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Appendix I

Equilibrium stability

A.1 Local and global stability
Let an ecological community of S species described by an autonomous continuous
time model be of the form:

dn
dt

n f n n n n f i Sn( , , , ) ( ) 1, , , (I.1)i
i i S i i1 2= … ≡ = …

where f f fn n n( ), ( ), , ( )S1 2 … are continuous functions in the positive orthant. We can
denote the product nifi(n) as Fi(n).

Similarly, we use discrete time, and at time t let Ni(t) denote the density of the ith
species in an interaction among S species which we represent by a set of nonlinear
difference equations:

n t G n n n G i Sn( 1) ( , , , ) ( ) 1, , , (I.1 )i i S i1 2+ = … ≡ = … ′

where, for convenience, we use ni in place of ni(t); but in order to distinguish ni(t + 1)
from ni(t) we shall retain the argument of ni(t + 1).

The simplest way to examine stability in a community model like equation (I.1) is
by examining the eigenvalues of the so-called community matrix which is computed
at an equilibrium of the model n* that, by definition, verifies:

f i Sn( ) 0 1, , . (I.2)i = = …*

Similarly, for discrete time, we have that an equilibrium n*, by definition, must
verify:

G i Sn n( ) 1, , . (I.2 )i = = … ′* *
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This community matrix is the Jacobian matrix, given by:
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and then, by equation (I.2), we can simply write the community or Jacobian matrix
Jij as:

J
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n( )
. (I.4)ij
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=
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*

*

However, the problem with this method is that it can only establish local stability or
instability. On the other hand, ecosystems in the real world are subject to large
perturbations of the initial state, and continual disturbances on the system dynamics
that may produce important departures from equilibrium. Since the equations of
population biology are nonlinear, their solutions, which can be represented as an S-
dimensional surface, can give rise to quite complicated ‘landscapes’. And therefore
neighborhood stability analysis may give a misleading representation of the full
global stability of the system.

If the dynamical equations are linear, local and global stability are identical.
Unfortunately, we have seen in chapter 1 that while the linear approximation is very
useful for approaching many problems in physics, it is rarely a sensible approach in
population biology. However, many biologically interesting models, although non-
linear, produce relatively simple landscapes, with one valley or hilltop whose sides
slope ever upward or downward, respectively. In this case the local stability analysis
correctly describes the global stability. Such circumstances are characterized by the
existence of a Lyapunov function and constitute the basis of a powerful analytical
method for establishing that an equilibrium is globally stable, i.e. stable relative to
finite perturbations of the initial state. This is the so-called direct or second method
of Lyapunov (LaSalle and Lefschetz 1961, Gurel and Lapidus 1968, Willems 1970,
Strogatz 1994). There are many methods for constructing Lyapunov functions
(Schultz 1965, Gurel and Lapidus 1968). However, unfortunately, there is no general
way of knowing whether a Lyapunov function exists, let alone a straightforward
procedure to construct it if it does exist.

In any event, for a given model it is possible to use computer simulations to
investigate the behavior of the model for finite perturbations of its initial state. But
computer simulations cannot guarantee that an equilibrium does indeed have a finite
region of attraction. Certainly, this procedure becomes increasingly worse as the
number of species in a given community increases.

In the next section of this appendix we will consider the local stability for two-
dimensional systems. In the third and final section we will return to local and global
stability, review the two methods outlined above, the one based on the eigenvalues of
the Jacobian matrix and Lyapunov’s method.

Ecological Modelling and Ecophysics

I-2



A.2 Stability for two-dimensional systems
Stability theory addresses the stability of solutions of differential equations and of
trajectories of dynamical systems under small perturbations of initial conditions. We
discuss here the stability of a general autonomous ordinary differential bi-dimen-
sional system of equations of the form

dx dt f x x dx dt f x x/ ( , ), / ( , ), (I.5)1 1 1 2 2 2 1 2= =

where f1 and f2 are given functions or maps. This system can be written more
compactly in vector notation as

d dtx f x/ ( ), (I.5 )= ′

where bold denotes a column vector with two entries:

x
x ax , (I.6 )1

2
= ⎡

⎣⎢
⎤
⎦⎥

f

f
bf x

x
x

( )
( )

( )
, (I.6 )1

2

=
⎡
⎣⎢

⎤
⎦⎥

Thus x represents a point in the phase plane, and dx/dt is the velocity vector at that
point, which is given by the vector field or bi-dimensional map f(x). By flowing along
the vector field, a phase point traces out a solution x(t), corresponding to a trajectory
or phase curve winding through the phase plane (figure I1).

