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Modern Quantum Mechanics and Quantum Information

J S Faulkner

Chapter 8

An alternative reality

8.1 Gazing in wonder
Up to this point, the discussion of the quantum theory in this book has followed the
standard pedagogical practice of laying things out in a calm and methodical fashion,
implying that the discoveries of Einstein, Bohr, Heisenberg, Schrödinger, etc are
part of a predictable evolution. Even so, some readers may have found aspects of
quantum theory to be strange and counterintuitive or, in a word, weird. The position
taken in this chapter is that the reader who finds quantum phenomena to be weird is
wrong in the sense that quantum phenomena are much weirder than anything he or
she could imagine. Some well known experiments are reanalyzed, emphasizing the
aspects that are most difficult to understand. More recent experiments that challenge
the conventional understanding of quantum theory are also described

8.2 The Einstein–Podolsky–Rosen experiment
The Einstein–Podolsky–Rosen (EPR) experiment was described in chapter 1, but
here it is analyzed from a different angle. Suppose two observers, Alice and Bob are
a very long distance from each other. In principle, they could be light years apart.
Suppose Alice has two spin 1/2 particles that are bound into a spin 0 pair

ψ = + − − − +1

2
( ). (8.1)

They are split apart. Alice keeps one particle and sends the other to Bob.
Stern–Gerlach devices were discussed in chapter 1. Assume Alice and Bob have

such devices and both are oriented in the z-direction, (SGz). The experiment is done
N times. The outcomes of their measurements are written as in table 8.1.

Experimentally it will be found that =N N1 2, so the probabilities of these events,
calculated quantum mechanically, are
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2

This experiment appears to show that Alice is communicating the sign of her spin to
Bob faster than the speed of light, because the instant she looks at her data and sees a
ˆ+z( ), she knows Bob has a ˆ−z( ), even if Bob is millions of miles away. The wave
function has collapsed from the one in equation (8.1) to

ψ = + − . (8.3)

The literal interpretation of the wave function, that the particles are actually wave
like, leads to the conclusion that the instantaneous collapse of the wave function
when one observer makes a measurement means ‘stuff’ is moving faster than the
speed of light. The more sophisticated Born picture of the wave function leads to
other difficulties. Einstein believed that it would be manifestly wrong for the EPR
experiment to work because it would violate what he called the locality principle.
The result of an experiment cannot be influenced by an action a long way off. He
proposed the EPR as a gedanken experiment to prove that quantum mechanics is
wrong.

Einstein’s argument has been refuted. The direct proof is that the EPR experiment
can actually be done today and, when it is, it agrees exactly with the orthodox
quantum mechanical prediction. How, then, can Einstein’s arguments that the laws
of locality and relativity are violated be refuted? The answer is that the EPR cannot
be used to send information in the usual sense. In the course of the experiment, Bob
simply has an apparently random list of ∣+〉 and ∣−〉 results. It is only after he and
Alice compare their results, with a signal that is subluminal, that they understand the
correlations.

Although a message cannot be sent with the EPR method, it does have practical
applications. As will be discussed later, it can be used for quantum key distribution.

8.3 Hidden variables
Einstein conceded that his claim that the EPR experiment violates the tenets of
relativity does not hold up, but he still did not like the conclusions. He went back to
an idea that he had proposed when the quantum theory first began to take shape,
called the hidden variables theory. The proposal is that quantum theory is like the
early theories of thermodynamics and fluid dynamics. The mathematics developed
in those areas is very sophisticated and highly predictive of the phenomena that are
observed. However, it is now known that there is an underlying reality and that the

Table 8.1. The Ni in column 1 are the number of times that the measurements described in columns 2 and 3
occur.

Number of occurrences Alice’s measurement Bob’s measurement

N1 ˆ+z( ) ˆ−z( )
N2 ˆ−z( ) ˆ+z( )
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materials being treated as continua are actually made up of atoms and molecules.
The more recent theory of statistical mechanics and molecular dynamics calcu-
lations obtain the same results on the basis of atomic theory. Einstein’s argument is
that Born’s statistical interpretation of the wave function is just a statement of our
ignorance of the underlying physics, and that, later, all quantum phenomena can be
explained on the basis of variables that are presently hidden from us.

