopharmaceuticals, the NIH guidance ‘Experiments Involving
More Than 10 l of Culture’ should be followed: https://osp.od.nih.gov/wp-content/
uploads/NIH_Guidelines.pdf. Sanitization of the utilized media is not required
because most recombinant cell lines cannot survive outside of specialized media;
nonetheless, some businesses do a decontamination technique, which adds to the
cost of the process.

1.5.5 Equipment

Equipment interaction determines the chemicals employed; sodium chloride cor-
rodes stainless steel, but sodium acetate does not. These issues should be addressed
as early as possible in the development process.

Utensils relate to bags, filters, and any other equipment that needs to be updated
on a regular basis. Sacks, filters, tubes, and other similar things have become
ubiquitous in cleaning procedures to save money and time. The number of steps in a
process has a direct impact on cost and yield; however, reducing the number of steps
in a process may have an impact on robustness and safety, as well as additional
regulatory testing expenses.

1.5.6 Validation

Validation of biological processes is a costly exercise that takes place throughout
the manufacturing process. After all separation and purification procedures have
been outlined in detail and flow charts have been provided, validation steps
normally begin. There should be full explanations and specifications for all facilities,
columns, reagents, buffers, and expected yields. According to the FDA, validation is
defined as ‘creating documented proof that provides a high degree of confidence that
a given method can reliably generate a product that meets its predetermined
requirements and quality features’. As a result, thorough documentary verification
is required to validate the technique and demonstrate that it is repeatable. Validation
reports for the various main processes will differ depending on the process in
question; for example, if an ion-exchange column is used to extract endotoxins,
evidence demonstrating that the process is reliably accurate to be achieved by
measuring endotoxin levels before and after processing should be provided. It is vital
to track the process before, during, and after it is done to evaluate the efficiency of
each key purification stage. One common way for showing validation is to ‘spike’ the
preparation with a known amount of contamination and then show that the
contaminant is absent.

The target protein’s nature, the expression method employed, and the need for
protection, robustness, and cGMP compliance all have an impact on the process
design. To create a safe product, approved raw materials must be employed, as well
as any host, process, and product-related contaminants. In a method based on insect
cells, mammalian cells, or transgenic animals, there are some general rules to follow,
such as employing at least three chromatographic stages, virus inactivation, and
filtration. The target protein’s stability must be tracked during processing and
storage. Process design is a small-scale job, and no process can be scaled up unless it
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has undergone extensive testing on a small scale. The three most significant process
maturity requirements are specifications, robustness, and cGMP compliance. Even if
drug substance and drug product standards and acceptance criteria are not
adequately described at this early stage, data from at least three small-scale batches
must be provided and validated against available specifications and acceptance
criteria. The technique must be dependable and achieve the desired result to some
extent. It is critical to understand key parameters and how they interact before
scaling up. It should be checked in cGMP to guarantee that the method follows its
design and production protocols. Difficulties can be foreseen if the expression yield
is low, the protein is unstable, the purification yield is low, or the procedure involves
too many steps.

The move from laboratory to production scale is the most crucial component of
scaling up. Not all pieces of equipment can be scaled. This should be the most
significant consideration in laboratory-scale growth. Many providers deliver a
varied selection of items in terms of capacity. Even if the initial cost of adopting
this equipment is higher, single-source providers are frequently preferred. On a big
scale, pump design might change from high precision piston or displacement pumps
to rotary, diaphragm, or peristaltic pumps.

Low-volume multi-port valves are also replaced with simple one-way valves,
which, when paired with large-scale tubing, can greatly enhance the volume of
equipment accessories and result in increased dispersion of the target protein
molecules. Stainless steel is frequently used in large-scale equipment, however, it
cannot sustain high chloride salt concentrations. Scale-up difficulties to address with
large-scale equipment include differences in chromatographic column physics of
movement, choice, tubing placement, valve, reservoir, chemical resistance of
building material, CIP choice, and SIP.

Process optimization, which is influenced by aspects such as labor, automation,
lean management, column lifespan, utensil reuse, and batch preparation, should be
distinguished from process design. The latter difficulties are handled at a later point
in the manufacturing process, usually after the process design has been established.

1.5.7 Testing

Batch and fed-batch systems have a cheaper cost of in-process control than
continuous cultures. The total cost, however, may not be that different, and the
FDA’s PAT project is worth examining. Milking techniques might result in small-
volume bags, increasing the cost of analytical control systems. The cost estimates
should include the end-of-production test for insect and mammalian cells, which
includes sterility, fungus, mycoplasma, and virus testing.