However, what guarantee do we have that the general nonlinear system dx/dt =
f(x) actually has solutions? Fortunately, it turns out that there is an existence and
uniqueness theorem for n-dimensional systems:

Existence and uniqueness theorem
Consider the initial value problem dx/dt = f(x), x(0) = x0. Suppose that f is
continuously differentiable, i.e. f is continuous and all its partial derivatives ∂fi/∂xj,
i, j = l,…,n, are continuous for x in some open connected setD contained in Rn.

Then for x0 in D , the initial value problem has a solution x(t) on some time
interval (−τ, τ) about t = 0, and the solution is unique.

Fixed or singular points
Phase curves or phase trajectories of equation (A1.1) are solutions of

dx
dx

f x x

f x x

( , )

( , )
. (I.7)1

2

1 1 2

2 1 2
=

x(t)

dx/dt

Figure I1. A trajectory or phase curve x(t) winding through the phase plane; the ‘velocity’ dx/dt is tangent to
this curve.
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We can imagine the entire phase plane as filled with such trajectories. In fact,
through any point (x1, x2) there is a unique curve except at fixed points (x1*, x2*)
where the vector field f(x) vanishes, i.e.

f x x f x x( , ) ( , ) 0.1 1 2 2 1 2= =* * * *

This is why fixed points are also called singular points.
It turns out that for systems of nonlinear equations in general it is impossible to

find the trajectories analytically. Even when explicit formulas are available, they are
often too complicated to provide much insight. However, something we can do is to
determine the qualitative behavior of the solutions. That is, to find the system’s phase
portrait directly from the properties of the vector field f(x). To do this we will use the
linearization technique developed earlier for one-dimensional systems, namely a
Taylor expansion around fixed points. The hope of this linear stability analysis is
that we can approximate the phase portrait near a fixed point by that of a
corresponding linear system, so that we can classify fixed points of nonlinear
systems. More rigorously speaking, there is a theorem about the local behavior of
dynamical systems in the neighborhood of a certain type of equilibrium point which
asserts that linearization is effective in predicting qualitative patterns of behavior.

Linear stability analysis around fixed points, the linearization theorem of
Hartman–Grobman
Suppose the map f is smooth, i.e. it is at least differentiable everywhere (hence
continuous) has an equilibrium state x*: that is, f(x*) = 0. Then, the Hartman–
Grobman theorem or linearization theorem states that the behavior of a dynamical
system in a domain near a hyperbolic equilibrium point (we will define in a moment this
kind of equilibrium) is qualitatively the same as the behavior of its linearization near
this equilibrium point. Therefore, when dealing with such dynamical systems one can
use the simpler linearization of the system to analyze its behavior around equilibria.

Just for simplicity of expression let us make the change of coordinates
x = x1 − x1*, y = x2 − x2*, that moves the singular point to the origin x = 0
and y = 0. Then (0,0) is a singular point of the transformed equation (I.7′):

dx
dy

f x y

f x y

( , )

( , )
. (I.7 )1

2

= ′

If f1 and f2 are analytic functions near (0,0), by definition of an analytic function, we
can expand f1 and f2 in a Taylor series and, retaining only the linear terms, we get

dx
dy

f x f y

f x f y
, (I.8)

x y

x y

1 1

2 2

=
+
+

where the fij denote the partial derivative of the function fi (i = 1 or 2) with respect to
the direction j = x or y evaluated at the origin, i.e. f ,

f
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These four numbers define the Jacobian

matrix A:
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Therefore, equation (I.5′) is equivalent, to first order (i.e. linear approximation) to:

d
dt
x

Ax. (I.10)=

Let λ1 and λ2 be the eigenvalues of A; given by equating the determinant of A − λ I:

f f

f f
0, (I.11)

x y

x y

1 1

2 2

λ
λ

−
−

=

i.e. λ1 and λ2 are the roots of the second order characteristic equation:

f f f f f f( ) 0, (I.12)x y x y y x
2

1 2 1 2 1 2λ λ− + + − =

which can be re-written as:

A Atr det 0, (I.13)2λ λ− + =

where ‘tr’ denotes the trace of matrix A (the sum of diagonal elements) and ‘det’ its
determinant ∣A∣. Therefore, we get

( )
( )

A A A

A A A

1/2 tr tr 4 det ,

1/2 tr tr 4 det .
(I.14)

1
2

2
2

λ

λ

= + −

= − −

In general, λ1 and λ2 are complex numbers. An equilibrium x* is hyperbolic if no
eigenvalue of the linearization has real part equal to zero. That is, hyperbolic
equilibrium implies that Re(λ1) ≠ 0 and Re(λ2) ≠ 0.