The simplest hidden variable explanation of the EPR experiment is that the spin-
zero wave function in equation (8.2) is a fiction. For a reason that is not understood
now, Alice’s electrons must be created in pairs with one having spin up and the other
having spin down. If Alice sends an up electron to Bob, then classical reasoning says
the one she kept is down. Since Alice can’t see which way the electron spin points
before she measures it, statistically the probability she will send Bob an up or down
electron is 0.5.

Although the hidden variable theory described above gives the correct answer for
the EPR experiment, it requires a complete restructuring of classical theory in order
to predict the hidden variable state for the electron pairs. There are still some
physicists who find quantum theory so logically unsatisfying that they have
attempted this. When put into practice, hidden variable theories become extremely
convoluted and most physicists ignore them.

The state described in equation (8.1) is now called an entangled state. In chapter 10 it
will be seen that entangled states are fundamental components in the devices used in
the field called quantum information (QI). They are so important that experimen-
talists have developed numerous practical methods for making entangled states with
photons, electrons, and other things. QI devices are already being used in
cryptography and computing, and a growing number of high tech companies are
selling them. It might be said that entangled states are becoming standard engineer-
ing practice.

It would appear that hidden variable theory is finished, but it is necessary to
understand both sides of the argument because there are some who believe that they
offer something to quantum theory. Papers are still being written that revive some of
the arguments.

8.4 Bell’s inequalities
The physicist John Stewart Bell was a great admirer of Einstein, and found
Einstein’s arguments for hidden variables compelling. He developed theories for
more advanced forms of the EPR experiment with the hope of supporting hidden
variables. His best known attempt is the following.

Suppose Alice and Bob have three Stern–Gerlach devices oriented in three
directions specified by the unit vectors ˆ ˆ ˆa b c, , . Alice and Bob can measure the
spin direction of a particle with any one of these devices. The notation
ˆ + ˆ − ˆ+a b c( , , ) means that, if the observer uses the device with the orientation â
they will see the particle has spin up, if they use their second device that has
orientation b̂ they will find it with spin down, or if they use their third device they
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will find that it has spin up. If the spins are entangled as in equation (8.1), if Alice has
the possibilities ˆ + ˆ − ˆ+a b c( , , ) Bob must have the possibilities ˆ − ˆ + ˆ−a b c( , , ).

The possible observations that Bob and Alice can make and the number of such
observations that will be made if the experiment is repeated many times are given in
the Table 8.2. The number of occurrences for Alice having a given set of possibilities
is hypothetical rather than experimental because it is not possible for her to know the
results of all three experiments. It will be seen that the important properties of the Ni

are only that they exist and are greater than zero. If hidden variables were assumed
to exist, it would in principle be possible to calculate the Ni.

Suppose Alice chooses to use the device that measures in the â direction and Bob
chooses to use the device that measures in the b̂ direction. The probability that they
will both see particles with spin up is ˆ + ˆ +P a b( ; ). By scanning through the table it
is seen that Alice sees ˆ+a at the same time Bob sees ˆ+b only for the occurrences in the
third and fourth row, so

ˆ + ˆ + = +
P

N N
N

a b( ; ) , (8.4)3 4

where

= + + + + + + +N N N N N N N N N . (8.5)1 2 3 4 5 6 7 8

Simply from the fact that >N 0i it is possible to write

+ ⩽ + + + = + + +N N
N

N N N N
N

N N
N

N N
N

, (8.6)3 4 3 4 2 7 4 2 3 7

and again from the table the measurements that are common for Alice and Bob in
rows two and four are ˆ+a and ˆ+c . The common measurements in rows three and
seven are ˆ+c and ˆ+b . It follows that the manipulation in equation (8.6) leads to

ˆ + ˆ + ⩽ ˆ + ˆ + + ˆ + ˆ +P P Pa b a c c b( ; ) ( ; ) ( ; ). (8.7)

Table 8.2. The Ni in column 1 are the number of times that the measurements described in columns 2 and 3
occur.