When producers may employ analytical assays for quality testing as in-process
testing when the process is properly developed, they can become less expensive.
Because large-scale production demands more comprehensive testing processes, this
is particularly crucial. The FDA’s Process Analytical Technology (PAT) advice,
which can be accessed at https://www.fda.gov/media/71012/download, is quite
useful. During the development phase, this expanded method includes traditional
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empirical testing as well as real-time monitoring of process parameters and
responses. Better monitoring of parameters and responses can result in a reduction
in analytical testing in the process control program.

Safety considerations come at a great price. Insect cells, mammalian cells, and
transgenic animals can all be infected by viruses. Virus testing, virus reduction unit
activities, and validation programs are required to provide product protection. The
possibility of prion infection in sheep, goats, and cows, with a focus on managed
herds, is being considered.

1.5.8 Quality

In-process control monitoring should be reduced to a bare minimum, and this can
only be done with a well-defined system, which comes at a cost. The current
tendency is to focus on tracking parameters and responses rather than in-process
analytical approaches, allowing for real-time process management. The number of
samples to examine has an inverse relationship with batch size; large batches reduce
the cost of in-process control.

The usage of online data gathering systems is required for controlling and
changing parameters that are critical to procedures. Because small-scale equipment
lacks the same monitoring capabilities as large-scale instruments, this is a concern
(which can be ordered with custom features).

Quality control testing is necessary for medications and drug products; never-
theless, when scaling up, reduced test programs should be reconsidered. Some test
analyses introduced during the early development phase can be skipped from the
batch release program because combined data has confirmed process robustness. It
is important to explain why a certain analytical assay was dropped. Product testing
may be reduced because of the FDA’s PAT initiative.

Despite other validation criteria common to all testing forms, process and quality
control testing are comprehensive (see USP, EP, or BP) and costly due to the nature
of the tests required. In-process control assays may be justified if they give key
process information during production or track a specific outcome that is important
for in-process control in manufacturing processes. As a result, cutting costs means
reducing the number of in-process analyses while preserving process control. It is
typical practice to change the program as additional data becomes available and the
process matures. The FDA’s PAT strategy (http://www.fda.gov/cder/guidance/
5815dft.htm) is another way to save money. To assure final product quality, PAT
is a framework for planning, analyzing, and monitoring manufacturing through
timely measurements of important quality and performance attributes of raw and in-
process materials and processes. PAT’s goal is to understand and supervise the
manufacturing process because consistency cannot be checked into goods. This
technique can be used to expand the in-process control software during the
development phase to include traditional empirical testing and real-time monitoring
of process parameters and reactions. The goal of the PAT system is to create and
implement processes that can consistently provide a predetermined quality at the
end of the manufacturing phase. These methods must follow the quality by design
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concept, which reduces quality and regulatory risks while enhancing performance. A
third option to save money is to reduce the price per sample by assuring a consistent
supply of samples and shortening set-up and calibration times.

Quality control is performed on both the drug substance (DS) and the drug product
(DP) (see BP/EP/USP). Testing typically involves 10–15 distinct analytical procedures
and costs between $500 and $3000 for each sample. If outside facilities are invited in to
conduct additional research, costs might increase. Outsourcing animal and viral testing
can be exceedingly expensive. Outsourcing these assays, on the other hand, remains
the favored strategy for avoiding the high expenses of maintaining animal housing or
viral containment systems, as well as validating the procedures.

Process scaling must not compromise process integrity, robustness, or regulatory
compliance, according to quality assurance systems. If the procedure is remodeled
for scale-up, the veracity of preclinical data should be addressed. In resilient systems,
unit operation parameters are tightly controlled, and parameters are defined in
intervals rather than fixed points. The parameter intervals are validated and justified
on a small scale (proved reasonable range), providing room to adjust the intervals
according to large-scale needs. When employing the linear scale approach, these
parameter intervals are kept constant. Reactor volumes, sample weights, and
column diameters are all increased linearly.

1.5.9 Fill

Cost savings in the API formulation, fill, and pack activities may be achieved
depending on the formulation. Because a lyophilized formulation would be more
expensive, it should be preferred if a ready-to-inject formula can be developed.
Syringes, pen systems, and other components included at this time greatly raise the
cost of the product.

