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Preface

The title of this book highlights that its focus is on quantitative methods applied to
practical problems. Indeed, this is a book oriented toward use-inspired basic science.
It falls into the so-called Pasteur’s quadrant, sensu Stokes (1997), where the
motivation is both expanding understanding and increasing our abilities to solve
practical issues with rigorous quantitative methods. This is why this book is organized
in such a way that each chapter devoted to methods in community/population
ecology is followed by a companion Application chapter, containing a practical
application of the presented methods. A main goal of the latter chapters is to engage
the reader interested in developing tools and strategies to solve their own problems.
Two of the applications are about production optimization in agriculture: livestock
production and polyculture crops. The focus of the other two applications is more
towards environmental issues: the dynamics of tree species in tropical forests and the
development of early warning signals of catastrophic shifts in lakes. The common
theme underlying all these problems is that they are approached through population
dynamics models. There are few textbooks connecting theoretical methods and
mathematical developments in ecology with the real world and its practical
problems either in production or conservation. This book attempts to fill such a gap.

In the title also appears the neologism ‘Ecophysics’ to stress that, the spirit as well
as the methods of physics permeate this book. However, a clarification is in order. I
do not want to promote the ‘ecology as physics’ viewpoint. Rather, I advocate for
adopting certain general principles which have repeatedly demonstrated their
effectiveness in physics.

One of these principles is not to be afraid of relying on partial aspects and partial
relations of things which we only have an incomplete understanding. Indeed,
abstracting and isolating certain relevant features of phenomena and forgetting
about the rest of the Universe is a recipe that has yielded great dividends since
Galileo! More recently, Enrico Fermi was celebrated for his ability to make fast,
excellent approximate calculations with little or no concrete data. One of the best
well-known examples is when the first atomic bomb was detonated during the
Manhattan Project. To estimate the power of the blast Fermi, who was standing at
base camp 10 miles away from the explosion, dropped a few scraps of paper as the
shock wave from the detonation passed. Using the distance covered by the pieces of
paper, after some coarse calculations, Fermi estimated a power of 10 kilotons of
TNT, which is remarkably close to the now-established value of 20 kilotons. Fermi
problems, or order estimation problems, have become quite standard in physics and
engineering courses to develop the students’ skills in solving complex problems using
simple shortcuts to make approximate, but meaningful, calculations. Since Fermi
problems illustrate the ‘no fear principle’, I briefly discuss them in the Introduction,
and readers who wish to dig deeper can find more material in appendix II.

Occam’s razor, aka parsimonious modelling approach, is another fruitful
principle: always start with the simplest possible model capable of capturing the
phenomenon or problem you want to describe, explain or predict. This keep it simple
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principle has demonstrated to be crucial to make progress in several disciplines, it
prevents us from introducing parameters in our models which are often very
difficult, or even impossible, to measure. A large number of unsupported or free
parameters are more likely to induce overfitting and decrease our trust in the model.
Complex models are often perceived as more reliable than simpler ones, although
they can be as intractable as the real systems they aim to model; too many
parameters in a model can easily lead to confusion rather than insight.
Furthermore, it is quite common that experimental errors preclude distinguishing
predictions from these more sophisticated models to those from simpler models
(hopefully the Application chapters will help to illustrate this point). So our
philosophy here is that the complexity of proposed models should try to match
the complexity of the problem that they seek to address. Therefore, we prefer to aim
at simplicity at the outset, and, if necessary, make our model more complex or
extend it by adding more model parameters.

The first part of this book is devoted to methods in population/community
ecology that have become classical. These methods, originally devised by Alfred
Lotka and Vito Volterra in the 1920s, were later developed and extended by
theoretical ecologists such as Robert MacArthur, Robert May and many others.

The second part aims to introduce the reader to certain tools and techniques from
different branches of physics—like thermodynamics, statistical mechanics and
complex systems—and their applications to address questions in ecology and
environmental sciences. Connecting ecological problems with well-studied phenom-
ena in physics allows exploiting analogies to gain deeper insight into these problems,
to identify novel questions and problems, and to get access to alternative quanti-
tative methods and tools from physics.

What this book does not cover
This book does not cover many ecological issues, such as delay models, age-

structured models, disease ecology, migration, or the analysis of the complexity–
stability problem. These important topics are well explained in classical textbooks
on mathematical ecology—the books by Pastor (2008) or Kot (2003) are good
examples—, or in volumes devoted to mathematical biology—for example Keshet-
Edelstein’s (1988) or Murray’s (1989). Indeed a possible criticism is that the topics
covered in this book might seem rather eclectic and strongly tailored towards my
own personal tastes and experience. However, hopefully, it will include material the
reader will not readily find elsewhere.

References
Keshet-Edelstein L 1988 Mathematical Models in Biology (NewYork: Random House)
Kot M 2003 Elements of Mathematical Ecology (Cambridge: Cambridge University Press)
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Chapter 1

From growth equations for a single species
to Lotka–Volterra equations for two

interacting species

‘The importance of the method is this: if we know certain variables, mostly
desired by ecologists and in some cases already determined by them, we can
predict certain results which would not normally be predictable or even expected
by ecologists. The stage of verification of these mathematical predictions has
hardly begun; but their importance cannot be under-estimated, and we look
forward to seeing the further volumes of Lotka’s studies.’

Charles Elton 1935 review of A J Lotka’s Théorie analytique des associations
biologiques.

Summary
We start this chapter in section 1.1 with the simplest growth equation for a single
isolated population, the Malthus equation. The problem with this equation is that it
assumes a constant per capita growth rate, leading to exponential growth. Then we
will show that if we assume resource limitation, which means replacing the constant
per capita growth rate by a density dependent per-capita growth rate, the resulting
logistic equation, saturates the population to an equilibrium value called the carrying
capacity.

Before we move to two interacting species, in section 1.2, we consider general
models for single species populations and show how to analyze the local equilibrium
stability, both algebraically and geometrically.

In section 1.3 we present the Lotka–Volterra equations for a predator and its
prey. We first consider the original Lotka–Volterra predator–prey model.

doi:10.1088/978-0-7503-2432-8ch1 1-1 ª IOP Publishing Ltd 2020
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We introduce the useful concept of phase plane for representing the dynamical
behavior of a two-species system as a trajectory followed by a point representing the
system in this plane. We show that this model gives rise to periodic oscillations in the
abundances of predator and prey populations, resembling the empirically observed
behavior. However, the model is unrealistic and it has conceptual problems, mainly
its structural instability. Namely, oscillations of predator and prey abundances
correspond to closed trajectories in the phase plane and any small perturbation
could make the system jump onto another orbit which can be quite different from
the original one. We next show that the Lotka–Volterra model can be modified in
simple ways to make it more biologically realistic. These modifications, consisting in
making the prey populations density-dependent (e.g. logistically) and making the
predator death rate depend inversely on prey density, cure the problem of the
structural instability: the modified predator–prey equations give rise to robust
periodic orbits, termed stable limit cycle oscillations.

In section 1.4, we introduce the Lotka–Volterra competition equations for a pair
of species and analyze the possible equilibria: competitive exclusion of one species or
species coexistence. We also show how this descriptive or phenomenological model
(i.e. without specifying either the limiting resources the two species are competing for
or the mechanism of competition) can be transformed into a mechanistic model by
expressing the competition coefficients and carrying capacities in terms of rates of
utilization and renewal of resources.

Finally, in section 1.5, we discuss a system formed by a pair of species engaged in
a mutualistic relationship. Two types of mutualism between two species, obligate
and facultative, are introduced as well as the corresponding Lotka–Volterra
equations. We conclude by analyzing the possible equilibria.

1.1 From the Malthus to the logistic equation of growth for a single
species

1.1.1 Exponential growth

Describing how a population of a given species changes with time has a long history.
For example, the Italian mathematician Leonardo of Pisa (1175–1250), better
known as Fibonacci, in his book Liber Abaci (1202) posed this problem involving
the growth of a population of rabbits:

A certain man had one pair of rabbits together in a certain enclosed place. How
many pairs of rabbits can be created from the pair in one year if we suppose that each
month each pair begets a new pair, which on the second month on becomes productive?

Fibonacci used a simple mathematical model based on idealized assumptions to
solve this problem (see exercise 1.1).

Here we will devote some space to explain step by step the population dynamics
approach as well as analyzing its implicit underlying assumptions. So imagine a
population of a given species, rabbits if you like, in a given area. This population
changes in a given period due to births, deaths, immigration and emigration that
occur in this period. We can express this as a population balance (inputs minus
outputs) relationship:

Ecological Modelling and Ecophysics
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= − + −change in the population births deaths immigration emigration, (1.1)

Let us assume the simplest situation without migration in which the above relation
simplifies to:

= −change in the population births deaths, (isolated population) (1.2)

and see how we can traduce the above conceptual relationship into a mathematical
equation.

Let Nt be the population density (number of individuals in a specific area) of the
species at time t. Hence, the left-hand side of equation (1.2) can be written as a
difference equation

− = −+N N B D . (1.3)t t t t1

where Bt and Dt denote, respectively, the number of births and deaths that occurred
during the interval from t and t +1. This interval between consecutive integer time
values may denote, depending on the problem and the species involved, from
minutes (in the case of bacteria or protozoa) to years (in the case of say humans).

Suppose now that the population N is a large number and we are interested in
changes of this population for an arbitrary small interval of time Δt. In particular, if
we take Δt infinitesimally small, equation (1.3) can be rewritten in terms of
instantaneous rates of births and deaths, bt and dt (measured as individuals per
unit of time), as

−
Δ

=
Δ

−
Δ

= − ′+ΔN N
t

B
t

D
t

b d . (1.3 )t t t t t
t t

Actually, Nt and Nt + Δt are discrete variables so they cannot differ in less than one
individual, and if Δt is taken small enough, they will be equal and equation (1.3′)
breaks down. The ‘trick’ is to promote the discrete (integer number) population
variable Nt to a continuous (real number) N(t) (to emphasize we are using
continuous variables, t appears between parentheses rather than as a sub-index).
The left-hand side of equation (1.3′) defines the derivative of N with respect to time:

−
Δ

=
Δ →

+ΔN N
t

dN
dt

lim
t 0

t t t

—which sometimes is also denoted as Ṅ—, so that equation (1.3′) becomes a
differential equation:

= − ″dN
dt

b t d t( ) ( ). (1.3 )

So, what should we use, a continuous or discrete time description? From a
biological point of view, if births occur continuously with overlapping generations in
relatively seasonal environments, continuous time is a sound choice. However, for
many species births occur in regular time-intervals so they have no overlap
whatsoever between successive generations and therefore population growth is

Ecological Modelling and Ecophysics
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better-suited for a discrete-time description. For primitive organisms such discrete
steps can be quite short in which case a continuous time model may be a reasonable
approximation. In fact, the step lengths can vary widely from species to species.