The typical situation is for the eigenvalues to be distinct: λ1 ≠ λ2. In this case, a
theorem of linear algebra states that the corresponding eigenvectors v1 and v2 of A
are linearly independent, and hence span the entire plane. In particular, any initial
condition x0 can be written as a linear combination of eigenvectors, say

c cx v v , (I.15)0 1 1 2 2= +

where c1 and c2 are arbitrary constants and the eigenvector vi associated with the
eigenvalue λi given by

( )p p p
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This allows us to write down the general solutions of equation (I.10) simply as

c e c ex v v . (I.17)t t
1 1 2 2

1 2= +λ λ

This is a general solution because it is a linear combination of solutions to equation
(A1.6), and hence is itself a solution. In addition, it satisfies the initial condition
x(0) = x0, and so by the existence and uniqueness theorem, it is the only solution.

If the eigenvalues are equal, i.e. equation (I.13) has a double root λ1 = λ2 = λ, the
solutions are proportional to (c1 + c2t) exp[λt].

The mathematician Henri Poincaré distinguished four different singular points of
differential equations. These are the node, the saddle, the focus and the center.
Figure I2 summarizes the possibilities in the so-called Poincaré diagram, i.e. the (tr
A, det A) parameter plane, which includes the parable Δ ≡ 1/4 tr A2 − det A = 0.

I. If det A < 0, then λ1 and λ2 are real and of opposite signs, regardless of the sign
of tr A. Usually, solutions go to infinity as t → ∞ so this case is considered to
be unstable. Figure I2 shows the appearance of some trajectories near this kind
of fixed point, denoted a saddle point. This type of behavior is found in the
region below the horizontal axis of the (tr A, det A) parameter plane shown in
the summary figure I2.

II. If det A > 0, then any of the following can happen:
(A) det A < 1/4 tr A2 (i.e. below the parable): In this case λ1 and λ2 are real.

We then have two possibilities:

II(A).1. If tr A < 0: In this case λ1 < 0 and λ2 < 0. Solutions are both
decreasing exponentials so that the fixed point is stable, denoted a
stable node or sink (located in the Poincaré diagram between the
horizontal axis and the parable, to the left-hand side of figure I2).

∆ = 0 det A

Stable focus Unstable focus

Unstable nodeStable node
Tr A

Saddle

Center

∆ = 0:
det A = 1/4 (Tr A)2

Figure I2. Poincaré diagram. Classification of phase portraits in the (tr A, det A)-plane. Author: Freesodas /
Source: Gimp.
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II(A).2. If tr A > 0: In this case λ1 > 0 and λ2 > 0. Solutions are both
increasing exponentials so that the fixed point is unstable, denoted an
unstable node or source (between the horizontal axis and the parable, to
the rhs of figure I2).

(B) detA> 1/4 trA2 (i.e. above the parable): In this case λ1 and λ2 are complex.
We then have three possibilities:

II(B).1. If tr A < 0: In this case Re(λ1) < 0 and Re(λ2) < 0. Solutions are
oscillations with decreasing amplitude so that the fixed point is a
stable focus or spiral sink (located in the Poincaré diagram between the
vertical axis and the parable, to the lhs of figure I2).

II(B).2. If tr A > 0: In this case Re(λ1) > 0 and Re(λ2) > 0. Solutions are
oscillations with increasing amplitude so that the fixed point is an
unstable focus or spiral source (located in the Poincaré diagram between
the vertical axis and the parable, to the rhs of figure I2).

II(B).3. If tr A = 0: In this case Re(λ1) = Re(λ2) = 0. Solutions are
periodic, with constant amplitude, and thus the phase curves are
ellipses. This corresponds to a center, but is a marginal case. Centers
are not stable in the usual sense, they are neutrally stable; a small
perturbation from one phase curve does not die out in the sense of
returning to the original unperturbed curve. The perturbation simply
gives another solution. This implies that, in general, nonlinear terms will
either stabilize or destabilize the system. In the case of center singular-
ities, determined by the linear approximation to f1(x, y) and f2(x, y), we
must look at the higher-order (than linear) terms to determine whether
or not it is really a spiral and hence whether it is stable or unstable.

Summary

• Fixed points are stable when the real part of λ1 and λ2 are negative.
• There are four types of fixed points:

1. A node if λ1 and λ2 are real, non null, with the same sign; if both λ1 and λ2 are
negative (positive) the node is stable (unstable).

2. A saddle point if the signs of λ1 and λ2 are opposite.
3. A focus when λ1 and λ2 are complex (with real part different from 0). Negative

real parts for λ1 and λ2 imply a stable focus, whereas positive real parts for λ1
and λ2 mean an unstable focus.