1.5.10 Water

The intended use of the finished product should determine the water quality. Process
water can be of water for injection (WFI) consistency with CBER, for example.
Purified water, on the other hand, might be used for in vitro testing. The approach
determines the appropriate water quality for pharmaceuticals. Because processing is
usually done in chilly rooms or at room temperature, the WFI system’s self-
sanitization to 80 °C is also lost.

Because of the difficult-to-sanitize design of processing equipment, some compa-
nies generate WFI by reverse osmosis rather than distillation to save money,
resulting in polluted systems. Some threads or drips in a cold system provide a
spot for microbes to dwell and proliferate. In some of the systems, a terminal
sterilizing filter is used. The main worry is endotoxins, and the terminal filter can
only mask the true quality of the WFI used. It is also vital to think about the
disadvantages of depending on a 0.1 ml WFI sample to detect endotoxins from a
device. Point-of-use heat exchangers, like those used in other WFI systems, can be
utilized if cold WFI water is required.
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Buffers can be prepared in sterile containers as non-pyrogenic sterile solutions. In
smaller facilities, commercial sterile, non-pyrogenic buffer solutions are utilized.
Non-sterile water that may be used as a reagent or as a buffer should be evaluated
for stability and microbiological characteristics.

1.6 Facility design
Figure 1.2 depicts a typical biopharmaceutical production unit design. The
manufacturing architecture of biological products is determined by the size of the
production and the manner of production; in most situations the containment
conditions noted above, as well as the necessity to process products under cleanroom
conditions, are comparable to the processing of sterile products. The atmosphere
should, in general, be like that of a sterile product preparation room. The following
are the criteria for each of the major categories of biological product production
work:

• Working cell bank (WCB) and master cell bank (MCB): A separate room
with a cold storage system (often a liquid nitrogen system) and a cold (−70 °C)
cabinet must be made available for each GMC. The WCB is made from the
cells from the MCB and both are kept in a safe location. A vaulted area with a
class 100 000 atmosphere is recommended; normally, a 100–200 square foot
area will suffice. Some manufacturers divide the room into two sections, each
with its own entrance, one for MCB and the other for WCB. A negative-
pressure transfer window allows a direct transfer from the WCB to the
inoculum/culture room (see below) in some configurations. The MCB/WCB
is recognized as a supply center at the time of usage and is processed by
materials dispensing due to the necessity to maintain a defined area desig-
nation. In all circumstances, a duplicate MCB must be kept off-site from the
immediate manufacturing area. An electronic recording system should be
established to convey the temperature at which the GMCs are processed.
These rooms should have a back-up power supply to ensure no power outages
and alarms to record temperature fluctuations in the GMC storage cabinets.
In addition, the chamber should have an automatic pressure differential and
should be kept negative in relation to the hallway. To prevent cross-
contamination of cultures, each GMC has its own room.

Because it is the first room where culture tubes are opened to create WB
or inoculum for fermentation, the inoculum room should be a class 10 000
room. In this chamber, a 4–8 l fermenter will be used to make the starter
culture. The culture will then be transported directly to larger fermenters if
the fermentation system is a closed inline system. When roller bottles are
utilized, this room will be used as a staging location for preparing the culture
for inoculation into the bottles, which will be done in a separate room due to
the process’s magnitude. The culture is handled in a biosafety laminar flow
hood to keep the operator safe from contamination. The room should have a
10 000 rating with class 100 under the laminar flow hood. A negative-pressure
passing carousel will usually connect this chamber to the fermentation,
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recovery, and roller bottle preparation areas. The amount of space available
should be kept to a minimum (100–200 square feet).

• Fermentation space: Depending on the volume, this might be the facility’s
largest room or a group of rooms. Larger fermenters, such as those with
capacity of 25 000 l or more, may require a three-stage fermentation process.
This type of facility would most likely be 20 000 square feet or bigger, with
multiple floors to accommodate massive fermenters. Fermenters with a
capacity of 500–2000 l should be able to accommodate numerous low-dose
biopharmaceuticals on a single level. The area categorization for this room is
100 000 unless a fully closed system is employed (which is suggested).
Otherwise, unclassified pharmaceutical-grade classification can be utilized.

This is where the fermentation is brought for the initial stage of processing
(either from fermenters or roller bottles). If inclusion bodies are involved (as
with the use of bacterial cultures), this room will feature a cold centrifuge and
cell disrupters; for mammalian culture systems where the protein is secreted,
this will be the initial stage of volume reduction by filtration. This chamber is
also used to keep merchandise that need refolding in the 2–8 °C environment
(provided as walk-in refrigerators). The area classification of this room
remains at 100 000. This will require roughly 500 square feet of space.