Biological considerations aside, the advantage of using differential equations is
that qualitative insight is usually gained from simple model problems that may be
solved using analytical methods. That is, as we shall see in a moment, calculus often
helps in uncovering functional relationships between the relevant problem variables.
However, most problems of interest lead to differential equations that cannot be
solved easily using analytic techniques. In such cases numerical methods allow us to
use the power of a computer to obtain quantitative insight. Since a computer is
limited to finite combinations of the four arithmetic operations, +, −, ×_, ÷_, and
logical operations, numerical methods require discrete time for running such
computations. Therefore, hereafter in Part I, we will resort to the continuous time
description and to equation (1.3′) as the starting point to introduce the formalism of
population dynamics. On the other hand, for most practical applications, it seems
more natural to build the model as a discrete difference equation from the start,
without going through the doubly approximative process of first, during the
modelling stage, finding a differential equation to approximate a basically discrete
situation, and then, for numerical computing purposes, approximating that differ-
ential equation by a difference scheme (for an interesting discussion see van der
Vaart 1973). Thus, in the companion practical application chapters, involving more
advanced models that need to be approached by numerical solution techniques, we
will use the discrete time representation1.

The birth and death rates, b(t) and d(t), in equation (1.3′) are still unspecified
functions of the time t. Obviously, both rates depend on population size; the larger
N(t) the larger the number of births and deaths per unit of time. The simplest
assumption we can make is that both rates are proportional to N(t):

=b t N t a( ) ( ), (1.4 )b

=d t N t b( ) ( ), (1.4 )d

where b and d2 are constant per-capita rates, measured, respectively, as births and
deaths per individuals per unit of time. Therefore the equation (1.3′) becomes

= −dN
dt

N t( ) ( ). (1.5)b d

It is customary to group −( )b d into a net constant per-capita growth rate r and write
equation (1.5) as (Malthus 1798):

1A note of caution is in order here. As was shown by Robert May (1976), some of the simplest nonlinear
difference equations can exhibit a wide spectrum of dynamical behavior. From stable equilibrium points, to
stable cyclic oscillations between two population points, four points, eight points, etc, through to a chaotic
regime in which (depending on the initial population value) cycles of any period, or even totally aperiodic but
bounded population fluctuations, can occur.
2Warning: dN in equation (1.4b) is NOT the same as the numerator of the temporal derivative dN/dt!
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=dN
dt

N. (1.6)r

(where we have omitted the temporal dependence of N for compactness of notation.)
We know from calculus that the solution of this equation is

=N t N e( ) , (1.7)rt
0

where N0 = N(0) is the initial population. Thus if > 0r (i.e. >b d ) the population
grows exponentially while if > 0r (i.e. <b d ) it dies out. The graph of this
exponential function (figure 1.1) shows the behavior of the population over time.

The differential equation (1.6), due to Malthus in 1798, is fairly unrealistic. It says
that the rate of change in population size over time (dN/dt) increases by a
proportional rate of growth ( )r multiplied by the current population size (N). This
is an example of a density-independent biological force, because it depends only on
the population N, not on external forces such as crowding or food supply. We
already mentioned some of the simplifications leading to equation (1.6). In addition,
there are several underlying implicit assumptions and it is worth making them
explicit because it is important for modellers to be aware of the approximations
behind the models they use so that they understand how these models can fail.
Box 1.1 summarizes the assumptions behind equation (1.6) as well as the corre-
sponding mathematical implications.

In principle, all the above assumptions would be only justified for an isolated, well
mixed in a homogeneous habitat, sexless parthenogenetic (i.e. exhibiting asexual
reproduction) population in which individuals are immediately reproductive when
they are born, with no resource limitation and completely controlled conditions (no
stochasticity). A growing population of bacteria or protozoa most closely approx-
imates this situation for a while (until it faces resource limitations).

Unrealistic as it is, equation (1.6) is the foundation for all of the population
models that we will discuss in this book. In particular, the mean-field approximation
IV together with the approximations V and VI of a dynamical autonomous system is
common to all population ecology, the subject of part I. As we will see in the

Figure 1.1. Exponential growth >( 0)r and decay <( 0)r .
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3Notice however that many higher-order differential equations can be written as first order systems of
differential equations by the introduction of derivatives as new dependent variables (see exercise 1.12).

Box 1.1. Assumptions behind Malthus equation (1.6).

Assumption Mathematical implication

I Continuous overlap of generations. Use of differential equations.
II Geographical isolation. No migration rates in the differential

equation.
III Interactions with individuals of other species

are negligible.
The rates b(t) and d(t) do not depend on

other species neither through
parameters (exercise 1.4) nor through
population variables (sections 1.3 and
1.4).

IV Mean-field approximation (MFA): the
spatial nature of interactions is ignored;
only changes in mean quantities, such as
global densities, are tracked. The MFA
in fact implies two approximations
(Morozov and Poggiale 2012):

IVa The approximation of well mixed
population, i.e. the individuals in the hab-
itat are well mixed and the probability of
interaction of a randomly taken individual
with any other individual does not depend
on the individual chosen.
IVb The environment is considered to be
homogeneous (e.g. no sharp gradients of
resource distribution).

N(t), b(t) and d(t) do not depend on space
coordinates. No spatial derivatives in
the differential equation.

V Dynamical system. There is a branch of
mathematics developed specifically to
deal with dynamics: dynamical systems
theory.

No higher time derivatives than the first
appear in the differential equation3.

VI Autonomous system. The rates b(t) and d(t) do not explicitly
depend on t, their dependence is only
implicit through N(t) i.e. they are
functions of N(t).

VII Non interacting individuals. Equivalent to
assume that resources for growth and
repro-duction are unlimited (see next
subsection).

= =b t N t d t N t( ) ( ), ( ) ( ), , constantsb d b d

VIII No age or size structure. There are no differences in the per-capita
rates b and d among individuals due to
age or body size.

IX Deterministic. The population is
determined solely by N0 and r: If we
started over with the same set of
conditions, the population would grow
to precisely the same size.

No noise or stochastic term in the
differential equation.
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Application chapters, very simple models based on most of the above assumptions
still produce reliable results for more complex species under much less restrictive
conditions.

1.1.2 Resource limitation, density dependent per-capita growth rate and logistic
growth

In deriving equation (1.6) we unrealistically assumed that per-capita rates b and d
were constant, independent of the population density (assumption VII in box 1.1),
and thus the same happens for = −r b d . However, when resources (nutrients,
water, space, etc) are limited, if crowding is increased, we expect the per capita
birth rate to decrease and the per capita death rate to increase because fewer
resources are available for organisms to use for reproduction and survival,
respectively. Hence, these per-capita rates should really be a function of the
population density of the species, so that, as population density increases to
sufficiently high levels, the death rate rises and the birth rate falls, bringing about a
fall in r toward zero and below, into negative values. In other words, more realistic
per-capita rates b and d exhibit density dependence. The simplest formula for a
decreasing net growth rate N( )r is a linear one—straight line with a proportionality
constant c—as shown in figure 1.2:

≡ − = − = −N N N
N

( ) c c 1
/c

. (1.8)⎜ ⎟⎛
⎝

⎞
⎠r r r r

r

If we define ≡ /cK r and replace r in equation (1.6) by (1.8), we re-obtain the logistic
equation of Pearl and Reed (1920):

b0

d0

R
at

e

Population size (N)

Birth rate (b)

Death rate (d)

K

Figure 1.2. Linear density-dependent birth and death rates for the logistic model illustrating how the per capita
rates of birth and death change as a function of crowding. The population reaches a stable equilibrium
( =N K ) at the intersection of the curves, where birth and death rates are equal.
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= −dN
dt

N
N

1 . (1.9)⎜ ⎟⎛
⎝

⎞
⎠Kr

The logistic equation which was originally described as a model for human
population growth by Pierre-Francois Verhulst (1838), is a simple descriptive model
of how competition limits the growth of populations. The model assumes that a
maximum sustainable population density, the carrying capacity K , exists where
dN/dt = 0. The per capita population growth rate (1/N)(dN/dt) is at its maximum
value of r when N is close to zero, then declines linearly to zero when N reachesK .
If N exceedsK , the per capita growth rate becomes negative.

The logistic model is the simplest nonlinear differential equation (box 1.2). Most
nonlinear differential equations cannot be explicitly solved, that is, there are no
methods to integrate them to obtain an explicit equation for N(t) in terms of initial
conditions, N(0), and the parameters—or else the explicit, time-dependent sol-
utions are too unwieldy to be of much help. Fortunately, the logistic equation has
an explicit simple solution. Let us integrate this equation to review, at least once,
how differential equations are solved analytically by the separation of variables
method. So the first step is to separate the terms in N on the lhs and those in t on
the rhs:

−
=dN

N N
dt

(1 / )K
r

Then integrate the lhs from N(0) to N(T ) and the rhs from t = 0 to t = T:

∫ ∫−
=dN

N N
dt

(1 / )N

N T T

(0)

( )

0K
r

Box 1.2. Logistic model assumptions.

Because the logistic model is derived from the Malthus model it shares all its
assumptions except # VII of box 1.1, i.e. we have seen that resources are limited in
the logistic model, which implies a density dependent per capita growth rate. So
assumption VII is replaced by two additional assumptions:

VIIa Constant carrying capacity. In order to achieve the S-shaped logistic growth
curve, we must assume that K is a constant: resource availability does not vary
through time. In the companion Application chapter, we will relax this assumption,
and consider a periodically forced carrying capacity.

VIIb Linear density dependence. Each individual added to the population causes an
incremental decrease in the per capita rate of population growth. This is illustrated in
figure 1.2 which shows the per capita population growth rate (1/N)(dN/dt) as a function
of population density.
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The integral of the rhs is the simplest one and we immediately get tr . To integrate the
lhs we will use the identity:

−
= +

−N N N N
1

(1 / )
1 1

1 /
,

K K

and then we integrate each part separately:

∫ ∫ ∫−
= +

−
dN

N N
dN
N

dN
N(1 / ) 1 /

.
N

N T

N

N T

N

N T

(0)

( )

(0)

( )

(0)

( )

K K

Recall that the integral of 1/N is ln N and the integral of the second term on the lhs
can be obtained, by making a change of variable ′ = −N N1 /K , as
− − Nln(1 / )K .4 To find definite integrals we have to evaluate at the upper and
lower bounds and subtract the expression for the lower bound from that of the
upper. Therefore, we get:

− − − + − =N t N N t N K tln( ( )) ln( (0)) ln(1 ( )/ ) ln(1 (0)/ ) .K r

Finally, after some algebraic manipulation we get:

=
+ − −

N t

N
e

( )

1
(0)

1

.
(1.10)t

⎛
⎝⎜

⎞
⎠⎟

K

K r

We can easily check that equation (1.10) produces for T = 0, N(0) and for very large
times the asymptotic value ∞ =N( ) K .