4. A center if λ1 and λ2 are purely imaginary the fixed point is. In this case we
have to go beyond the linear stability analysis and look at the nonlinear terms
to determine whether or not it is really a spiral and hence whether it is
stable or unstable.
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Limit cycles and Kolmogorov’s theorem for predator–prey systems
An interesting question about trajectories that spiral outward from an
unstable equilibrium is: do they spiral outward without bound until they intersect
one of the axes and one of the species goes extinct? Or do they settle on a particular
orbit which is itself stable? Such orbits are called stable limit cycles. A limit cycle is a
closed trajectory such that neighboring trajectories are not closed; they spiral either
toward (stable limit cycle) or away from the limit cycle (unstable limit cycle).

To elucidate the question of the fate of unstable spirals there are both negative
theorems, which rule out closed orbit solutions in the phase plane, as well as the
Poincaré–Bendixson theorem which establish that closed orbits exist under partic-
ular conditions. Before introducing these theorems, at the end of the next section, we
will present a theorem by the Russian mathematician Andrei Kolmogorov for bi-
dimensional predator–prey systems.

Kolmogorov’s theorem

Given a bi-dimensional system like equation (I.5), if

f x x x f x x

f x x x g x x

( , ) ( , ),

( , ) ( , ),
(I.18)1 1 2 1 1 2

2 1 2 2 1 2

=
=

where f (x1, x2) and g (x1, x2) can be interpreted as the per capita growth rates
for each species, provided that

(i) the functions f and g are continuous and differentiable in the domain x1 > 0 and
x2 > 0
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where A, B and C are three positive quantities, then this system has either a
stable point of equilibrium or a stable limit cycle.
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A.3 Some general theorems1

We will introduce some valuable theorems that we will accept without proving them
(for proofs of these theorems see Goh 1980).
Local stability: the real parts of the eigenvalues of the Jacobian matrix must be
negative
Suppose the autonomous system (I.1) has a positive equilibrium at n* and let xi = ni
− ni* for i = 1, 2,…, S denote a small departure of each species density from its
equilibrium value. Performing a first order Taylor expansion around the equilibrium
we get:

n f n f
f
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x O x
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x O x

n n
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Therefore, substituting equation (I.20) into (I.1) and using equation (I.4), the
linearized dynamics is given by

dx
dt

n J x i S1, , . (I.21)
j

S

1

i
i ij j∑= = …

=

*

It turns out that we have this valuable theorem for continuous time models:

Theorem 1. The equilibrium n* = (n1*, n2*, …, nS*) of an autonomous continuum time
system is locally stable if all the real parts of the eigenvalues of the Jacobian matrix

J n
f

n

n( )
ij

i

j
in≡ ∣∂

∂
** are negative.

Thus this theorem generalizes the two stability analysis for bi-dimensional systems
of the previous section.

In the case of a Lotka–Volterra generalized linear model we have:

dn
dt

n n i S1 1, , . (I.22)
j
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1

i
i i ij j∑= + = …

=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟r a

And thus we have,

J n (I.23)ij i ij i= *r a

1 This section is mainly based on chapters 1, 3 and 5 of the thorough study on stability by Goh (1980) and
chapter 2 of May (1974).
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The equilibrium n* is locally stable if all the real parts of the eigenvalues of the
matrix n[ ]i ij i*r a are negative. Note that in general the stability properties of the matrix

n[ ]i ij i*r a are different from those of the matrix A = [ ]ija .
For the discrete time description (I.1′), to first order, we have:

x t
G

n
x

n
( 1)

( )
. (I.21 )

j
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i
i

j
j

n

∑+ = ∂
∂

′
= *

And, a theorem similar to theorem 1 but for discrete time models (Goh 1980) is:

Theorem 1′. The equilibrium n* = (n1*, n2*, …, nS*) of a set of discrete difference
equations is locally stable if the modulus of all the eigenvalues of the matrix G

n
n( )i

j
n∣

∂
∂ * are

less than one.

Global stability: Lyapunov functions
There exists a method to determine whether a system is globally stable. It involves
finding a function known as a Lyapunov function. The problem is that the existence
of a Lyapunov function is often difficult to determine for multispecies models and,
consequently, this approach has a limited utility. The discussion will be facilitated by
considering physical systems analogous to the biological ones.

Consider an autonomous system of differential equations

dx dt f x/ ( ) (I.24)i i=

with a fixed point at x* = (x1*, x2*, …, xS*).
Definition: A Lyapunov function, for this system is a continuously differentiable,

real valued function V(x) with the following properties:
i. V(x) > 0 for all x ≠ x*, and V(x*) = 0. (We say that V is positive definite.)

ii. f x( ) 0dV x
dt

i

S
V
x

dx
dt

i

S
V
x

( )

1 1
i

i

i i∑ ∑= = <
=

∂
∂

=

∂
∂

for all x≠ x*. (All trajectories flow ‘down-

hill’ toward x*.)

