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Chapter 2

What is measurement uncertainty?

2.1 Introduction
To reduce measurement uncertainties, we must know their properties. In this
chapter, we present various kinds of measurement uncertainties and methods to
reduce them. We also introduce parameters to estimate measurement uncertainties,
which depend on the use of measurements.

2.2 Statistical and systematic uncertainties
When we measure something, there is a question whether it is a real value. The
reliability of measured values can be confirmed by repeating measurements many
times. We will see that measurement results are distributed over a certain limited
area. The uncertainty given by the finite distribution area is called ‘statistical
uncertainty’ as shown in figure 2.1.

We cannot guarantee that the real value is in the area over which the measure-
ment results are distributed. All measurement values can vary according to circum-
stances, and the real values should be defined with a certain condition. If we take
measurements under another circumstance, the measured value may shift from the
defined value. If we know the dependence of the measurements on the circum-
stances, we can make a correction of the measured values by the estimated shift.
Then the uncertainty of the estimated shift becomes another uncertainty, called
‘systematic uncertainty’ as shown in figure 2.1.

More detailed explanations of statistical and systematic uncertainties are pre-
sented in the following subsections.

2.2.1 Statistical uncertainty

Statistical uncertainty is given by the finite broadening of the distribution area of the
measurement results. This broadening can be induced by the temporal fluctuation of
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the circumstances, which can be reduced by stabilizing the circumstances. This
broadening is also induced by the quantum uncertainty principle.

We consider the measurement of a physical value X. The measurement results are
distributed around the real value with the measuring condition Xr. Taking measure-
ment samples X(i) (i = 1 −N), we obtain the average Xave and the standard deviation
σ. When N is large enough, the probability distribution of Xave is approximately
given by (figure 2.2)
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with any distribution of the measurement results (central limit theorem). Therefore,
Xr is estimated to be in the range of

σ= ±X X
N

. (2.2)r ave

The statistic uncertainty is reduced by increasing the number of measurement
samples.

It is not simple to derive the central limit theorem as a general formula [1]. Here,
we derive it using the simplest model by which we get the measurement results Xr + σ
and Xr − σ with the probability of 1/2. Repeating measurement N times, the
probability p(n) to measure n times X0 + σ and (N − n) times X0 + σ is given by
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Figure 2.1. Statistic and systematic uncertainties with the distributions of measurements.
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Here, we consider the Taylor expansion of ln[p(n)] using
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Here, ln[p(n)] at n close to N/2 is approximately given by
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The average of the measurement is given by
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Then the probability of the average of N-sample measurements is given by
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Figure 2.2. Relation between the distributions of measurement results and the probability of the average of
N-measurement samples. The probability of the average of the N-measurement samples is given by a Gaussian
with broadening narrower than that of measurement results with a factor of N1/ .
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2.2.2 Systematic uncertainty

Statistical uncertainty is reduced by averaging many measurement samples.
However, it is possible that all measurement results have a parallel shift from the
real value. This is because all the measured values depend on the circumstance under
which they were taken. It is not always possible to measure the values while
measuring the defined value. Seeing just the measurement results, the shift of the
measured value is the systematic uncertainty. Systematic uncertainty is reduced by
monitoring the circumstance and giving a correction of the estimated shifts. With
this correction, the systematic uncertainty is given by the uncertainty of the
estimated measurement shift.

For example, thermal expansion causes a shift in the length of an object;
therefore, at which temperature (T0) the length is defined should be clarified.
Repeating the measurement with another temperature Tp, the averaged length is
shifted from the defined length (figure 2.3). The systematic uncertainty is reduced by
monitoring Tp and giving a correction by αp(T0 − Tp), but it cannot be zero because
of the uncertainties of Tp and αp.

2.2.3 Uncertainty in atomic transition frequencies

Measurement uncertainty is particularly low with the frequency of electromagnetic
waves absorbed or emitted by atoms or molecules in the gaseous state (atomic,
molecular transition frequencies). Using this characteristic, atomic clocks based on
the atomic transition frequencies were invented after World War II, and the
uncertainty of time and frequency was reduced drastically (chapter 3). However,
atomic transition frequencies also have non-zero measurement uncertainties. Here,
we discuss the factors that contribute to the measurement uncertainties of atomic
transition frequencies.

Figure 2.3. Concept of systematic uncertainty with length measurement. The length should be defined with a
certain temperature T0. Measuring with another temperature Tp, there is a shift of measurement and this gives
a systematic uncertainty. This uncertainty is reduced by monitoring the temperature and giving a correction of
thermal expansion αp(T0 − Tp) (αp: thermal expansion coefficient), but it cannot be zero because of the
uncertainties of Tp and αp.
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Statistical uncertainty is given by the limited interaction time τe between atoms
and electromagnetic waves without the phase jump. The limit of τe is caused by
several things: limited interaction time between atom and electromagnetic wave by
the atomic motion, collision between atoms, or spontaneous emission transition
(transition from a higher energy state to a lower energy state giving fluorescence).
The transition frequency has the uncertainty of the order of δf = 1/2πτe, because the
phase procedure 2πfτe must have the uncertainty of ±1. This relation is derived from
the quantum uncertainty principle between time and energy. With the real transition
frequency of f0, the distribution of the single measurement result is given by
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where Na is the number of atoms, τd is the measurement dead time (time for
preparation or detection), and Tm is the measurement time.