Of particular importance for models like the logistic equation is the question of
whether the model has an equilibrium, that is, whether there is a value *N of N such
that dN/dt = 0, and if the equilibrium is stable or not. The right-hand side becomes 0
either for the trivial case whereN = 0 or, as we just have seen, for =N K . So we have
two equilibria: *N = 0, i.e. the population is extinct, and =*N K , i.e. the population
density reaches its maximum sustainable value or carrying capacity. We will see in the
next section different methods to find out whether an equilibrium is stable or unstable.

1.2 General models for single species populations and analysis of
local equilibrium stability

1.2.1 General model and Taylor expansion

Both the Malthus equation (1.6) and the logistic equation (1.9) are examples in
which the growth rate depends on population density. We can generalize them and
write a general growth equation for a single population as

=dN
dt

f N( ), (1.11)

4Or, you can also obtain it from a table of integrals.
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where f (N) is a general function of the population density N. Notice that for
equations (1.6) and (1.9) the function/is the polynomial

= + +f N a a N a N( ) ,o 1 2
2

where = 00a ; for equation (1.6) =1 ra and = 02a ; for equation (1.9) =1 ra and
= − /2 Kra , i.e.

=
= − = −

f N N a

f N N N N N b

Malthus model: ( ) (1.12 )

Logistic model: ( ) (1 / ) ( / ) (1.12 )2

⎧⎨⎩ K K

r
r r r

More generally, if the function f is sufficiently smooth or ‘well behaved’, it is possible
to write f as a Taylor infinite power series around a fixed value of N, N= *N :

∑= −
!

= + ′ −
!

+ ″ −
!

+ ‴ −
!

+ ⋯

=

∞
*

*
* *

*

*
*

*
*

f N f N
N N

n
f N f N

N N

f N
N N

f N
N N

( ) ( )
( )

( ) ( )
( )

1

( )
( )

2
( )

( )
3

,

(1.13)n 0

n
n

( )

2 3

where n! denotes the factorial of n and f (n)( *N ) denotes the nth derivative of f
evaluated at the point *N , i.e. f (0) = f, f (1) = f′ =df/dN, f (2) = f″ =d 2f/dN2 and so on.
Substituting equation (1.13) into (1.11) we get the general (infinite) series expression
for the growth of a single population:

= + ′ −
!

+ ″ −
!

+ ‴ −
!

+ ⋯

* *
*

*
*

*
*

dN
dt

f N f N
N N

f N
N N

f N
N N

( ) ( )
( )

1
( )

( )
2

( )
( )

3
,

(1.14)

2

3

Remark. Thus any growth function may be written as a (possibly infinite)
polynomial

∑= = + + + + ⋯
=

∞

f N N N N N( ) . (1.15)
n 0

n
n

0 1 2
2

3
3a a a a a

1.2.2 Algebraic and geometric analysis of local equilibrium stability

We have seen that the equilibrium points *N satisfy

=*f N( ) 0, (1.16)

so that dN/dt = 0 when evaluated at these *N .Thus, to find the equilibrium points we
have to solve for all *N that satisfy equation (1.16).

To perform the algebraic stability analysis of an equilibrium point *N we consider
a perturbation or departure x from the equilibrium value *N ,

= − *x t N t N( ) ( ) , (1.17)
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which we initially assume is much smaller than 1 (x(0) << 1)5. Substituting equations
(1.15) and (1.17) into equation (1.14) we get:

= ′ + ″ + ‴ + ⋯* * *
dx
dt

f N x f N
x

f N
x

( ) ( )
2

( )
6

,
2 3

and neglecting terms of order x2 and higher, we obtain an approximate linear
differential equation for the perturbation x(t):

≈ ′ *
dx
dt

f N x( ) . (1.18)

Since f′( *N ) is equal to constanta 1, we know that the solution of equation (1.18)
is given by an exponential:

=x t x e( ) (0) . (1.19)ta

Therefore, if < 0a this perturbation dies away exponentially, whereas for > 0a the
disturbance grows unbendingly (the special case = 0a corresponds to neutral
stability). In summary, this neighborhood stability analysis gives the equilibrium
point at *N as

= ′ <
= ′ >

*

*

f N
f N

stable
unstable

if ( ) 0
if ( ) 0

.
⎧⎨⎩

a
a

More formally, we say that if and only if f′( *N ) < 0 the equilibrium is locally stable.
This means, starting at the equilibrium value of N, *N , if the population changes
slightly in size, will it tend to return to its equilibrium value. Global stability is a
more general property that implies that a system will return to the equilibrium point
from any initial population value. We will illustrate the difference between local and
global stability by considering the Malthus and logistic models.

Let us start by considering the simplest Malthus model. According to equation
(1.12a) there is only one equilibrium solution to this model, *N = 0. To determine the
stability of this equilibrium, we take the derivative of =f N N( ) r with respect to N:

′ =f N r N( ) for all . (Malthus equation) (1.20)

That is, it is a constant—the parameter r. Therefore, 0 is an unstable equilibrium
point when > 0r and a stable equilibrium when < 0r . Furthermore, any perturba-
tion of any size x away from *N = 0 will decrease to 0 if < <( 0)b d r or increase
unbounded and diverge to infinity if > >( 0)b d r (figure 3.1). This is because the
differential equation is a linear equation and N has disappeared after we took the
derivative with respect to it. Linear models are therefore globally stable or globally
unstable. That is, if the model is globally stable, N(t) will converge to the single
equilibrium point *N from any starting value of N. If the model is globally unstable,
N(t) will be repelled away from the single unstable equilibrium point *N for any
value of N.

5Remember that we are assuming that N is a continuous variable so that x can be as small as we want.

Ecological Modelling and Ecophysics

1-11



In the case of the logistic equation, by equation (1.12b),

′ = −f N r N K( ) (1 2 / ). (logistic equation) (1.21)

Hence, inserting the two equilibria: *N = 0 and =*N K , we have

′ = − × = >
′ = − × = − <
f a

f b
(0) (1 2 0) 0, (1.22 )

( ) (1 2 1) 0. (1.22 )

⎧⎨⎩ K
r r
r r

Therefore,

=
=

*

*

N
N

unstable equilibrium
stable equilibrium

0 is an
is a

⎧⎨⎩ K

In the logistic model, unlike the Malthus linear model, the equilibria are locally
stable. The simplest way to see this is by using the geometric analysis (see below).

For the geometric stability analysis, we graph f(N) against N, thus showing how
the rate of change of the population varies with population density, N. In the case of
the logistic equation6, since its rhs is a quadratic expression, the graph is simply a
parabola that crosses the N-axis at the two equilibrium points, 0 and K , where f
(N) = dN/dt = 0 as shown in figure 1.3. We now place arrows in this figure to the
right or left to each side of each equilibrium point in the direction of population
change specified by the sign of the derivative. Notice that arrows point away from

*N = 0 on either side but they both point towards =*N K from either side. This
means that by introducing or removing at least one individual (e.g. by emigration or
immigration) in the vicinity ofK will always result in the population returning toK .
Doing the same around 0 will always result in the population moving away from 0,
so long as > 0r (a point to which we shall return shortly). Therefore, =*N K is a

dN/dt

0 k N

Figure 1.3. The inverted parabola of the logistic equation and its two equilibria: *N = 0 (unstable) and
=*N K (stable).

6We will discuss only the case of the logistic equation because it includes the simplest case of Malthus
equation.
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stable equilibrium point while *N = 0 is an unstable equilibrium point, in complete
agreement with the algebraic stability analysis. For the Malthus equation, instead of
an inverted parabola, we have a straight line by the origin and therefore only one
intersection point, *N = 0, which is an unstable equilibrium.

Notice that, when > 0r , =*N K is stable only for N > 0: if we start from a N < 0,7

figure 1.3 shows that the trajectory will be repelled towards the left and will never
reach =*N K . Likewise, if we start from >N K the trajectory will move towards the
left (towards K ) rather than be repelled towards the right by *N = 0. Therefore,

=*N K is locally stable rather than globally stable and *N = 0 is locally
unstable rather than globally unstable.

Remarks.
(i) The algebraic stability analysis, through equation (1.19), tell us that r

controls quantitatively the fate of perturbations near equilibria for the
Malthus and logistic equations: they grow unboundedly as texp( )r near
N* = 0 for both equations and they die out as − texp( )r near =*N K for the
logistic model. On the other hand, the geometric analysis only provides
qualitative information: it tell us whether the equilibria are stable or
unstable.

(ii) In the logistic model, unlike the Malthus linear model, the equilibria are
locally stable. The reason is because nonlinear models, which typically have
powers of N, can have several equilibrium solutions. Because these models
are in powers of N, taking the derivative with respect to N and evaluating it
at an equilibrium point results in an expression for the eigenvalue which is
itself a function of *N . For nonlinear models, the sign of f′ and the stability
of the equilibrium point will depend on which equilibrium point they are
evaluated at. In general, unlike globally stable or unstable linear models,
nonlinear models are typically stable or unstable only within certain local
values of N in the neighborhood of a particular *N .

1.3 The Lotka–Volterra predator–prey equations
1.3.1 A general dynamical system for predator–prey

A general dynamical system for modelling predator–prey involves two species. One
of them (the predators) feeds on the other species (the prey), which in turn feeds on
some third food resource available around, i.e. the model assumes implicitly a third
trophic level below the prey. The population densities of prey and predator at a
reference time t are denoted by N(t) and P(t), respectively, and obey two
autonomous differential equations:

̇ =N Nf N P a( , ) (1.23 )

7Of course, from a mathematical point of view, a negative population density does not make sense. But the
global stability is a mathematical concept.
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̇ =P Pg N P b( , ), (1.23 )

i.e. the time t does not appear explicitly in the functions f(N,P) and g(N,P) which
denote the respective per capita growth rates of the two species. It is assumed that
these functions are continuously differentiable and that df(N,P)/dP < 0 and dg(N,P)/
dN > 0, that is, the prey abundance is negatively affected by the predator abundance
and vice versa, the predator abundance is positively affected by the prey abundance.
A standard example is a population of Canadian lynxes and snowshoe hares.
However, depending on their specific settings of applications, predator–prey models
can take the forms of resource–consumer, plant–herbivore, parasite–host, etc.