Theorem 2. The equilibrium x* of an autonomous continuum time system is locally
asymptotically stable, i.e. for all initial conditions x(t) → x*, as t →∞, if there exists a
Lyapunov function for x*.

Intuitively, under conditions i. and ii., all trajectories move monotonically down the
graph of V(x) toward x* (figure I3).

For physical systems the direct method of Lyapunov generalizes the principle that
a system, which continuously dissipates energy until it attains an equilibrium, is
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stable. If a physical system, for example a vibrating spring and mass, dissipates
energy over time and the energy is never restored then eventually the system must
reach some final resting state. This final state is called the attractor. However,
finding a function that gives the precise energy of a physical system can be difficult,
and for biological systems, the concept of energy may not be applicable. Lyapunov’s
realization was that stability can be proven without requiring knowledge of the true
physical energy, provided a Lyapunov function can be found to satisfy the above
constraints.

Goh (1977) has discussed a Lyapunov function that fits all Lotka–Volterra
models:

V n n n n nn( ) k ( ln( / )), (I.25)
i

S

1

i i i i i i∑= − −
=

* *

where the ki are constants. If the ki exist such that dV/dt is always negative except at
n* (where it is zero) then the system is globally stable.

The problem is how to obtain the ki so that they satisfy condition dV/dt < 0. For
simple examples this is easy, but for more complicated examples it is not.

Ruling out closed orbits
Closed orbits can be ruled out for the following systems2:

(A) Gradient systems
That is, suppose the system can be written in the form dx/dt = −∇V, for some
continuously differentiable, single-valued scalar function V(x) (this vector equality is
written for each coordinate i as dxi/dt = −∂V/∂xi). Such a system is called a gradient
with potential function V.

(B) Systems with a Lyapunov function
If a Lyapunov function exists, then closed orbits are forbidden

X(t)

x*

V(x)

Figure I3. The solutions cannot get stuck anywhere else because if they did, V would stop changing, but by
assumption, dV/dt < 0 everywhere except at x*.

2 For proofs we refer the reader to section 7.2 of Strogatz (1994).
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Poincaré–Bendixson theorem
The Poincaré–Bendixson theorem is the main tool which historically has been used
to show that a dynamical system has a stable cycle limit.

Poincaré–Bendixson Theorem

Suppose that:
(i) R is a closed, bounded subset of the plane;
(ii) dx/dt = f(x) is a continuously differentiable vector field on an open set

containing R;
(iii) R does not contain any fixed points;
(iv) There exists a trajectory C that is ‘confined’ in R, this means that it starts in R

and stays in R for all future time.

Then either C is a closed orbit, or it spirals toward a closed orbit as t → ∞. Thus, in
either case, R contains a closed orbit.

For a proof of this theorem we refer the interested reader to Coddington and
Levinson (1955) or Wiggins (1990).
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Appendix II

Fermi problems or back-of-the-envelope
calculations

A Fermi problem, Fermi question, or Fermi estimate is an estimation problem based
on heuristic methods. Named for the 20th century physicist Enrico Fermi, such
problems typically involve making justified guesses about quantities that seem
impossible to compute given limited available information.

Fermi was known for his ability to make good approximate calculations with
little or no data. One well-documented example is his estimate of the yield of the
atomic bomb detonated during the Trinity test, based on the distance traveled by
pieces of paper dropped from his hand during the blast. Fermi’s estimate of 10
kilotons of TNT was remarkably close to the now-accepted value of around 20
kilotons.

Let us consider a first Fermi problem:
‘How much oil (in barrels) is consumed in the United States per year?’ To answer

this question we will split the problem into two simpler quantities to estimate:
First, let us estimate how much oil is used by cars every year.
Secondly, we will increase the estimate to account for non-automotive uses.
A typical solution might include the following assumptions and estimations:
1. There are approximately 330 000 000 people in the United States.
2. On average, each person owns a car, so let us say the number of carsNc∼ 3× 108.
3. What about the number of gallons consumed per capita per day or year? Let

us estimate this quantity in two different ways. (A) Thinking how frequently
you refill the tank of your car at a gas station; e.g. every ten days. This
implies an average consumption of 13 gallons every ten days or more roughly
one gallon per day. (B) Using the annual average mileage of a car; maybe
around 10 000 miles. A typical value for the miles per gallon (mpg) for a car
is around 25. This gives 10 000/25 = 400 gallons per year or, once again,
roughly one gallon per day.

doi:10.1088/978-0-7503-2432-8ch6 II-1 ª IOP Publishing Ltd 2020

https://doi.org/10.1088/978-0-7503-2432-8ch6


4. A rough and simple estimation of the fraction of oil used by cars is 1/2; the
other half is used for other means of transportation (trucks, buses, trains,
boats, planes, etc), for heating and cooling and for manufacturing plastics
and chemicals, as well as many lubricants, waxes, tars, asphalts, pesticides
and fertilizers.