• Downstream processing space: This is the second 10 000 square-foot classi-
fication room for the purifying process, with more space beneath laminar flow
hoods. It is important to remember that each product requires its own set of
contact equipment (columns, vessels, etc). A minimum of 1000 square feet is
necessary; the size of the room will vary depending on the amount of output
and the stages involved; large-scale filtering equipment may necessitate more
than 5000 square feet and multiple floors in some circumstances. Some
manufacturers have many locations for downstream processing; in these
circumstances, suitable standard operating procedures (SOPs) for fermenta-
tion product packing and shipping should be in place.

• Buffers and media preparation rooms: Each phase requires its own buffer and
media, which might be quite big depending on the procedure’s scope.
Switching to closed systems of media preparation and transfer to fermenters
may be preferable when working with large fermenters (1000 l or more);
however, most medium and small-scale operations require a large media
preparation room (1500+ square feet) with 10 000 classification and work in a
class 100 hood; the media prepared is then transferred to the storage area
until dispensing.

• Storage areas: Many materials, such as media and buffer, require a lot of
chilled space, therefore incoming material is kept in dedicated climate-
controlled facilities. This is also a 100 000 classification area. During batch
issues for production, a piece of the room is set aside for keeping materials
from the WCB, media, and buffer rooms.

• Finished product storage area: The size of the room is dictated by the size of
the dosing device, however, the concentrate is normally maintained refriger-
ated in a smaller room of around 100 square feet. The classification is the
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same as the general pharmaceutical unclassified sector because the product is
now sealed in its primary and secondary packaging.

1.6.1 Cleaning

Validation of cleaning procedures for handling equipment, including columns,
should be done. In a multi-product operation, this is highly critical. The cleaning
procedure’s efficacy for final or intermediate items utilized in equipment provided by
the equipment supplier. Validation evidence can demonstrate that the cleaning
process decreases relevant contaminants to acceptable levels. Even with a significant
number of washing cycles, all traces of the material will remain. The suitable residue
amount, which is commonly represented in parts per million (ppm), must be justified
by the maker. Endotoxins, germs, poisonous materials, and contaminated proteins
should all be eliminated without compromising the effectiveness of the column. A
written equipment cleaning protocol that outlines what should be done and what
materials should be used should be in place. For fixed vessels, CIP is also employed.
Diagrams should be produced in these circumstances to designate certain sections
(such as valves) that are part of the cleaning procedure.

After the surface has been washed, it should be tested on a regular basis to
confirm that it has been cleaned to the validated standard. A common procedure is
to test the final rinse water or solvent for the presence of the cleaning agents last used
in that piece of equipment. Always make a direct determination of the leftover
substance.

The robustness of the analytical method utilized to classify the cleaning endpoints
will be critical to the cleaning system’s efficiency. Modern analytical instruments’
sensitivity has allowed some detection thresholds to be decreased to parts per million
(ppm) or even parts per billion (ppb). Residue limitations for each piece of
equipment should be practical, feasible, and verifiable. There should be a scientific
basis for establishing these thresholds, which must be documented. The likelihood of
non-uniform residual distribution on a piece of equipment is another factor to
consider. It is likely that the real average residue concentration is higher than what
was found.

1.6.2 Filling and finishing

Biotechnology creates proteins and peptides, which are relatively unstable molecules
in comparison to other medications; most biotechnology methods include switching
proteins from one stabilizing or solubilizing buffer to another during the purification
process. Finally, a solution is used to convert the protein to its final dose form,
assuring long-term stability. These products frequently require lyophilization to
achieve long-term stability due to the potential for degradation by different
mechanisms such as deamidation, aggregation, oxidation, and possibly proteolysis
by trace quantities of host cell proteases. The protein’s final dosage type usually
includes stabilizing agents that produce the ideal pH and solution conditions for
long-term product stability and desirable attributes (tonicity). These substances
include proteins, polyhydric alcohols, amino acids, sugars, bulking agents, inorganic
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salts, and non-ionic surfactants. These excipients may also be required for the
development of a lyophilized cake that is stable. Special requirements for lyophilized
products, such as moisture level regulation, are usually mentioned in each USP
monograph and may be necessary for product stability. Significantly, evaluating
protein stability frequently needs a combination of analytical methods, each of
which can be used to assess a particular route of protein degradation. The effects of
temperature on protein structure make it difficult to forecast the shelflife of protein
formulations using accelerated stability tests, resulting in non-Arrhenius behavior.
As a result, determining the expiration dates of biotechnology-derived products
frequently requires using real-time, prescribed storage environment stability tests.