The systematic measurement uncertainty is given by the shift of the measured
atomic transition frequency caused by various things. For example, the electron
orbit in the atom is distorted by the electric or magnetic fields, and the transition
frequencies are shifted. The frequency shift caused by the electric field and the
magnetic field are called Stark and Zeeman shifts, respectively. The Stark shift
cannot be zero because the electric field is applied by the electromagnetic wave for
the probe and by blackbody radiation (radiation of electromagnetic wave from
objects having non-zero temperature). The Zeeman shift also exists because of the
Earth’s magnetic field.

Systematic uncertainty is also given by the relativistic effects as follows (chapter 6).
The motion of atoms (at room temperature on the order of 200–500 m s−1) gives
frequency shifts called quadratic Doppler shifts. The difference in the gravitational
potential also gives the frequency shift called the gravitational red shift (effect of the
theory of general relativity).

The definition for the atomic transition frequency is given by the condition of zero
velocity free from electric and magnetic fields on the geoid plane. Atomic clocks are
based on atomic transition frequencies, where the statistical and systematic
uncertainties are relatively small [2–6]. Atomic laser cooling (chapter 4) made it
possible to reduce the atomic velocity to a few cm s−1, and the quadratic Doppler
shift was reduced significantly. Statistic uncertainty was also reduced since the
development of laser cooling because of the longer interaction time between atoms
and electromagnetic waves. Uncertainty on the order of 10−18 was obtained with
several atomic transition frequencies after correction of the possible frequency shifts.
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2.3 Accuracy and stability
The measurement uncertainty is discussed with regard to accuracy and stability.
Figure 2.4 shows the distributions of measurements with regard to ‘high’ and ‘low’
levels of ‘accuracy’ and ‘stability’. Accuracy indicates the reliability of the final
results after the averaging of many experimental results and correction of measure-
ment shifts induced by various causes. Accuracy can also be high if the difference
between each measurement result is large. To achieve high accuracy, the systematic
uncertainty should be small because the statistical uncertainty can be reduced by
repeating a measurement many times. The accuracy is estimated from the possible
shift of measurements by theoretical calculation or experimental measurement with
different circumstances. Comparison of measurements obtained using different
devices is also performed.

Stability refers to the constancy of each measurement result. The stability can be
high if the measurement results are equally shifted from the real value. During the
repetition of a measurement over a long period, there may be temporal change of the
measurement values induced by changes in the circumstance. Therefore, we
distinguish ‘short-term stability’ and ‘long-term stability’ from the averaging time.
Short-term stability is determined from the statistical uncertainty covering short
measurement times, with which the change of the circumstance is negligibly small.
To achieve high short-term stability with the atomic transition frequency, a narrow
spectrum linewidth (δf in equation (2.9)) and a large number of atoms (Na in
equation (2.9)) are required. With long measurement times, the statistical uncer-
tainty is suppressed, but the influence of the change in conditions (e.g. electric field
and magnetic field) becomes significant. Therefore, long-term stability is determined
by the systematic uncertainty. The standard deviation is generally used for the

Figure 2.4. Schematic of the distribution of measurements with high and low ‘accuracy’ and ‘stability’.

Measurement, Uncertainty and Lasers

2-6



estimation of statistical uncertainty, but it is not useful to include measurements with
a temporal change of circumstance. With the linear drift of measurement value, the
standard deviation is divergent.

Particularly for the estimation of frequency stability, Allan variance is often used
for any averaging time [7]. The Allan variance is given by
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where x(t) denotes the phase at the time t. Here, ∣x(iTa + τ) − x(iTa)∣/τ shows
the average frequency between iTa and iTa + τ. The Allan variance is the variation of

Figure 2.5. Concepts of standard deviation and Allan variance with M = 2 and Ta = τ (equation (2.7)).
Standard deviation is not useful when there is a drift. Allan variance is the variation of the average at various
measurement time periods, which is also useful when there is a drift.

Figure 2.6. Dependence of the Allan variance on the averaging time τ considering the white frequency noise,
flicker frequency noise, and linear frequency drift.
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the averaged frequency for the period of τ at various time periods. Figure 2.5 shows
the case with M = 2 and Ta = τ. Figure 2.6 shows the dependence of the Allan
variance on τ.

The short-term stability is generally given by the white frequency noise, and the
Allan variance is proportional to τ1/ , as shown with the standard deviation. With
longer τ, the flicker frequency noise (called 1/f noise) is more significant than the
white frequency noise, and the Allan variance is constant with τ. When there is a
linear frequency drift, the Allan variance is proportional to τ with large τ.
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