From these assumptions:

= × ×
= × −

Oil used by cars per day (3 10 cars) (1 gallon per car per day)

3 10 gallons d .

8

8 1

How many gallons does a barrel contain? The answer is 42. But suppose we do not
know. We can estimate it using that a barrel costs around $50 and the average US
price of regular-grade gasoline is $2.50. If we assume that half of the price of a gallon
of gas ($1.25) is the cost required to produce the oil, we get that a barrel contains
roughly 50/1.25 = 40. Not so bad! Thus we have:

= ×
= ×

− −

−

Oil used by cars per day 3 10 gallons d /40 gallon barrel

7.5 10 barrels d

8 1 1

6 1

Therefore, we have a total consumption of oil of:

= × × =− −Oil used in US per day 2 7.5 10 barrels d 15 million barrels d6 1 1

Or equivalently,

= × × ≈ ×− −Oil used in US per year 365 15 10 barrels d 5 10 barrels y6 1 9 1

Let us perform a second estimation:
The world consumes around 100 millions of oil barrels per day. The US GDP

represents between 15% (measured in purchasing power parity PPP) and 25%
(measured in US $) of the world GDP. Let us assume that the same proportionality
holds true for the oil consumption. Therefore, we get 15–25 million barrels d−1. If we
take the midpoint we get 20 million barrels d−1.

Notice the lower estimate is exactly the number we estimated before using a
different procedure! But this is just a coincidence. Actually, overall, there were an
estimated 272.48 million vehicles registered in 2017. The figures include passenger
cars, motorcycles, trucks, buses, and other vehicles (Statista 2019a). So if we remove
the number of trucks and buses it turns out we overestimated the number of cars by
more than 10% (and probably more than 15%). However, our estimation of the
fraction of the gasoline consumed by cars of 1/2 was quite accurate: in 2018,
consumption of finished motor gasoline averaged about 9.33 million b/d (392 million
gallons per day), which was equal to about 45% of total US petroleum consumption
according to the US Energy Information Administration (EIA 2019a). Additionally,
we also had luck when estimating the number of gallons in a barrel with an error of
only 5%. Nevertheless, notice that had we performed this same estimation five years
ago, when the price of the oil barrel was around $100, we would have gotten a much
worse estimate of 80 gallons per barrel!
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The true value for 2018 was 20.5 million barrels of petroleum per day, or a total
of about 7.5 billion barrels of petroleum per year (EIA 2019b). Thus, we under-
estimated the number of barrels consumed in the US by 25% according to our first
estimation and by less than 3% according to our second estimation. Not so bad,
remember that the goal of Fermi problems is to estimate quantities with scarce
information within one order of magnitude from its actual value. Therefore, overall
we can assume our guesses were not quite off the mark.

Another Fermi problem could be: ‘How many shopping malls S there are in the
USA?’

The total number of customers C is smaller but comparable with the population
of the US, N, say C = 2/3 × N, then we will estimate S by dividing the total amount
of money all the shopping malls receive from customers by the average net profits all
the owners of stores of an average shopping mall make.

Let us call the average percentage of net profits of a retail store, p.
Now, owning a business means risking your money, dealing with employees,

etc. Therefore, we assume that, on average, the owner makes more money
than employees. This implies that the mean profits of a store > mean income
(i); say 3 × i.

An average consumer spends, say a percentage q of her/his income in shopping
malls.

If we denote by n the average number of stores in a shopping mall, thus we have

× × × = × × ×i S n C i q p3 ( /100) ( /100).

So we see that i cancels out because it multiplies in both sides of the equality, so we
get:

= × × × × ×S N q p n2/3 /(3 10 )4

Now we have to put numerical values for the percentages p and q, say: p = 10%,
q = 20% and for n, say, on average, n = 20 stores per shopping mall. Thus we finally
get:

= × × × × × × =S 2 3.3 10 20 10/(9 20 10 ) 73 333.8 4

According to Statista (2019b) there are 116 000 shopping malls in the US.
According to the US Bureau of Labor Statistics (2020), an average consumer

spends $11 185 in ‘other goods and services’ from the $67 241 average income after
taxes (this number does not include other expenses like food away from home, etc).
Therefore, we can estimate q as 16.6%.

According to this NYU Stern database for more than 7000 US companies (Stern
2020) in many different industries, the average profit margin is p = 7.9% for all
companies and 6.9% for more than 6000 companies excluding financials.