Because biopharmaceuticals are not terminally sterilized, they require aseptic
processing. Pollutants from a product’s or system’s manufacturing process are
primarily a safety issue. The main sources of contamination are the cell-substrate
(DNA, host cell proteins, and other biological materials, viruses), the medium
(proteins, sera, and additives), and the purification procedure (process-related
chemicals and product-related impurities).

Due to concerns about stability, many biopharmaceuticals are either refrigerated
or lyophilized. Low temperatures and low moisture content often hinder microbial
development. In aseptic processing of a non-preserved single dose biopharmaceut-
ical (that is aseptically filled) maintained at room temperature as a solution, the
limitations of a 0.1% media fill contamination rate should be tested.

Validation of the media fill and aseptic production processes should be properly
documented. Because certain biopharmaceuticals are less stable than others, careful
mixing and processing is required. Biopharmaceuticals often employ single filtration
at low pressures, whereas aseptically packed parenteral typically use double
filtration. As a result, comprehensive production requirements are required, includ-
ing maximum filtration pressures.

It is important to keep an eye on the climate and accessibility for non-sterile
biopharmaceutical batching. Due to the lack of preservatives in many of these
goods, their inherent bacteriostatic and fungistatic activity, as well as their
bioburden before sterilization, should be modest. The bioburden should be calcu-
lated until these bulk solutions are sterilized before loading. Batching or compound-
ing of these bulk solutions should be monitored until the bulk solutions are purified
to avoid any possible increase in microbiological levels (sterilized). At any micro-
biological stage, the possibility of an increase in endotoxins is a cause for concern.
Compounding these materials should be done in a controlled atmosphere with
enclosed tanks, in particular if the solution will be stored before sterilization. It is
also a good idea to keep the time between formulation and sterilization in the
production process as short as possible.

In-process testing ensures that an operation’s true, real-time output is adequate
and is a critical component of quality control. In-process controls include structure
features, chromatographic profiles, protein species, protein concentrations, bioac-
tivity, bioburden, and endotoxin levels, to name a few. The findings of the validation
program must be coordinated with the establishment of acceptance criteria and the
collection of in-process controls.
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When loading biopharmaceuticals into ampoules or vials, many of the same
challenges arise as when handling traditional medications. In established companies,
these issues are usually resolved by adequate documentation. However, for a new
biopharmaceuticals facility, developing and proving clinical efficacy and protection,
as well as validating sterile operations, equipment, and systems, can be a lengthy
process, particularly if specifications are unclear.

At least when first manufactured, the batch size will most likely be tiny. Due to
the small batch size, filling lines cannot be as automated as other items filled in
greater quantities. As a result, filling these products requires more employees, in
particular for smaller, newer enterprises. This can lead to quality disparities. During
the filling step, concerns such as inadequate clothing, inadequate environmental
inspection systems, hand-stoppering of vials, particularly those that are lyophilized,
and failure to validate some of the basic sterilizing processes arise. Due to people’s
active involvement, the number of persons involved in filling and aseptic manipu-
lations should be maintained to a minimum. As part of an environmental program,
microbiological samples acquired from employees working in aseptic manufacturing
locations should be analyzed.

Another source of worry for product stability is the use of inert gas to substitute
oxygen during processing and filling the solution. The concentrations of dissolved
oxygen in the solution should be determined, just as they should be for other
oxidizable compounds. Similarly, criteria such as line speed and the location of
filling syringes in terms of closure should be included in the filling operation’s
validation to guarantee that oxygen-sensitive items are exposed to the least quantity
of air possible (oxygen). In the absence of inert gas displacement, the manufacturer
must show that the product is oxygen-free.

A machine would typically partly stopper vials to be lyophilized. When an
operator manually sets the stopper, serious problems can arise. Another key
difficulty with the filling process of a lyophilized product is the assurance of fill
amounts. A low fill level implies that the vial is not fully functional. A low fill,
unlike a powder or liquid fill, would be difficult to detect after lyophilization,
particularly for a product with a milligram active component. Because of its
clinical significance, sub-potency in a vial can be a highly significant clinical
situation.