1.3.2 A first model for predator–prey: the original Lotka–Volterra predator–prey
model

In 1926, the Italian mathematician Vito Volterra proposed a differential equation
model to explain the observed simultaneous increase in predator fish and decrease in
prey fish in the Adriatic Sea during World War I (when fishing was largely
suspended). At the same time in the United States, the equations studied by
Volterra were derived independently by Alfred Lotka (1925) to describe a hypo-
thetical chemical reaction in which the chemical concentrations oscillate. The
Lotka–Volterra model is the simplest model of predator–prey interactions. It is
based on linear per capita growth rates, written as

= −f N P P a( , ) (1.24 )r c

= −g N P N b( , ) , (1.24 )a d

where the parameter r denotes, as usual, the growth rate of the prey species in the
absence of interaction with the predator species (a positive quantity), the parameter c
is a consumption rate of prey by predators that measures per-capita loss of prey due
to predators, the parameter a denotes the net rate per capita of growth of the
predator population in response to the size of the prey population, and the
parameter d is the per-capita loss (by death or emigration) rate of predators in
the absence of interaction with prey. Substituting the equations (1.24) into (1.23) we
get:

̇ = −N N NP a(1.25 )r c

̇ = −P NP P b. (1.25 )a d

Let us interpret what these equations are telling us. The idea of the first equation is
that in the absence of predators (P = 0), the prey would grow in a Malthusian way at
a constant rate r, but decreases linearly as a function of the density P of the
predators. Similarly, in the absence of prey (N = 0), the density of predators would
decrease but the rate increases proportional to the density of the prey. A necessary
condition for predation to occur is that an individual predator and an individual
prey physically meet. The product of the two densities, NP, represents the
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expectation that an individual predator will meet an individual prey (assuming
random movement of the two through a homogeneous landscape). It is equivalent to
the chemistry law of mass action, which states that the rate of molecular collisions of
two chemical species in a dilute gas is proportional to the product of the two
concentrations of the reactants. Hence the parameter c can be interpreted as the
probability that, upon meeting a prey, the predator will successfully kill it. The total
prey kill is therefore NPc . Since not all the biomass of a killed individual is
transformed into predator biomass, so the growth of the predator is itself propor-
tional to the total prey harvest, or β NPc , where β represents the conversion efficiency
of prey biomass into predator biomass. Thus we can write β=a c and the NP term
can be thought of as representing the conversion of energy from one species to
another: NPc is taken from the prey and NPa accrues to the predators. This first
predator–prey model inherits all the nine assumptions of the Malthus equation (box
1.1). Three additional assumptions are listed in box 1.3.

We shall see that this model has serious drawbacks. Nevertheless, it has been of
considerable value in posing relevant questions and as a starting point for more
realistic models that we will briefly review in the next subsection. But before doing
this we are going to analyze the solution of the Lotka–Volterra predator–prey model
and compare it against empirical data.

As a first step in analyzing the Lotka–Volterra model it is convenient, for
simplicity, to nondimensionalize the system by introducing a change of variables:

τ τ τ α= = = =t x
N t

y
P t

, ( )
( )

, ( )
( )

, / , (1.26)r
a
d

c
r

d r

so that the Lotka–Volterra equations (1.25) can be rewritten as:

τ
= −dx

d
x y a(1 ), (1.27 )

τ
α= −dy

d
y x b( 1). (1.27 )

The system of differential equations (1.27) has two immediate advantages over that
of (1.25). First, it involves just a single parameter α. It is much easier to explore how
the solutions of these equations change when we move in this single-dimensional
‘space of parameters’ than in the original four-dimensional one (exercises 1.7 and 1.8

Box 1.3. Additional assumptions of the original Lotka–Volterra predator–prey model.

X The effect of the predation is to reduce the prey’s per capita growth rate by a term
proportional to the prey and predator populations; this is the − N Pb term.

XI In the absence of any prey for sustenance the predator population would experiment
an exponential decay, that is, the − Pd term in (1.25b).

XII The functional response, or per capita consumption rate of prey per predator,
increases linearly with prey abundance as Nc .
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illustrate this point clearly). Second, the two equilibrium states now become very
simple, either

= =
= =

* *

* *

x y a
x y b

0 or (0, 0), (1.28 )
1 or (1, 1). (1.28 )

⎧⎨⎩
In spite of its simplicity, the system of differential equations cannot be solved
analytically. However, we will first show that we can get useful qualitative insights
using calculus. Next, to obtain the model quantitative predictions we will solve these
equations numerically. Therefore, dividing equation (1.27b) by equation (1.27a) we
get:

α= −
−

dy
dx

y x
x y

( 1)
(1 )

, (1.29)

We can separate variables and express (1.29) as

α− = − ′dy
y

dy dx
dx
x

, (1.29 )
⎛
⎝⎜

⎞
⎠⎟

so that we can integrate exactly the lhs and the rhs of (1.29′) to get:

α− = = −y y H x xln ( ln ),

where H is an undetermined constant. Or equivalently

+ − =ax y x y Hln . (1.30)a

To visualize the meaning of equation (1.30), a useful representation is provided by
the phase plane; a coordinate plane with axes x and y (see box 1.4).

The direction field or phase portrait corresponding to equation (1.27) is plotted in
figure 1.4. There are two singular points at which both the numerator and
denominator of equation (1.29) become 0: at x = y = 0 and x = y = 1 (i.e. the
two equilibrium states). We have also drawn the predator and prey zero-growth
isoclines or nullclines, along these zero growth lines population densities do not
change. We can see from equation (1.27a) that the prey zero growth isoclines are
given by x = 0 and y = 1. likewise, the predator zero growth isoclines are given by
x = 1 and y = 0. Obviously, equilibria occur at the intersections of the predator and
prey zero-growth isoclines. If predator and prey numbers are both low, i.e. the
particle representing the system is in quadrant [x < 1, y < 1], predator numbers
decrease while prey numbers increase (the arrows point towards the right and
downward directions). If prey numbers are high but predator numbers are low, i.e.
the particle is in quadrant (x > 1, y < 1), both predators and prey increase (the
arrows point towards the right and upward). As predator numbers increase so that
we move to quadrant [x > 1, y > 1], prey now begin to decrease (the arrows point
towards the left and upward directions). Finally, in quadrant [x < 1, y > 1], when
predator numbers are high but prey numbers are low, both predators and prey
decrease (the arrows point towards the left and downward directions).
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We can get additional qualitative information by applying a useful modelling tip
we mentioned in the previous chapter, namely constructing linear approximations.
Hence we will linearize equations (1.27a) and (1.27b) about each one of the two
equilibrium points: (0, 0) and (1, 1). Near (0, 0), we may neglect the nonlinear terms
and consider

τ
≈dx

d
x a, (1.31 )

Box 1.4. Phase plane.

For analyzing the dynamics of pairs of interacting populations, governed by coupled
pairs of differential equations, a useful visual representation is provided by the phase
plane; a coordinate plane with axes being the values of the two state variables, say
(x, y), or (q, p) etc (any pair of variables). In this plane, the evolution of a dynamical
system governed by a couple of differential equations of the form dx/dt = f(x,y) and
dy/dt = g(x,y) can be visualized as a the ‘flow’ of a ‘particle’ with coordinates x(t) and y(t).

Let us provide some definitions.
• Phase curves or phase trajectories of this system in the x–y phase plane are a

family of curves solutions of

=dy

dx

f x y

g x y

( , )
( , )

.

• Phase portrait: two-dimensional vector field whose vectors have components (dx/
dt, dy/dt). Each point in phase space has one phase trajectory going through it
and therefore can be associated with only one vector. This is a consequence of the
fact that continuously differentiable equations such as equations (1.23) have
unique solutions at each point, a unique solution guaranteeing one and only one
vector at each point.

• Through any point (x0, y0) there is a unique curve except at singular or fixed
points (xs,ys) where

= =f x y g x y( , ) ( , ) 0.s s s s

Therefore, a particular path taken along a flow line (i.e. a path always tangent to the
vectors of the phase portrait) is a phase trajectory. The flows in the vector field indicate
the time-evolution that the pair of differential equations describes. With enough of
these arrows in place the system evolution over a region of the plane phase can be
visualized as the flow of a particle representing the state of the system.

In this way, phase planes are useful in visualizing the behavior of dynamical
systems; phase trajectories can ‘spiral in’ towards zero, ‘spiral out’ towards infinity, or
reach neutrally stable situations called centers where the path traced out can be either
circular, elliptical, or any other closed curve (see appendix I). This is useful in
determining if the dynamics are stable or not.
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τ
α≈ −dy

d
y b. (1.31 )

Thus, the prey increase exponentially fast close to the origin, while the predators
decrease, corresponding to the horizontal arrows at the bottom of figure 1.4. The
equilibrium at the origin has one stable direction (y) and one unstable direction (x)
and, as such, is referred to as a saddle point (see appendix I).

Near the nontrivial equilibrium (1,1), we introduce new variables u and v that
measure the distance from (1, 1),

= − =u x y1, . (1.32)v

Therefore, equations (1.27a) and (1.27b) become

τ
= +du

d
u a(1 ), (1.33 )v

τ
α= +d

d
u b(1 ). (1.33 )

v
v

Since u and v are small close to equilibrium (1,1), we again can linearize equations
(1.33) and obtain:

τ
≈ −du

d
a, (1.34 )v

τ
α≈d

d
u b. (1.34 )

v

Deriving both equations with respect to t we can get a second order differential
equation for u:

τ
α+ =d u

d
u 0 (1.35)

2

2

Figure 1.4. Phase portrait for the Lotka–Volterra predator–prey equation (1.27) with nullclines for prey and
predator.
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For this linear, constant-coefficient equation, we may try an exponential solution of
the form

= λτu t ce( ) . (1.36)

We thus obtain a characteristic equation,

λ α+ = 0, (1.37)2

that has two purely imaginary roots,

λ α= ±i . (1.38)

And, substituting into equation (1.36) we get for the small departure u(t) around
x = 1:

ατ ατ= = +ατu t ce c ic( ) cos sin . (1.39)

That is, the linearized system has sinusoidal solutions in τ, which have period π α2 / .
Let us see what this means in terms of ecological parameters like intrinsic growth
and death rates. From equation (1.26), this period is T = π2 /r d ; that is, it increases
with the ratio of the linear growth rate, r, of the prey to the death rate, d , of the
predators. Hence, either an increase in the growth rate of the prey or a decrease of
the predator death rate will increase the period. We can see that this makes sense. in
the limit in which /r d tends to infinity, then α = /d r tends to 0, so equation (1.27b)
can be approximated as dy/dt ≈ 0, this implies that y can be replaced by a constant
value, and therefore equation (1.27a) would become a Malthusian equation, with
infinite period (i.e. non periodic).

Unfortunately, we cannot conclude that the fully nonlinear system has these
same simple periodic solutions. Purely imaginary roots, like equation (1.38),
imply that the linearized system is on the knife-edge between instability and
asymptotic stability and on the edge between oscillatory solutions that increase in
amplitude and those that decrease in amplitude (see appendix I). For the fully
nonlinear system, the nonlinear terms that we have neglected are now critical,
since they may tip the nonlinear system one way or another with regard to
stability. Three qualitatively different types of phase trajectories that would be,
in principle, consistent both with the information from the linearized system and
the direction field are shown in figure 1.5. All these three types of phase

Stable

Focus
x

y y

x

Unstable

Focus

y

x

Center

Figure 1.5. Possible scenarios for the equilibrium point (1,1).
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trajectories are tangent to the arrows representing the direction field which rotate
as we move through the plane. To elucidate which of these scenarios is the correct
one we will use equation (1.30) obeyed by the family of phase trajectories, with
one phase trajectory for each value of H. Firstly, it can be shown that the
minimum possible value for H is Hmin = 1 + α and it occurs at the singular point
x = y = 1 (exercise 1.5). Secondly, equation (1.30) can be solved graphically
(exercise 1.6) and we conclude that the nontrivial equilibrium is a center
surrounded by a family of periodic orbits, and not a stable or unstable focus
(aka spiral). This is also termed neutral stability.