Number of occurrences Alice’s measurement Bob’s measurement

N1 ˆ + ˆ + ˆ+a b c( , , ) ˆ − ˆ − ˆ−a b c( , , )
N2 ˆ + ˆ + ˆ−a b c( , , ) ˆ − ˆ − ˆ+a b c( , , )
N3 ˆ + ˆ − ˆ+a b c( , , ) ˆ − ˆ + ˆ−a b c( , , )
N4 ˆ + ˆ − ˆ−a b c( , , ) ˆ − ˆ + ˆ+a b c( , , )
N5 ˆ − ˆ + ˆ+a b c( , , ) ˆ + ˆ − ˆ−a b c( , , )
N6 ˆ − ˆ + ˆ−a b c( , , ) ˆ + ˆ − ˆ+a b c( , , )
N7 ˆ − ˆ − ˆ+a b c( , , ) ˆ + ˆ + ˆ−a b c( , , )
N8 ˆ − ˆ − ˆ−a b c( , , ) ˆ + ˆ + ˆ+a b c( , , )
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These probabilities can be calculated unambiguously by quantum mechanics
because they are the absolute square of an inner product of two known states

ˆ + ˆ + = ˆ+ ˆ− ˆ + ˆ + = ˆ+ ˆ− ˆ + ˆ +

= ˆ+ ˆ−

P P Pa b a b a c a c c b

c b

( ; ) ( ; ) ( ; )

.
(8.8)

2 2

2

The reason Bob’s plus spin states are replaced by minus states in the inner products
is that those states belong to Alice. In order for Bob to see a plus state, Alice must see
a minus. According to the rules of quantum mechanics, Alice can create all of the
required states and take the inner products. She has Stern–Gerlach devices pointing
in the â, b̂, and ĉ directions, so it is only a matter of sending enough electrons
through the devices to find one with the spin in the proper direction.

All of the equations derived so far are true for any choice of â, b̂, and ĉ, and the
same result would be obtained. However, there is a choice that makes the
calculations easier. The choice is to have the vectors in one plane, and to choose
the axes in that plane as shown in the following drawing (figure 8.1).

As can be seen from this figure, ∣ ˆ+〉 = ∣+〉a and ∣ ˆ−〉 = ∣−〉a . It was shown in
chapter 1 that the spin eigenfunction for an arbitrary direction n̂ in the x-z plane is

θ θˆ+ = + + −n cos
2

sin
2

, (8.9)

and

θ θˆ− = − + + −n sin
2

cos
2

. (8.10)

The angle between â and b̂ is called θab so

θˆ+ ˆ− = −a b sin
2

. (8.11)ab

Figure 8.1. Bell’s experiment.
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It is also easy to see that

θˆ+ ˆ− = −a c sin
2

. (8.12)ac

Reorienting the z axis to be in the ⌢c direction gives

θˆ+ ˆ− = −c b sin
2

. (8.13)cb

Equation (8.7) then becomes

θ θ θ⩽ +1 2(sin 2) 1 2(sin 2) 1 2(sin 2) (8.14)ab ac cb
2 2 2

where the 1/2 comes from the probability that Alice will measure a spin up in the first
place. Choosing the simplest case θ θ φ= = 2ac cb leads to

ϕ ϕ ϕ ϕ= ⩽1 2(sin 2 ) 2(sin cos ) (sin ) , (8.15)2 2 2

or

ϕ ⩽cos
1
2

. (8.16)2

This is clearly not true for ϕ< < π0
4
. Equation (8.15) is usually called Bell’s

inequality.
Bell’s inequality is conceded to prove that the most common forms of the hidden

variable picture are wrong. This caused him considerable discomfort, because it is
opposite to what he was hoping for. He later wrote about the hidden variable
explanation of a different experiment, the double slit interference experiment ‘For
me, it is so reasonable to assume that the photons in those experiments carry with
them programs, which have been correlated in advance, telling them how to behave.
This is so rational that I think that when Einstein saw that, and the others refused to
see it, he was the rational man. The other people, although history has justified them,
were burying their heads in the sand. I feel that Einstein’s intellectual superiority
over Bohr, in this instance, was enormous; a vast gulf between the man who saw
clearly what was needed, and the obscurantist. So for me, it is a pity that Einstein’s
idea doesn’t work. The reasonable thing just doesn’t work’.

Although mortally wounded, this did not destroy the hidden variable program.
There are those who simply added another twist to an already convoluted program
in order to get around Bell’s conclusions.