Additional Fermi problems
Try your hand at the following problems. Remember, you are not expected to get
the ‘right’ answer, and you will not be rewarded for extra accuracy, but you do need
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to clearly show your reasoning at each step. After solving these problems by
estimation, search the Web for the ‘true’ answer.

I. Estimate the total number of cattle in the world.
II. How much milk is produced in the US each year?
III. Estimate the total number of hairs on your head.
IV. How many commercial planes are flying simultaneously over the US?
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Glossary

Adiabaticity or quasistatic
evolution

A slow process in which all time derivatives are very small.

Attractor In dynamical systems, an attractor is a set of numerical
values toward which a system tends to evolve, for a wide
variety of starting conditions of the system. System values
that get close enough to the attractor values remain close
even if slightly disturbed, in such a way that all trajectories
not contained in that region will eventually wind up in the
region. An attractor may be a point or a cycle that is an
equilibrium and generates transients that return to the
equilibrium state after perturbation. It may also be an
attractive region that has no individual equilibrium points
or cycles (a chaotic or strange attractor).

Autonomous dynamical
system

A system of ordinary differential equations which does not
explicitly depend on the independent variable. When the
independent variable is time, they are also called time-
invariant systems.

Basin of attraction For each attractor, its basin of attraction is the set of initial
conditions leading to long-time behavior that approaches
that attractor. That is, the collection of points that converge
on a particular attractor.

Bifurcation A bifurcation occurs when a small smooth change made to
the parameter values (the ‘bifurcation’ parameters) of a
system causes a sudden ‘qualitative’ or topological change
in its behavior.

Bifurcation diagram A graph of the attractors of a system as a function of some
parameter (the ‘bifurcation’ parameter). It shows the values
visited or approached asymptotically (fixed points, periodic
orbits, or chaotic attractors) of a system as a function of this
bifurcation parameter in the system.

Bifurcation, local A local bifurcation occurs when a parameter change causes
the stability of an equilibrium (or fixed point) to change. In
continuous systems, this corresponds to the real part of an
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eigenvalue of an equilibrium passing through zero. In discrete
systems (those described by maps rather than ODEs), this
corresponds to a fixed point having an eigenvalue with
modulus equal to one. In both cases, the equilibrium is
non-hyperbolic (at least the real part of one eigenvalue
becomes zero) at the bifurcation point. The topological
changes in the phase portrait of the system can be confined
to arbitrarily small neighborhoods of the bifurcating fixed
points by moving the bifurcation parameter close to the
bifurcation point (hence ‘local’). By contrast, global bifurca-
tions cannot be revealed by eigenvalue degeneracies.

Bifurcation, normal form of In mathematics, the normal form of a dynamical system is a
simplified form that can be useful in determining the system’s
behavior. Normal forms are often used for determining local
bifurcations in a system. All systems exhibiting a certain type
of bifurcation are said to be locally (around the equilibrium)
topologically equivalent to the normal form of the
bifurcation.

Bifurcation point A point of structural instability in which a single equilibrium
condition is split into two.

Carrying capacity The maximum attainable size of a population, usually
symbolized as K.

Catastrophe or Imperfect
bifurcation

A catastrophe occurs when the stability of an equilibrium
breaks down, causing the system to jump into another state.
This jump could be truly catastrophic for the equilibrium of a
bridge or a building or a species that extinguishes.
Catastrophes can be also regarded as imperfect bifurcations,
often described by the addition of an imperfection parameter
to the normal form of a bifurcation.

Competitive exclusion
principle

Sometimes referred to as Gause’s law, is the proposition that
two species competing for the same limiting resource cannot
coexist at constant population values. When one species has
even the slightest advantage over another, the one with the
advantage will dominate in the long term. This result can be
derived from the Lotka–Volterra competition equations: if
interspecific competition between two species is sufficiently
large, the equilibrium of both species coexisting is unstable.

Density dependence The condition in which the rate at which a population
increases or decreases is a function of its density (in contrast
with density independence)

Dynamical system A means of describing how one state develops into another
state over the course of time in terms of a system of
equations. These equations describe the time dependence of
a point’s position in its ambient (geometrical) space.
Dynamical systems theory brings a qualitative and geomet-
rical approach to the analysis of ordinary differential equa-
tions (ODEs), addressing the existence, stability, and global
behavior of sets of solutions, rather than seeking exact or
approximate expressions for individual solutions.
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Equilibrium point The value of a variable that does not change under the rules
of a dynamical system. An equilibrium point may be
stable (in which case it is commonly referred to as an
attractor) or unstable (in which case it is commonly referred
to as a repeller).

Euler’s constant Approximately 2.7183, the base of natural logarithms, nor-
mally symbolized by a lowercase e.

Facultative mutualism Mutualism in which one species can survive without its
mutualist but performs better with it.