Hence, we have seen that although the Lotka–Volterra predator–prey equations
cannot be solved analytically, a lot of enlightening qualitative information can be
obtained using analytical calculations. In general, before embarking on solving a
problem by numerical methods it is advisable trying to approach it by analytical
calculations which are more efficient to understand the fundamentals, easier to
visualize and also serve for verification purposes (numerical calculations are more
prone to errors).

Now we will integrate numerically the system of differential equations (1.27)
(exercise 1.7) and draw the phase trajectories. For a givenH > 1 + α, the trajectories
(1.30) in the phase plane are closed as illustrated in figure 1.6. The larger the H the
larger is the area enclosed by the phase trajectory. The initial conditions, x(0) and y
(0), determine the constant H in equation (1.30) and hence the phase trajectory in
figure 1.6.

A closed trajectory in the x-y plane implies periodic solutions in τ for x and y.
Typical periodic solutions x(τ) and y(τ) are shown in figure 1.7. From equations
(1.27) we can see immediately that x has a turning point when y = 1 and y has one
when x = 1.

How do the oscillatory solutions compare with predator–prey abundances observed
in nature? It turns out that there is a classical set of data on a pair of interacting

Figure 1.6. Phase portrait for the Lotka–Volterra predator–prey equations (1.27), nullclines for prey (x = 0,
y = 1) and predator (x = 1, y = 0) and four orbits surrounding (1,1) for different values of H.
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populations that come close: the Canadian lynx and snowshoe hare pelt-trading records
of the Hudson Bay Company over almost a century. Figure 1.8 (adapted from Odum
1953) shows a plot of that data. We can see they look similar to figures 1.6 and 1.7.
However, we shall see in a moment that there is an important difference.

Let us conclude this subsection with a criticism on this first predator–prey model.
A major inadequacy of the Lotka–Volterra model is clear from figure 1.6 which

shows that all phase trajectories pass close to the x and y axes. Suppose, for example,
x(0) and y(0) are such that x and y for τ > 0 are on the phase trajectory defined by a
given value of H (e.g. H = 4.08). Then, when the system is ‘traveling’ along the
horizontal or vertical segment of an orbit, any small perturbation could make it
jump onto another orbit which does not lie everywhere close to the original one.
Thus no single orbit is stable in the sense that the system converges to it after
perturbations in either direction: perturb the system away from any cycle (for
example by harvesting or stocking) and the system will automatically move to
another cycle with different amplitude and period. Such a set of equations are called

Figure 1.7. Predator–prey cycles corresponding to the closed orbit with H = 1.68 of figure 1.6.
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Figure 1.8. (a) Fluctuations in the number of pelts sold by the Hudson Bay Company. (Redrawn from Odum
1953.) (b) Phase plane plot of the data represented in (a) from 1875 to 1904. (After Gilpin 1973.)
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structurally unstable8. Structural instability is a consequence of the fact that the
equilibrium is a center, i.e. of neutral stability.

Another inconsistency of this simple model is that figure 1.8(a) shows reasonable
periodic fluctuations and figure 1.8(c) a more or less closed curve in the phase plane
as we now expect from a time-periodic behavior in the variables. Nevertheless, if we
examine the results given in figure 1.8 a little more carefully we note that: first, the
direction of the time arrows in figure 1.8(b) is clockwise in contrast to that in
figure 1.6. This is reflected in the time curves in figure 1.8(a) where the lynx
oscillation precedes the hare’s. The opposite is the case in the predator–prey
situation illustrated in figure 1.7. We have a severe interpretation problem; figure 3.3
would imply that the hares are eating the lynx! Different ways to solve this nonsense
were proposed by Gilpin (1973): for example the hares could kill the lynx if they
carried a disease which they passed on to the lynx. Or, a more probable candidate is
Homo sapiens, i.e. the Canadian fur trappers. That is, trappers might sit out poor
years and return to the trap lines only when the hare again became abundant. Since
lynx were more profitable to trap than hare they could turn a disproportionately
large share of their efforts toward catching the more profitable lynx.

1.3.3 Realistic predator–prey models: logistic growth of prey and Holling predator
functional responses

The original Lotka–Volterra predator–prey model, unrealistic though it is, suggests
that simple predator–prey interactions can give rise to oscillations of the abundan-
ces, i.e. to periodic orbits in the phase space. This oscillatory behavior is expected
since if the prey population increases, it promotes growth of its predator. Since more
predators consume more prey, the prey population starts to decline. With less
available food the predator population, in turn, declines and when it is low enough,
this allows the prey population to recover and the whole cycle starts over again. We
have seen that the problem with these periodic orbits is that they are unstable.

The Lotka–Volterra model can be modified in simple ways to make it more
biologically realistic. Reasonable modifications include making the prey populations
density-dependent (e.g. logistically), and making the predator death rate depend
inversely on prey density. Remarkably, these changes, inspired by biological
arguments, solve the problem of the structural instability: the modified predator–
prey equations give rise to robust periodic orbits, termed stable limit cycle
oscillations. Here we will briefly present this modified model version. A very
pedagogical treatment discussing by stages the buildup of such a more realistic
and well behaved model is provided in chapter 8 of the book by Pastor (2008).

We have seen that one of the unrealistic assumptions in the Lotka–Volterra
predator–prey equations (1.25a) and (1.25b), is that the prey growth is unbounded in

8Note that structural instability is different as a change in stability due to a bifurcation when a parameter
passes through a critical value. In a bifurcation, the stability of an equilibrium of the model changes because of
a change in the value of a parameter, but the form of the equations remains unchanged. In a structurally
unstable equation, either slight modifications of the initial conditions or of the form of the model equations
alter the stability.
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the absence of predation. We already know that a more realistic growth rate is
provided by the logistic function. So, for example, a more realistic prey population
equation might take the form

= − −dN
dt

N
N

NPR N a1 ( ). (1.40 )⎜ ⎟⎛
⎝

⎞
⎠Kr

where R(N) is the predator’s functional response. C S Holling (1959) proposed three
different functional response types:

=

=
+

=
+

R N a

R N
N

b

R N
N

N
c

( ) (1.41 )

( ) (1.41 )

( ) (1.41 )
2 2

⎧

⎨
⎪⎪

⎩
⎪⎪

h

h

c
c

c

which are called, respectively, Holling’s type I, II, and III (see figure 1.9). The
constant c is the maximum per capita consumption rate and the parameter h is the
half-saturation constant or the value of N which gives half the per capita con-
sumption rate /2c .

Type I functional response is used in the Lotka–Volterra predator–prey model. It
corresponds to a linear increase in intake rate with food density and assumes that the
time needed by the consumer to process a food item is negligible, or that consuming
food does not interfere with searching for food.

On the other hand, type II and III functional responses, are characterized by a
decelerating intake rate, which follows from the assumption that the consumer is
limited by its capacity to process food. Type II functional response describes the
observed behavior of insects and parasitoids, as well as modelling microbial growth
rates in a limiting nutrient environment, which is known as the Monod equation
(Monod 1949). This functional response is also termed the Michaelis–Menten (1913)
equation in the context of enzymatic reactions. Type III functional response is
similar to type II in that at high levels of prey density, saturation occurs. But it has
an inflection point when concavity changes. So, first at low prey density the rate of
prey capture accelerates, and then it decreases with increasing prey density. This
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Figure 1.9. Holling type I, II and III response functions.
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‘sigmoidal’ behavior has been attributed (Real 1977) to the existence of ‘learning
behavior’ in the predator population. That is, predators learn more specialized
techniques for hunting or focusing their search in particular places within the
environment. Type III works well in general for vertebrates. For example, Holling
(1959) identified this mechanism in deer mice feeding on sawflies. At low numbers of
sawfly cocoons per acre, deer mice especially experienced exponential growth in
terms of the number of cocoons consumed per individual as the density of cocoons
increased, until a saturation point was reached.

The equation for predator dynamics can take different forms. For example,

β= −dP
dt

PR N P b( ) , (1.40 )d

where β, as before, represents the conversion efficiency of prey biomass into predator
biomass.

However, there are several other possible choices for the predator equation. For
example, in the so-called Holling–Tanner model (Tanner 1975) the predator
equations are:

= − −
+


dN
dt

N
N N

N
P a1 (1.40 )⎜ ⎟⎛

⎝
⎞
⎠K h

r
c

η= − 
dP
dt

P
P
N

b1 . (1.40 )⎜ ⎟⎛
⎝

⎞
⎠s

It turns out that the above modified Lotka–Volterra predator–prey equations with
functional responses of Holling type II or III exhibit stable limit cycle oscillations
(see exercises 1.10 and 1.11). A limit cycle solution is a closed trajectory in the
predator–prey space which is not a member of a continuous family of closed
trajectories such as the solutions of the original Lotka–Volterra predator–prey
depicted in figure 1.6. Rather, it is an isolated periodic orbit (the thick closed curve
shown in figure 1.10), such that any small perturbation from this trajectory decays to
zero. This limit cycle persists for a range of parameter values. And, its name is
because it also attracts orbits that occur at nearby initial conditions, as shown in
figure 1.10 for the Holling–Tanner model. For two different initial conditions, one
inside and the other outside the limit cycle, the phase trajectories spiral into it (see
exercise 1.11). In the application chapter companion to this chapter we will consider
a modified Lotka–Volterra predator–prey model with a variable carrying capacity
and a Holling type III consumption to model extensive livestock farming.

1.4 The Lotka–Volterra competition equations for a pair of species
1.4.1 A descriptive or phenomenological model

Lotka (1925) and Volterra (1926) independently proposed the simplest dynamical
system for modelling two-species competition using extensions of the logistic
equation. The Lotka–Volterra competition model is an interference competition
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model: two species are assumed to diminish each other’s per capita growth rate by
direct interference. But the model does not specify either the limiting resource(s) the
two species are competing for (nutrients, light, shelter, nesting sites, whatever), or
the mechanism of competition. Thus it is a descriptive or phenomenological model of
competition rather than a mechanistic model.

We begin by assuming that two species, with populations densities N1 and N2,
each grow logistically in the absence of the other. Each species has a per capita
growth rate that decreases linearly with population size,

α= − +dN t
dt

N t
N t N t

a
( )

( ) 1
( ) ( )

, (1.42 )1
1 1

1 12 2

1

⎛
⎝⎜

⎞
⎠⎟K

r

α= − +dN t
dt

N t
N t N t

b
( )

( ) 1
( ) ( )

, (1.42 )2
2 2

2 21 1

2

⎛
⎝⎜

⎞
⎠⎟K

r

where the competition coefficients αij are positive parameters measuring the per
capita effect of species j on the abundance of species i; all other parameters are as
before, except that subscripts indicate the particular species referred to.