8.5 Double slit interference
Most physicists are familiar with Young’s two slit interference experiment in optics.
Feynman was fond of saying that all of quantum mechanics can be gleaned from
carefully thinking through the implications of this experiment being applied to
electrons. Feynman’s statement becomes even more true when modern interference
experiments are considered, as will be seen later.
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Consider an incident plane wave of light generated, e.g. by a laser, passing
through two slits. The ideal double slit interference pattern seen on the screen is

π λ= +I C dy L(1 cos(2 / ))ds , where d is the distance between slits. The waves will
interfere constructively at distances y from the center given by = λy n L

d
. An ideal

interference pattern is shown in figure 8.2.
This is the aspect of the experiment that is of interest, but the experimental results

do not look like the above because of the finite width of the slits. Light passing
through a single slit produces a diffraction pattern on the screen that is described by

π λ
π λ

=I I
ay L

ay L
sin (2 / )

2 /
. (8.17)ss 0

2⎡
⎣⎢

⎤
⎦⎥

In this formula, a is width of slit, L is distance to screen, λ is the wave length, and y is
the distance from the central line in the screen. The total interference and diffraction
pattern is given by the product =I y I I( ) ss ds and shown in figure 8.3.

Young is famous for his experiment on light, and appeared to settle the debate as
to whether light is a wave or a particle. It was later shown that Maxwell’s equations
can be manipulated to obtain a wave equation

∇ = ∂
∂

f t
c

f t
t

r
r

( , )
1 ( , )

, (8.18)2
2

2

2

that describes electromagnetic waves propagating with the speed of light c. This was
interpreted to be the final proof of the wave nature of light, x-rays, radio waves, and
all other electromagnet waves. Feynman’s quantum electrodynamics (QED)
reawakened this discussion, however, because the theory describes light as a
collection of photons.

Schrödinger’s equation predicts that electrons obey the wave equation

ψ ψ∇ = ℏ ∂
∂

t i
t

t
r

r
( , )

( , )
. (8.19)2

Figure 8.2. Ideal interference pattern.
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An obvious result of this is to try Young’s experiment with electrons. The result is
that they give the interference fringes expected for a wave with the de Broglie wave
length λ = h p/ . With modern equipment similar experiments can be done with atoms
and even molecules.

These experiments seem to be definitive proof of the wave picture, but what
happens if the intensity of the electron beam is made very low. A very sensitive
experiment with one electron at a time was done at the Hitachi R & D Laboratory
[1]. Using an advanced form of the kind of electron gun that was used in television
sets at the time. A weak beam of electrons was allowed to pass through two slits. The
sequence of spots that were found on the screen is shown in figure 8.4.

It is clear that electrons have a particle nature. All known detectors show the
electron only when it interacts with matter, which is made of atoms. This means that
they are localized, at least on the atomic scale. In photograph (a) the dots that
indicate electrons appear to be random. They cannot be entirely random because, as
more and more electrons hit the screen, the interference fringes develop.

There are areas of the screen where the probability for an electron spot to appear
is very unlikely, and these regions don’t change as the number of electrons increases
or decreases. This is an illustration of Born’s statistical interpretation of the wave
function put forward in the early days of quantum mechanics. The wave function (or
at least its absolute square) gives the probability for an event happening. This idea
was carried further by J von Neumann who said the there is a state vector that
evolves deterministically according to the Schrödinger equation, and that the
process of measuring ‘projects out’ randomly one of the values that are allowed
by the wave function. Each particle seems to strike at a random spot. It is only after
a number of them have struck the screen that the diffraction pattern emerges.

Einstein noted in 1905 that the photoelectric effect, the ejection of electrons from
a solid when light is shown on it, could only be explained by assuming that the light
is made up of packets that have energy hν. These packets are the photons from
QED. As with electrons, the photons are detected by their interaction with atoms in
the screen, and are localized on the atomic scale. The results of double slit

Figure 8.3. Experimental interference and diffraction pattern.
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experiments with photons appear just like the electron results shown above if the
beam intensity is low enough. The predictions of Huygens and Fresnel and the
derivation from Maxwell’s equations only hold in the limit of very many photons.
This means that the questions arising in the interpretation of quantum mechanics are
the same for photons and particles.

An aspect of quantum interference that can be seen from the low intensity
measurements is that an electron or photon can only interfere with itself. If two
electron guns are aimed at the slits, even though they fire the electrons simulta-
neously, there will be no interference. In addition, if an experiment is done to
determine which slit the particle passes through, there is no interference. This will be
made more clear in the quantum erasure experiments discussed later.