1.7 Testing
The tests mentioned below can be used for in-process, bulk, and product testing. The
tests that are required will be determined by the method and the product’s intended
use.

a. Quality:
• Color/appearance/clarity
• Host cell DNA
• Moisture content
• Particulate analysis
• pH determination
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b. Identity (a single identity test might not be enough, it is necessary to confirm
that the methods used have been checked):

• Two-dimensional electrophoresis
• Amino acid analysis
• Amino acid sequencing
• Capillary electrophoresis
• Carbohydrate composition analysis (glycosylation)
• ELISA
• Gel electrophoresis
• HPLC (chromatographic retention)
• Immunoelectrophoresis
• Immunoassays
• Isoelectric focusing (IEF)
• Mass spectroscopy
• Molecular weight (SDS PAGE)
• Peptide mapping (reduced/non-reduced)
• Radioimmunoassay
• SDS PAGE
• Western blot

c. Protein concentration/content:
• Amino acid analysis
• Biuret method
• HPLC
• Lowry
• Partial sequence analysis
• Protein quantitation
• UV spectrophotometry

d. Purity (The finished product’s relative lack of extraneous substance, whether
harmful to the user or destructive to the product, is referred to as ‘purity’.
Purity, among other things, refers to the lack of residual moisture, other
volatile chemicals, and pyrogenic compounds. Protein impurities are the
most common pollutants. These issues could be caused by the fermenta-
tion process, the media, or the host organism. Endogenous retroviruses
may be found in hybridomas used to generate monoclonal antibodies.
Specific testing for these compounds is required for in vivo products. For
the product to be safe and secure, extraneous antigenic proteins must be
eliminated.)

• Tests for protein impurities:
○ Electrophoresis

i. SDS PAGE
ii. IEF

○ Dimensional electrophoresis
○ Peptide mapping
○ Multi-antigen ELISA
○ HPLC size-exclusion
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○ HPLC reverse phase
○ Tests for non-protein impurities:

i. Endogenous pyrogen assay
ii. Endotoxin testing
iii. Limulus amebocyte lysate (LAL)

○ USP rabbit pyrogen test
e. Contamination with pyrogens: (Pyrogen contamination should be tested by

injecting the final product into rabbits or using the LAL assay. The same
conditions that were used to approve natural products should be applied to
biotech products. Some in vitro diagnostic products can contain endotoxins,
which could cause the device to malfunction. It is also crucial to test
products in vivo for pyrogens. Despite passing the LAL and rabbit pyrogen
tests, certain biological pharmaceuticals are pyrogenic in humans. This
could be due to elements that are solely pyrogenic in humans. An
endogenous pyrogen assay is used to predict if human subjects will have a
pyrogenic reaction. The finished product is cultivated in vitro using human
blood mononuclear cells before being injected into rabbits as cell culture
fluid. Fever in rabbits indicates the presence of a pyrogenic substance in
humans.):

• Endogenous pyrogen assay
• Limulus amebocyte lysate (LAL)
• USP rabbit pyrogen test

f. Viral contamination (Viral contamination tests should be tailored to the cell-
substrate and culture conditions used. It should be shown that the final
product is free of detectable adventitious viruses.):

• Hemadsorptions embryonated egg testing
• Mouse antibody production (MAP)
• Polymerase chain reaction (PCR)
• The cytopathic effect in several cell types
• Viral antigen and antibody immunoassay

g. Contamination of nucleic acid (The possibility of cellular transition events
in the receiver raises worries about nucleic acid impurities. The extent to
which additional host cell DNA is removed at each stage of the
purification process can be demonstrated in pilot studies by looking at
the amount of nucleic acid extracted at each phase. The theoretical
degree of nucleic acid elimination during purification would be revealed
in this type of analysis. Using appropriate probes, such as nick-translated
host cell and vector DNA, and hybridization examination of immobi-
lized contaminating nucleic acid, direct analyses of nucleic acid in
various output batches of the final product should be carried out. The
theoretical concerns about converting DNA generated from the cell-
substrate rate would be alleviated by a general reduction of contaminat-
ing nucleic acid.):