1.4.2 Stable equilibrium: competitive exclusion or species coexistence?

To understand the dynamics and equilibria of this model, let us start by finding the
nullclines. Both the nullclines and the equilibrium solutions are found by setting
either the Ni ir terms or the α− −N N[1 ( )/ ]i ij j iK terms equal 0. The nullclines for N1

are:

=N a0 (1.43 )1

and

Figure 1.10. Limit cycle for the Holling–Tanner model, i.e. η= −dP dt N p N/ (1 / )s for the predator and with
parameters given by = 1r , = 7K , = 6/7c , = 1h , = 0.2s , η = 0.5.
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α= −N N b(1.43 )1 1 12 2K

Likewise, the nullclines for N2 are:

=N c0 (1.43 )2

and

α= −N N d(1.43 )2 2 21 1K

As with predator–prey models, the N1 and N2 axes are the ‘extinction’ nullclines for
the other species. The N1 nullcline (1.43b) intersects the N1-axis at 1K and intersects
the N2-axis at α/1 12K . Similarly, the N2 nullcline (1.43d) intersects the N1-axis at

α/2 21K and the N2-axis at 2K . One of these nullclines may lie entirely above the other
(figures 1.11(a) and (b)), and it is reasonable to expect that the first will always
outcompete the other and drive the other to extinction. Alternatively, these two
zero-growth isoclines may cross. Thus, there are four cases, depending on the
relative positions of the horizontal and vertical intercepts of these two nullclines in
the first quadrant (remember population densities must be positive). Each of the four
cases corresponds to a qualitatively different phase portrait and is depicted in a
separate panel in figure 1.11. Let us consider each phase portrait in turn, the
corresponding equilibria and their stability (in exercise 1.13 we check the qualitative
results obtained by this graphical analysis by solving numerically equations (1.42)):

I. If each intercept of the nullcline (1.43d), α=N /1 2 21K and =N2 2K , is
greater than the corresponding intercept of that for (1.43b), =N1 1K and

α=N /2 1 12K , (figure 1.11(a)) i.e. α >/2 21 1K K and α> /2 1 12K K , which
implies that

α > <a a/ , / (1.44 )12 1 2 21 2 1K K K K

N2 excludes N1. Indeed, if species 2 has a relatively large negative effect on
species 1 and species 1 has a relatively small negative effect on species 2, an
expected outcome is that species 1 will go extinct while species 2 will
approach its carrying capacity 2K . Therefore, it appears that *N1 = 0,

=*N2 2K or (0, K2), indicated as a black circle in figure 1.11(a), is a
stable equilibrium point under conditions (1.44a). Likewise, *N1 = 0, *N2 = 0
or (0, 0), indicated as a white circle, appears as an unstable equilibrium
point.

II. If each intercept of the nullcline (1.43b), =N1 1K and α=N /2 1 12K , is greater
than the corresponding intercept of that for (1.43d), α=N /1 2 21K and

=N2 2K , (figure 1.11(b)), i.e. α> /1 2 21K K and α >/1 12 2K K , which implies
that

α > <a b/ , / (1.44 )12 1 2 21 2 1K K K K

N1 excludes N2. That is, species 2 will go extinct while species 1 will
approach its carrying capacity 1K . Therefore, it appears that =*N1 1K ,

*N2 = 0 is a stable equilibrium point, indicated as a black circle in
figure 1.11(b), is a stable equilibrium point under conditions (1.44b).
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Again, *N1 = 0, *N2 = 0 or (0, 0), indicated as a white circle, appears as an
unstable equilibrium point. Notice that the reversing of inequalities implies
a reversing of the competitive outcome.

III. If the two nullclines cross in such a way that α> /1 2 21K K and α> /2 1 12K K ,
which implies that

α > <a c/ , / (1.44 )12 1 2 21 2 1K K K K

i.e. both species are strong competitors against the other, then an examina-
tion of the vector field of figure 1.11(c) shows that either species can displace
the other to extinction, depending on the initial conditions. That is, the two
equilibria ( , 0)1K and (0, )2K , corresponding to the exclusion of one or the
other species, are now both stable nodes (figure 1.11(c)). It is apparent that
the species which is initially most abundant will always displace the other.
The intersection of the nullclines is therefore a saddle-node: it will be
approached only if the system initially lies on the line dividing the two
regions of local stability of ( , 0)1K and (0, )2K . This line is called a
separatrix (see Glossary) since it separates the two regions. Except for
perturbations exactly on the separatrix, any perturbation away from the
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Figure 1.11. Schematic representation of the four possible phase portraits for the competition Lotka–Volterra
equations (1.42) depicting vector fields at the different regions delimited by the nullclines of (dashed line for
species 1 and filled line for species 2). Stable equilibria are denoted by filled black circles, unstable equilibria by
empty circles and saddle points by half filled circles. (a) and (b) When one nullcline lies completely above the
other in the first quadrant, the equilibria are stable monocultures. (c) Strong competition results in
stable monocultures of either species. (d) Weak competition results in stable coexistence. Adapted from
Pastor 2008, with permission from John Wiley & Sons.
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coexistence equilibrium will be attracted to the nearest monoculture
equilibrium.

IV. Finally, if both species are weak competitors as defined by inequalities

α > <a d/ , / , (1.44 )12 1 2 21 2 1K K K K

the vector field of figure 1.11(d) now shows that once trajectories arrive in
the triangular regions between the two nullclines, the vectors point to the
coexistence equilibrium, which appears to be stable to perturbations away
from it in any direction. In other words, the equilibria ( , 0)1K and (0, )2K
are now unstable saddle points and trajectories are drawn towards a

stable node in the interior of the first quadrant at α
α α

α
α α

−
−

−
−( ),

1 1
1 12 2

12 21

2 21 1

12 21

K K K K .

Thus the four possible equilibria are:

= =* *N N a0 (1.45 )1 2

= =* *N N b, 0 (1.45 )1 1 2K

= =* *N N c0, (1.45 )1 2 2K

α
α α

α
α α

= −
−

= −
−

* *N N d
1

,
1

(1.45 )1
1 12 2

12 21
2

2 21 1

12 21

K K K K

The above four possible competitive situations, defined by the relative
positions of the nullclines, are summarized in table 1.1.

It is enlightening to nondimensionalize the Lotka–Volterra competition model by
writing, using relative yields =y N /i i iK (the species yield in mixture normalized by its
yield in monoculture), as

Table 1.1. Summary of effects of relative competitive ability on the outcome of competition between two
species, equilibria and their stability.

Effect of species 2 on species 1

Effect of species 1 on
species 2

Weak: α12 < K1/Κ2 Strong: α12 > K1/Κ2

Weak: α21 < K2/Κ1 Coexistence Species 2 always displaces species 1,
equilibrium at

α
α α

α
α α

−
−

−
−( ),

1 1
1 12 2

12 21

2 21 1

12 21

K K K K

equilibrium at (0, K2)

Strong: α21 > K2/Κ1 Species 1 always displaces
species 2,

Winner depends on initial conditions,

equilibrium at (K1, 0) if N1(0) > N2(0), equilibrium at (K1, 0)
if N1(0) < N2(0), equilibrium at (0, K2)
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τ
τ

τ τ τ= − +
dy

d
y y y a

( )
( )(1 ( ) ( )), (1.46 )1

1 1 12 2a

τ
τ

ρ τ τ τ= − +
dy

d
y y y b

( )
( )(1 ( ) ( )), (1.46 )2

2 1 12 2a

where τ = t1r , ρ = /1 2r r , and the ija denote the interspecific interaction coefficients in
terms of these relative yields, defined as α= /ij ij j iK Ka (see exercise 1.14).

Notice that in terms of these new interspecific interaction coefficients the
condition separating weak from strong competition of species j over species i
becomes = 1ija , i.e.

<
>

j i

j i
if

1 weak competition of species over species

1 strong competition of species over species
ij

ij

⎧⎨⎩
a
a

Since the intraspecific competition term is taken = 1 (to recover the logistic equation)
we can conclude form table 1.1 that whenever at least one of the two interspecific
effects is strong, i.e. stronger than intraspecific competition, we end up with
competitive exclusion of one species. Only in case IV, where both interspecific effects
were weak relative to intraspecific effects, did the two competing species coexist. This
forms the basis for Gause’s Principle (Gause 1934) aka the Principle of Competitive
Exclusion (Hardin 1960). This principle states that, two species competing for the
same ecological niche cannot coexist. This leads either to the extinction of the weaker
competitor or to an evolutionary or behavioral shift toward a different ecological
niche. Thus it begs the question: just how similar can the two niches be in order that
the two species manage to coexist? We will revisit this question in the second part of
this book when dealing with niche theory.

1.4.3 Transforming the competition model into a mechanistic model

As we said, the Lotka–Volterra competition equations are a phenomenological
approach for the population dynamics of competition since they describe the process
of competition by the rather abstract parameters of competition coefficients and
carrying capacity. Therefore, these equations have limited ability to explore how the
outcomes of competition might change in environments that differ in, for example,
the availability of different resources or among species that differ in the use of these
resources.

The descriptive Lotka–Volterra model can be transformed into a mechanistic
model by explicitly introducing resources as population variables which are
consumed or utilized by the two species whose competition we want to model.
That is, we explicitly model the dynamics of the resources for which competition
occurs and allow species to interact solely through their consumption of shared
resources by using the Lotka–Volterra predator–prey equations. In this way we can
express the competition coefficients and carrying capacities in terms of rates of
utilization and renewal of resources. Hence, imagine two populations N1 and N2
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(say of herbivores) consuming one resource R (e.g. grass); we can begin by writing
the resource equation:

= − − −dR
dt

R
R

N N a1 , (1.47 )1 1 2 2⎜ ⎟⎛
⎝

⎞
⎠k

r b b

where k is the carrying capacity of the resource and all the other parameters are
defined as for equation (1.25a): r denotes, as usual, the growth rate of the prey
species in the absence of interaction with the predator species, the parameter

= .i ic r b is a per-capita consumption rate of resource by species i. Now we can
write the corresponding dynamical equations for N1 and N2 as if they were predators
governed by equation (1.25b):

= −dN
dt

N R b( ), (1.47 )1
1 1 1a d

= −dN
dt

N R c( ). (1.47 )2
2 2 2a d

Hence, in essence, the model describes a simple food web. We now assume that the
dynamics of the resource is much more rapid compared to that of the consumer,
such that we can set the derivative of equation (1.47a) equal to zero, solve for the
equilibrium value of R:

= − −*R N N(1 ) , (1.48)1 1 2 2 kb b

and approximate the consumer dynamics at any particular value of N1 and N2 by
simply substituting R* in place of R in equations (1.47b) and (1.47c). Thus we obtain

= − − −dN
dt

N N N a( ), (1.49 )1
1 1 1 1 1 1 1 2 2k k ka d a b a b

= − − −dN
dt

N N N b( ). (1.49 )2
2 2 2 2 1 1 2 2 2k k ka d a b a b

By rearranging we can write equations (1.49a) and (1.49b) as:

= − −
−

−
−

dN
dt

N N N a( ) 1 , (1.50 )1
1 1 1

1 1

1 1
1

1 2

1 1
2

⎛
⎝⎜

⎞
⎠⎟k

k
k

k
k

a d
a b

a d
a b

a d

= − −
−

−
−

dN
dt

N N N b( ) 1 . (1.50 )2
2 2 2

1 1

2 2
1

1 2

2 2
2

⎛
⎝⎜

⎞
⎠⎟k

k
k

k
k

a d
a b

a d
a b

a d

Hence, identifying coefficients with equations (1.42a) and (1.42b) we can express
parameters ir and iK in terms of the mechanistic parameters ia , ib , id and h as :

= − a, (1.51 )i i ikr a d
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= −
b(1.51 )i

i i

i i
K

k
k

a d
a b

α = c. (1.51 )ij
j

i

b
b

Notice that:
(a) As expected, equation (1.51a) tells us that the net growth rate of a species, ir ,

grows with its predation rate, ia , and with the carrying capacity of the
resource, k (and of course decreases with its death rate).