Ferromagnetism The basic mechanism by which certain materials, such as iron
and nickel, form permanent magnets. Microscopically the
ferromagnetism is explained in terms of the electrons con-
tained in the material. Specifically, one of the fundamental
properties of an electron is that it has a magnetic dipole
moment, i.e. it behaves itself as a tiny magnet. When these
tiny magnetic dipoles are aligned in the same direction, their
individual magnetic fields add together to create a measura-
ble macroscopic magnetic field.

Functional response In consumer–resource (predator–prey) equations, the func-
tion that stipulates how the per capita consumption rate (or
predation rate) changes with changes in resource density.

Gause principle See Competitive exclusion principle.
Hamiltonian The mathematical descriptor for the energy of a given

interaction. The total Hamiltonian describes all energies of
all the interactions that affect the system.

Intraspecific competition The competitive interaction among individuals in the same
population.

Intrinsic rate of natural
increase

The growth of a population under the theoretical state of
extremely low population density, usually symbolized as r.

Isocline or Nullcline In population dynamics, the term isocline refers to the set of
population sizes at which the rate of change for one pop-
ulation in a pair of interacting populations is zero. More
generally, for a dynamical system, the set of all points for
which one of the variables does not change, so that the time
derivative is equal to zero.

Limit cycle An oscillatory system that can be either stable (an oscillatory
attractor) or unstable (an oscillatory repeller).

Logistic equation Sometimes called the Verhulst model or logistic growth
curve, is a model of population growth first published by
Pierre Verhulst (1845). The model is continuous in time, but a
modification of the continuous equation to a discrete quad-
ratic recurrence equation known as the logistic map is also
widely used.

Logistic population growth Population growth that appears qualitatively exponential at
low population density but approaches an asymptote as the
population becomes larger; population growth that follows
the logistic equation.

Malthus equation The simplest population equation describing an exponen-
tially growing population, introduced by Thomas R Malthus
in 1798.
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Mean-field approximation
(MFA)

In physics and probability theory, the mean-field approxi-
mation consists in approximating a random (stochastic)
model by a simpler model that results from averaging over
degrees of freedom. Such models consider many individual
components that interact with each other. The effect of all the
other individuals on any given individual is approximated by
a single averaged effect, thus reducing a many-body problem
to a one-body problem.

Metastability In physics, metastability is a stable state of a dynamical
system other than the system’s state of least energy. In
isolation the state of least energy is the only one the system
will inhabit for an indefinite length of time, until more
external energy is added to the system. That is, the system
will spontaneously leave any other state (of higher energy) to
eventually return (after a sequence of transitions) to the least
energetic state. A ball resting in a hollow on a slope is a
simple example of metastability. If the ball is only slightly
pushed, it will settle back into its hollow, but a stronger push
may start the ball rolling down the slope.

Nullcline = Isocline = Zero
growth line
Obligate mutualism Mutualism in which one species is unable to survive without

its mutualist.
Ordinary differential
equations (ODEs)

A differential equation containing one or more functions of
one independent variable and the derivatives of those func-
tions. The term ordinary is used in contrast with the term
partial differential equation (PDE) which may be with
respect to more than one independent variable.

One-dimensional map A function f that projects a single variable xt through
discrete time t, xt+1 = f(xt). For example, in the logistic
map f(xt) = rxt(1 − xt).

Partial differential equation
(PDE)

A differential equation that contains several unknown vari-
ables and their partial derivatives (i.e. the derivative with
respect to one of those variables, with the others held
constant). PDEs are used to formulate problems involving
functions of several variables, typically space coordinates and
time. A special case is ordinary differential equations
(ODEs), which deal with functions of a single variable and
their derivatives.

Population A group of individual items. In the context of population
ecology, a population is a group of individual living
organisms.

Repeller A point or cycle that is theoretically an equilibrium but
generates transients that deviate from the equilibrium posi-
tion when perturbed.

Separatrix The boundary between two basins of attraction.
Simulation A numerical simulation is a calculation that is run on a

computer following a program that implements a mathemat-
ical model for a physical system. Numerical simulations are
required to study the behavior of systems whose
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mathematical models are too complex to provide analytical
solutions, as in most nonlinear systems.

Strange attractor A chaotic attractor. A region of space that attracts all
trajectories but contains no attractive points or cycles.

Structural stability A higher-level stability concept in which the qualitative
nature of a system is unchanged when the parameters of
the system are varied.

Structured models Models that do not assume that all individuals in the
population are identical. E.g. models can be spatially-struc-
tured (spatial heterogeneous environment), age-structured or
sex-structured.

Vector field The set of vectors that determine the behavior of a dynamic
system.

Zero growth
line = Nullcline = Isocline
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