• DNA hybridization (dot blot)
• Polymerase chain reaction (PCR)
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h. Protein contamination:
• SDS PAGE
• PLC
• IEF

i. Foreign protein contamination:
• Immunoassays
• Radio immunoassays
• ELISA
• Western blot
• SDS page
• Two-dimensional electrophoresis

j. Microbial contamination (Appropriate microbial contamination examina-
tions should be carried out to ensure there are no identifiable bacteria
(aerobes and anaerobes), fungus, yeast, or mycoplasma.):

• Total yeasts and molds and heterotrophic plate count
• LAL/pyrogen
• Mycoplasma test
• Total plate count
• USP sterility test

k. Chemical contaminants: Other sources of contamination, such as allergies,
petroleum oils, residual solvents, cleaning agents, column leachable con-
taminants, and so on, must be considered.

l. (Activity) potency (‘Potency’ is defined as a product’s specific aptitude or
capability, as determined by appropriate laboratory tests or properly
monitored clinical outcomes gained by using the product in the manner
intended to accomplish a certain result. To measure the potency of a chemical,
potency testing should involve either in vitro or in vivo tests, or both, that are
particularly devised for that substance. Cross-reference in-house biological
potency standards with international (World Health Organization (WHO),
National Institute of Biological Standards and Control (NIBSC)) or national
(National Institutes of Health (NIH), National Cancer Institute) standards to
assess the bioactivity of a product’s activity.):

• Biochemical/biophysical assays
• Cell culture bioassays:

○ Antigen/antibody specificity and functional activity evaluation
○ HPLC-validated to correlate certain peaks the to biological

activity
○ Identifying agents that could have a negative impact on potency
○ Immunoblotting/radio- or enzyme-linked immunoassays

• Potency limits
• Receptor based immunoassays:

○ Various immunodiffusion methods (single/double)
• Whole animal bioassays

m. Stability (A product’s capacity to keep its identity, power, consistency, purity,
protection, and efficacy over time while staying within existing requirements
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is referred to as ‘stability’. Studies to support the specified date period should
be undertaken on the finished product. Real-time stability data would be
required to support the proposed dating period. Some of the things that can
be examined include potency, pH, transparency, color, particles, physiochem-
ical stability, moisture, and preservatives. As a back-up, data from accel-
erated stability testing might be employed. In accelerated testing or stress
tests, exaggerated storage conditions are utilized to increase the ratio of
chemical or physical deterioration of a substance or commodity. The goal is
to identify kinetic parameters that can be used to estimate the approximate
expiration date. A commodity’s stress testing is extensively used to discover
potential concerns that may develop during storage and shipment, as well as
to determine the product’s expiration date. This could involve studies on the
effects of temperature changes in transportation and storage settings. These
tests should produce a credible dating period under real-world settings,
utilizing the containers and closures intended for the advertised product.
Gentle mixing and processing, as well as a single low-pressure filtration, may
be required for some biotechnologically produced proteins. The manufactur-
ing instructions must be comprehensive, with maximum filtration pressures
defined, in order to preserve product stability. The number of preservatives in
products that contain preservatives to prevent microbial contamination
should be monitored. This can be accomplished through microbiological
challenge tests (such as the USP antimicrobial preservative effectiveness test)
or chemical assays for the preservative.):

• It is critical to keep an eye on the stability test environment (light,
temperature, humidity, and residual moisture).

• Container/closure system used for bulk storage (i.e. extractables,
chemical modification of the protein, and changes in stopper formu-
lations that may change the extractable profile).

• Identify materials that could lead to product instability and conduct
tests for aggregation, denaturation, fragmentation, deamination, pho-
tolysis, and oxidation.

• Tests to determine aggregates or degradation products:
○ Two-dimensional electrophoresis
○ Gel filtration
○ HPLC
○ IEF
○ Ion-exchange chromatography
○ Peptide mapping
○ Performance testing
○ Potency assays
○ SDS PAGE
○ Spectrophotometric methods

n. Batch-to-batch consistency (Demonstrating lot-to-lot consistency with
respect to established release conditions is the most important criterion
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for determining whether a manufacturer is creating a standardized and
reliable product.):