(b) There is a proportionality relationship between the net growth rate of a
species, ir , and its carrying capacity, iK , since the numerator of equation
(1.51b) is ir . Equation (1.51b) also tells us that, when the death rate of a
species, id , is negligible with respect to the product i ka , its carrying
capacity, iK , is inversely proportional to its per-capita consumption rate
of resource, ib .

(c) The competition coefficients αijs represent the use of resources by the
competing species j relative to the use of resources by the species whose
dynamics are being considered i. It is important to emphasize that they do
not represent the absolute intensity of competition but are rather a ratio of
the intensity of interspecific to intraspecific competition.

Remark. Equations (1.47) dealt with a single resource. However, interspecific
competition is almost never for a single resource. Indeed, by virtue of the principle
of Competitive Exclusion, most ecologists think that two species competing for a
single resource cannot persist together forever. MacArthur (1972) proposed a
mechanistic model of two species consuming two distinct resources, in terms of
predator–prey equations, that overcomes this problem. Results become algebraically
more cumbersome.

1.5 The Lotka–Volterra equations for two mutualist species
To complete the description of elementary interactions between species in this
section we consider mutualisms, i.e. reciprocally positive interactions between
species. Other kinds of beneficial associations of at least one species, like commens-
alism (0/+ interaction), can be considered as a limiting case of mutualism (likewise,
the amensalism −/0 interaction can be thought as a limiting case of prey–predator
interaction).

Mutualisms are ubiquitous in nature. Prominent examples include most vascular
plants engaged in mutualistic interactions with mycorrhizal fungi, the association of
Rhizobium bacteria with leguminous plants, and the diverse community of bacteria
in all mammalian guts.

There are two broad types of mutualism, facultative and obligate. Facultative
mutualists can live independently of each other, the mutualism is non-essential but
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the growth of each species is enhanced in the presence of each other. Examples of
facultative mutualism are the fish-cleaning mutualism, one fish (the cleaner) removes
and eats parasites from the surface of the other (the client) or seed dispersal
mutualism, such as the association between the Clark’s nutcracker and whitebark
pine. Obligate mutualism is essential for both parties, the two partners cannot
survive without each other. Ruminants and the bacteria in their digestive tracts that
actually digest the cellulose in the animal’s food, is an example of obligate
mutualists.

A candidate for a mutualism model results from inverting the sign of the
interspecific competition coefficients of the Lotka–Volterra competition equations
(1.42), from negative to positive. That is:

α α= − + >dN t
dt

N t
N t N t

a
( )

( )
( ) ( )

, ( 0) (1.52 )1
1 1

1 1 12 2

1
12

⎛
⎝⎜

⎞
⎠⎟

K
K

r

α α= − + >dN t
dt

N t
N t N t

b
( )

( )
( ) ( )

, ( 0). (1.52 )2
2 2

2 2 21 1

2
21

⎛
⎝⎜

⎞
⎠⎟

K
K

r

We will see in a moment that equations (1.52), with all their quantities positive, serve
to describe mutualism between two facultative species.

Proceeding in a completely similar way as we did for the competition model, let us
calculate the nullclines. The nullclines for N1 are:

=N a0 (1.53 )1

and α= +N N1 1 12 2K , or equivalently

= −N a N a b(1/ ) / . (1.53 )2 12 1 1 12K

Similarly, the nullclines for N2 are:

=N c0 (1.53 )2

α= +N N d. (1.53 )2 21 1 2K

These are identical to the nullclines of the competition equations, except that they
have a positive slope (figure 1.12). Notice first that equations (1.53b) and (1.53d)
imply that increasing the density of species j, the mutualist of species i, supports an
increase in Ni above its carrying capacity (defined as its equilibrium density when
alone). And, second that if species j disappears each species converges to its carrying
capacity. Therefore, according to our definition, equations (1.52) describe a
facultative mutualism (species do not collapse when the mutualist species
disappears).

The equilibria are obtained as usual by intersecting the nullclines and are:

= =* *N N a0 (1.54 )1 2

= =* *N N b, 0 (1.54 )1 1 2K
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= =* *N N c0, (1.54 )1 2 2K

α
α α

α
α α

= +
−

= +
−

* *N N d
1

,
1

(1.54 )1
1 12 2

12 21
2

2 21 1

12 21

K K K K

Notice they become identical to the equilibria of the competition model, (equations
(1.45)), by replacing αij by −αij in the coexistence equilibrium (equation (1.54d)).

In the same way as we defined weak and strong competition, let us now define
weak and strong mutualism as:

α α
α α

<
>

1 : weak mutualism
1 : strong mutualism

12 21

12 21

⎧⎨⎩
Since all parameters, the carrying capacities and the interaction coefficients, are
positive, it is straightforward to show analytically that the coexistence equilibrium
(1.54d) is only possible for weak mutualism. (The strong mutualism condition
implies that the equilibrium densities would be negative!) The same can be shown
geometrically. The weak mutualism condition implies that the slope of the
nullcline (1.53b) for N1, equal to 1/α12, is always larger than the slope of the
nullcline (1.53d) for N2, equal to 1/α21. Consequently, both nullclines will intersect
in the first quadrant (figure 1.13(a)). Furthermore, the vector field tells us that for
weak mutualism this coexistence equilibrium is stable. Remember that the same
happened for two competing species: the coexistence equilibrium was stable only
for weak competition. The difference is that populations are larger, rather than
smaller, than their respective carrying capacities (figure 1.13(a)). In contrast, the
strong mutualism condition implies that the slope of the nullcline (1.53b) for N1 is
always smaller than the slope of the nullcline (1.53d) for N2 and thus both
nullclines will not intersect in the first quadrant (figure 1.13(b)). Rather, under
strong mutualism, the vector field indicates that both populations increase
indefinitely (figure 1.13(b)).

N2

K1

K2

N2

N1

1/a12

a12

N1

Figure 1.12. Nullclines of the Lotka–Volterra mutualism model equations (1.52) and a schematic representa-
tion of the vector field. Left: nullclines for N1, horizontal axis and dashed line, with slope 1/α12. Right:
nullclines for N2, vertical axis and filled line with their slope α21. Adapted from Pastor 2008, with permission
from John Wiley & Sons.

Ecological Modelling and Ecophysics

1-33



In other words, for coexistence to be possible, the equilibrium solution must lie in
the first quadrant. And, this is only possible for facultative mutualism if α12α21 < 1,
which is weak mutualism. This means that the positive feedback between the two
species is not strong enough to result in destabilizing positive feedback. On the other
hand, in the case of strong mutualism α12α21 > 1 the nullclines in the first quadrant
diverge from each other and the coexistence equilibrium is in the third quadrant
(both *N1 and *N2 are negative). So, we conclude that for two facultative mutualists to
coexist, mutualism must be weak.

What about equations describing obligate mutualism? Indeed, figure 1.13(b) gives
us a clue about how to modify equations (1.52) to obtain a coexistence equilibrium
for obligate mutualism. Notice that if we move the nullcline of species 1 parallel to
itself toward the left until the intersection point with the horizontal axis becomes
− 1K and the nullcline of species 2 parallel to itself downward until the intersection
point with the vertical axis becomes − 2K , the two nullclines would intersect in the
first quadrant (figure 1.14(a)). This is equivalent to making the two carrying
capacities negative. Obviously one cannot have a negative carrying capacity. But
a negative carrying capacity in the equations can be interpreted simply as requiring
that there is a minimal number of individuals of the mutualist partner that can

N2

K2

N2

K2

K1 N1 K1 N1

Weak Strong

(a) (b)

Figure 1.13. Nullclines, equilibria with their stability (a stable equilibrium is denoted by a filled black circle
and an unstable one by an open white circle) and a schematic representation of the vector field for facultative
mutualism. (a) Weak mutualism. (b) Strong mutualism. Adapted from Pastor 2008, with permission from John
Wiley & Sons.

Separatrix

N1 N1

Strong Weak

N2 N2

K1

K2

K1

K2
(a) (b)

Figure 1.14. Nullclines, equilibria with their stability (stable equilibria denoted by a filled black circle and an
unstable one by an open white circle) and a schematic representation of the vector field for obligate mutualism.
(a) Strong mutualism. (b) Weak mutualism. Adapted from Pastor 2008, with permission from John Wiley &
Sons.
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actually initiate the mutualism process and result in increasing population numbers.
Replacing 1K and 2K by − 1K and − 2K equations (1.52) transform into:

α

α

=
− − +

−

= −
− − +

dN t
dt

N t
N t N t

N t
N t N t

( )
( )

( ) ( )

( )
( ) ( )

.

i
i i

i i ij j

i

i i
i i ij j

i

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

K

K

K

K

r

r

We are almost done. As we just mentioned, we want that species i grows if the
density of its mutualist species j is large enough. The above equation would describe
this provided ir is also negative (this is because the minus sign in front of ir and the
fact that the bracketed factor is positive for large values of Nj). Thus, in the same
way that facultative mutualism has parameters > 01r , > 02r , > 01K , > 02K , let us
define obligate mutualism as having parameters ′ < 01r , ′ < 02r , ′ < 01K , ′ < 02K .
Therefore the equations for obligate mutualism can be written as:

α α= ′ ′ − +
′

> ′ < ′ <dN t
dt

N t
N t N t

a
( )

( )
( ) ( )

, ( 0, 0, 0) (1.55 )1
1 1

1 1 12 2

1
12 1 1

⎛
⎝⎜

⎞
⎠⎟

K
K

Kr r

α α= ′ ′ − +
′

> ′ < ′ <dN t
dt

N t
N t N t

b
( )

( )
( ) ( )

, ( 0, 0, 0). (1.55 )2
2 2

2 2 21 1

2
21 2 2

⎛
⎝⎜

⎞
⎠⎟

K
K

Kr r

They have precisely the same form as the original mutualism equations, with the
intrinsic rates of increase and with the carrying capacities both negative (we use the
primes for stressing this). And, since the quotient ′ ′/i iKr is positive, they tell us that in
the obligate case, the mutualism coefficients must be large enough to make the
growth of each species positive in the presence of the other species, but each species
on its own will not have positive equilibria.