• Identity, purity, and practical operation are all examples of uniformity
• Stability

o. Testing control: Each study’s acceptance criteria must be determined, as well
as a quality control program for the drug substance and drug product.
Setting acceptance criteria becomes a constant effort as more data becomes
accessible during growth (and scale-up). A batch is released if all analytical
findings are within the prescribed parameters. A high acceptance rate can be
expected if the procedure is efficient and compliant, implying that regulatory
agencies and manufacturers generally have similar opinions. The issues
outlined above must be carefully considered by the process designer while
designing the purification process (the design principle). The majority of the
design can be finished before entering the laboratory due to the limits
governing biopharmaceutical production. Process modeling is a step in the
laboratory’s experimental design phase for optimization and testing that
occurs before the laboratory’s experimental design phase. Quality control
systems for biotechnology-derived goods are quite like quality control
systems for conventional pharmaceutical products in areas such as raw
material testing and release, manufacturing and process control documen-
tation, and aseptic processing. Many of the strategies employed in the
research of low molecular weight pharmaceutical goods are also applied to
quality management systems for biotechnology-derived products. This
entails employing chemical reference standards and proven methodologies
to assess a wide variety of identified and suspected product contaminants as
well as potential breakdown products. Quality control procedures for
biotechnology-derived products are generally comparable to those designed
for conventional biologicals in terms of evaluating product sterility, product
protection in laboratory animals, and product potency. Quality manage-
ment systems for biotechnology-derived goods and conventional pharma-
ceuticals employ quite different methodologies to assess product identity,
accuracy, purity, and impurity profiling.

p. Furthermore, biotechnology quality control frequently necessitates a combi-
nation of end product and validated in-process testing and process validation
to assure the elimination of undesirable actual or potential contaminants to
regulatory agency standards. A thorough investigation of the manufacturing
organism (cell), a thorough analysis of cell growth/propagation methods, and
a thorough examination of the final product recovery process are often
required for biotechnology-derived products. The sophistication of quality
control systems for biotechnology-derived products is influenced by the size
and structural properties of the product and manufacturing process. The
laboratory controls are similar to those necessary in conventional cGMP/
GLP enforcement for all pharmaceutical goods, with additional attention
paid to specific ingredients and their handling:

q. Workers in laboratories should be properly trained for their jobs.
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r. Laboratory equipment utilized in the measurement, evaluation, and storage
of raw materials, product samples, and reference reagents should be
maintained, calibrated, and controlled.

s. Validation: All laboratory procedures should be evaluated using the equip-
ment and reagents used in the study techniques. If the manufacturer or
requirements of important equipment/reagents changed, revalidation would
be required. Raw data should be used to support validation criteria in
submitted applications.

t. Standards of reference: Reference standards should be well-defined and
registered, as well as preserved, safeguarded, and used properly during
testing.

u. If not properly preserved, laboratory cultures and reagents such as enzymes,
antibodies, test reagents, and other labile components will degrade.

v. SOPs in the laboratory: Written, appropriate, and followed procedures are
essential. The quality control samples should be separated and processed
accurately.

1.8 Documentation process
The development program includes project planning, cell banking, process improve-
ment, analytical methods, scale-up, manufacture, stability tests, reference material
preparation, and quality assurance. The effort would eventually lead to the approval
of a manufacturing and control method for the product. You will have to submit a
lot of papers to receive a license (new drug application, biological license applica-
tion). However, many of the tasks performed during growth and scale-up are not
included in the above applications. It is the project owner’s responsibility to provide
construction documentation to regulatory authorities for evaluation. It is important
to remember that ‘if it isn’t publicized, it hasn’t been done’.

A significant percentage of the required documentation can be produced ahead of
time (e.g. cell banking reports, unit operation descriptions, development reports,
analytical method descriptions, batch records). Other reports (such as summary
reports) are published alongside the experimental work. While such reports do not
explain the end result, they are extremely helpful in informing future users about the
reasons behind their decisions. As a result, the tech transfer kit should include
overview reports.

Hundreds, if not thousands, of documents are produced by the drug development
program, each prepared by a separate person from a different government and, in
some cases, a different corporation. Any of these documents may be needed in the
future, thus a complete documentation system is essential to keep track of them. The
tracking technique requires the authenticity of the paper, which includes information
about the author, date, edition, business, and facility.

1.9 Conclusion
Understanding the critical elements of bioprocessing allows manufacturers to
establish efficient manufacturing facilities that can produce cGMP compliant
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biopharmaceuticals. Every step of the process requires a different set of environment
controls, in-process testing, and output validation. A well-designed and validated
facility also reduces the cost of the product significantly. Given the myriad of factors
that can affect the quality of biopharmaceuticals, advanced planning and maintain-
ing the change control is essential. This chapter presented most elements required for
creating biopharmaceutical manufacturing by presenting the conditions required for
each step of the process required for biopharmaceuticals.
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