Could two obligate mutualists coexist? As we have observed, for a strong obligate
mutualism the nullclines intersect at one point in the first quadrant. But, is this
coexistence equilibrium stable? The vector field for the strong facultative mutualism
indicates that the coexistence equilibrium is a semistable saddle-point (figure 1.14(a)).
In turn, the weak obligate mutualism has an equilibrium solution in the third quadrant
because its nullclines diverge in the first quadrant.

We can verify analytically the stability of the coexistence equilibrium both for two
weak facultative mutualists and for two strong obligate mutualists (exercise 1.15) by
examining the stability of the Jacobian matrix evaluated at each of these coexistence
points (see appendix I).

So far we have discussed symmetrical relationships, i.e. either facultative–
facultative or obligate–obligate mutualisms. What about asymmetrical faculta-
tive–obligate associations? For example, if N1 is the facultative species
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> >( 0, 0)1 1Kr and N2 the obligate species ′ < ′ <( 0, 0)2 2Kr the coexistence
equilibrium becomes:

α
α α

α
α α

= + ′
−

= ′ +
−

* *N N
1

,
1

. (1.56)1
1 12 2

12 21
2

2 21 1

12 21

K K K K

For weak mutualism the denominator of equation (1.56) is positive and therefore a
coexistence equilibrium exists in the first quadrant provided both numerators are
also positive, i.e. α α> − ′ > − ′,1 12 2 12 1 2K K K K . The stability of non symmetrical
cases can be easily derived by an analysis similar to the one we performed for the
symmetrical cases9. The outcome for all cases of mutualism, both symmetrical and
asymmetrical, are summarized in table 1.2.

Exercises
Exercise 1.1

Fibonacci numbers and the Golden Ratio
(A) A certain man had one pair of rabbits together in a certain enclosed place.

How many pairs of rabbits can be created from the pair in one year if we
suppose that each month each pair begets a new pair, which on the second
month on becomes productive?

(B) Show that if we call Fn the number of rabbits at month n, the following
relation holds: Fn+2 = Fn+1 + Fn, for n = 0, 1, 2,….

(C) To solve the above recurrence equation try Fn = λn, where λ is a constant
you have to compute.

(D) Plot Fn, versus n.

9We refer the reader interested in these non symmetrical mutualistic associations to Vandermeer and Boucher
(1978) or Pastor (2008).

Table 1.2. Summary of the possibility and stability of coexistence for different mutualistic associations, both
weak and strong, and either symmetrical or not.

Intensity Species 1
Species 2

Facultative Obligate

Weak
α12α21 <1

Facultative Stable node Stable node if
α α> − ′ > − ′,1 12 2 12 1 2K K K K

Obligate Stable node if
α α> − ′ > − ′,12 2 1 2 12 1K K K K

Impossible

Strong
α12α21 >1

Facultative Impossible Unstable
Obligate Unstable Saddle node
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Exercise 1.2

Obtaining the logistic parameters by least square regression method.
Using the least square regression method obtain from the data below (Gause

1932) the carrying capacityK , and the growth rate r as well as the initial volume V0.

Time (h) Yeast vol (ml)

6 0.37
7.5 1.63
15 6.2
16 8.87
24 10.66
29 12.5
31.5 12.6
33 12.9
40 13.27
44 12.77
48 12.87
51.5 12.9

Exercise 1.3

(from Hale and McCarthy 2005).
Let us consider the population of white-tailed deer in the state of Kentucky. The

Kentucky Department of Fish and Wildlife Resources (KDFWR) sets guidelines
for hunting and fishing in the state, and it reported an estimate of 900 000 deer
prior to the hunting season of 2004. Johnson (2003) notes: ‘A deer population that
has plenty to eat and is not hunted by humans or other predators will double every
three years.’ This corresponds to a rate of increase r = ln(2)/3 = 0.2311. (This
assumes—with plentiful food supply and no predation—that the population grows
exponentially, which is reasonable, at least in the short term.) The KDFWR also
reports deer densities for 32 counties in Kentucky, the average of which is
approximately 27 deer per square mile. Suppose this is the deer density for the
whole state (39 732 square miles). The carrying capacityK is 39 732 sq. mi. × 27
deer/sq. mi. or 1 072 764 deer.

Investigate if the above data are consistent with the logistic growth model.

Exercise 1.4

Consumption by fixed quota for a population with logistic growth.
Consider the logistic model with fixed consumption per share:

= − −dX
dt

X
X

C1 ,⎜ ⎟⎛
⎝

⎞
⎠r

K

Ecological Modelling and Ecophysics

1-37



(A) Calculate the equilibria and analyze their stability using pencil and paper.
(B) Write a script (in MATLAB, Fortran, R, etc) to solve this differential

equation (for example using the Runge–Kutta second order method) and
compute X /K for = 1r and =C /2rK , =C /4rK and =C /8rK with the
initial condition =X (0) /2K , and =X (0) 2K .

(C) Solve the equation using some ODE integrator package.

Exercise 1.5

Calculation of Hmin for Lotka–Volterra predator–prey phase trajectories.
Equation (1.30) is obeyed by the family of phase trajectories generated by the

Lotka–Volterra predator–prey equations (1.27a) and (1.27b), with one phase
trajectory for each value of H. Show that the minimum possible value for H is
Hmin = 1 + α and it occurs at the singular point x = y = 1.

Exercise 1.6

Graphical solution of equation (1.30) for the phase trajectories to conclude the
singular point is a center.

We can solve equation (1.30) graphically by considering the two functions

= =
α

α
−

−
z ye z

e
x

andy
x

1 2

(A) Plot z1 versus y and z2 versus x.
(B) Verify that for a given value of x, there are either two, one, or zero values

of y such that z1(y) = z2(x) and vice versa, for a given value of y, there are
either two, one, or zero values of x such that z1(y) = z2(x). The only one of
the three scenarios depicted in figure 1.5 that has no more than two points
of intersection between each orbit and each vertical line is the center
scenario. We conclude that the nontrivial equilibrium is a center
surrounded by a family of periodic orbits, and not a stable or
unstable focus.

Exercise 1.7

Numerical solution of the dimensional Lotka–Volterra predator–prey.
A couple of hints to explore numerically the Lotka–Volterra predator–prey

dimensional model:
1. There are four parameters to choose , , ,a b c d . The linear coefficients for the

prey and the predator, a and d , respectively, should be chosen between 1 and
10 and <a d (try different values and see which one convinces you most).

2. You can use some ODE solver package, for example the MATLAB ODE
functions.
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Exercise 1.8

Numerical solution of the Lotka–Volterra predator–prey non dimensional model.
By a change of variables =x N( / )c d and =y P( / )b a , the Lotka–Volterra

predator–prey equations can be rewritten in terms of a single parameter α = /d a.
(A) Solve this system of equations for different initial conditions. (You can use

some ODE solver package or write your own script implementing Runge–
Kutta method.)

(B) Graph the vector diagram (the vector field at each point has by components
dx/dt and dy/dt) in the phase plane x–y.

Exercise 1.9

Lynx and hares.
Assume initial populations of 100 lynx and 5000 hares and you want to predict

what will happen to them in the next 10 years. Write a program in MATLAB to
solve the corresponding Lotka–Volterra differential equations.

Exercise 1.10

Realistic Lotka–Volterra predator–prey model.
(a) Show that a simple inclusion of density-dependence in the prey population

replacing the prey equation by = − −N NP(1 )dN
dt

N
K

r c is enough to shift
the behavior of the model from neutral stability to local stability about the
equilibrium point.

(b) Now modify both equations by

β

= − −
+

=
+

−

dN
dt

N
N N

N
P

dP
dt

N
N

P P

1
2

2 2

2 2

⎜ ⎟⎛
⎝

⎞
⎠K h

h

r c

c d

Solve this system of equations for = 0.02r , = × −6.2 10 4c , = 2.3h and
β = 81 (in some appropriate system of units) and show that there appear
stable limit cycle oscillations.

Exercise 1.11

Holling–Tanner model.
Solve the Holling–Tanner model (Tanner 1975)

η

= − −
+

= −

dN
dt

N
N N

N
P

dP
dt

P
P
N

1

1 .

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

K h
r

c

s

with parameters given by = 1r , = 7K , = 6/7c , = 1h , = 0.2s , η = 0.5 and reproduce
the figure 1.10.
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Exercise 1.12

From one second order differential equation to two first order differential equations.
The equation governing the dynamics of a mass m attached to a linear spring of

constant k is the second order equation = −md x dt x/2 2 k for small displacements x
with respect to the equilibrium position (when the spring is neither compressed nor
stretched). Introducing the new variable y = dx/dt write the two-dimensional system
of first order equations for the variables x and y.

Exercise 1.13

Lotka–Volterra competition (LVC) model for two species
The Lotka–Volterra model for competition between 2 species is given by equation

(1.42).
(A) Check that this system has the four equilibria of equations (1.45a)–(1.45d).
(B) Write a script in MATLAB or Fortran or R, etc, to solve the system of two

LVC equations.
(C) Graph for = = 101 2K K , α12 = α21 = 0.5 the trajectories of the system in

the phase plane X1–X2 starting from different initial conditions along with
the velocity field.

(D) Repeat (C) for = = 101 2K K , α12 = α21 = 2. What difference do you find
with respect to (C) and how do you explain it?

Exercise 1.14

Non dimensional Lotka–Volterra competition (LVC) model for two species
Check that the LVC system can be re-written in terms of non dimensional

variables as:

τ
τ

τ τ τ= − +
dy

d
y y y a

( )
( )(1 ( ) ( )), (1.57 )1

1 1 12 2a

τ
τ

ρ τ τ τ= − +
dy

d
y y y b

( )
( )(1 ( ) ( )), (1.57 )2

2 1 12 2a

where =y N /i i iK , τ = t1r , ρ = /1 2r r , and the ija denote the interspecific interaction
coefficients in terms of these relative yields, defined as α= /ij ij j iK Ka .

Exercise 1.15

Stability of the coexistence equilibria for two mutualist species.
(A) Evaluate the Jacobian matrix at the coexistence equilibrium of two

mutualist species coexJJ .
(B) The sign of the trace tr( )coexJJ and of the determinant det ( )coexJJ of this

matrix allow to determine the stability of the equilibrium (see appendix I):
for stability, the trace must be negative and the determinant positive.
Compute tr( )coexJJ and det ( )coexJJ .
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(C) Show that for the weak facultative–facultative mutualism the coexistence
equilibrium is a stable node and that for the strong obligate–obligate
mutualism the coexistence equilibrium is a semistable saddle-node.
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