The concept of wave particle duality is introduced early in quantum mechanics
courses. The idea is that sometimes an electron will act as a wave, and sometimes as
a particle. The remarkable thing about the experiment illustrated in figure 8.4 is that
it is showing wave and particle behavior simultaneously. As Bell pointed out, in
order to explain this with hidden variables ‘the photons in those experiments carry
with them programs, which have been correlated in advance, telling them how to
behave’. The electron that makes the first spot on the screen somehow has to know
where all the other electrons are going to land. The quantum description is
surprising, but the hidden variable description is unbelievable.

8.6 The adiabatic theorem
The next experiments to be discussed require a quantum theorem that was
developed early. The standard reference for the adiabatic theorem is Volume II of

Figure 8.4. The number of electrons accumulated on the screen are; (a) 8 electrons; (b) 270 electrons; (c) 2000
electrons; (d) 160 000. The total exposure time from the beginning to the stage (d) is 20 min.
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‘Quantum Mechanics’ by Albert Messiah [2]. He attributes a version derived for
Heisenberg’s matrix mechanics version of quantum theory to Ehrenfest. The
theorem was first proved for Schrödinger’s version of quantum mechanics by V
Fock in 1928. T Kato and K O Friedrichs worked on a more mathematical form of
the theorem, as have others. The derivation in Messiah is complicated and confusing
because he talks about a Hamiltonian H t( ) that is time dependent without specifying
how this time dependence comes about. As is well known, the Hamiltonian contains
no explicit time dependence in the Schrödinger picture. It can only have a time
dependence through the time dependence of parameters, such as the positions of the
nuclei in a molecule in the Born–Oppenheimer approximation or external fields. The
notation that makes this clear is H R t( ( )).

In the Dirac notation, the time dependence of the state vector ψ∣ 〉R t t( ( ), ) is given
by

ψ ψ= ℏH R t R t t i
d R t t

dt
( ( )) ( ( ), )

( ( ), )
, (8.20)

or

ψ ψ=R t t U t t R t t( ( ), ) ( , ) ( ( ), ) . (8.21)0 0

The eigenvalues of H R t( ( )) are time dependent through the time dependence of the
parameters

ψ ε ψ=H R t R t t R t R t t( ( )) ( ( ), ) ( ( )) ( ( ), ) . (8.22)j

The adiabatic theorem is that

∫= ε τ τ− ℏU t t e( , ) . (8.23)i R d
0

( ( ))
t

t

j
0

The adiabatic theorem can be used to find the phase for an electron moving in a
magnetic field. The Hamiltonian is

⃗ − ⃗
+ ⃗ = + ⃗ − ⃗ · ⃗ +

p
e
c

A

m
v r

p
m

v r
e

mc
A p

e
mc

A
2

( )
2

( )
2

.
(8.24)

2

2 2

2
2

⎜ ⎟⎛
⎝

⎞
⎠

Ignoring the last term and using first order perturbation theory

ε ε ε= − ⃗ · ⃗ ≈ − ⃗ · ⃗e
mc

A p
e
c

A
d r
dt

, (8.25)0 0

the phase in equation (8.23) is

∫ ∫ε ε−
ℏ

= −
ℏ

− +
ℏ

⃗ · ⃗
⃗

⃗i
dt

i
t t

ie
c

A dr( ) . (8.26)
t

t

r t

r t

0 0
( )

( )

0 0

Dirac [3] pointed out that if space is divided into cubes that are small on a
macroscopic scale but large on the quantum scale, then ⃗ ⃗A r( ) is a constant in each
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cube so equation (8.25) holds. However, it changes from cube to cube so equation
(8.26) leads to

∫ψ ψ= ε− ℏ − + ℏ
⃗ ⃗ · ⃗

⃗

⃗

t e t( ) ( ) . (8.27)i t t ie
c

A r dr( ) ( )
0r t

r t

0 0
( 0)

( )

8.7 The Bohm–Aharanov phase
The Bohm–Aharanov phase appears when a charged particle moves around a
localized magnetic flux. The effect was analyzed theoretically by D Bohm and his
student Y Aharanov [4], and was put forward as a gedanken experiment to
demonstrate that orthodox quantum mechanics is wrong. A more modern analysis
of the phase is given below.

If one imagines that the electron is in a wave-packet state that is highly localized, it is
possible to talk about the position of the electron. Bohm and Aharonov noted that, if the
electron follows a trajectoryC that encircles a solenoid containing a magnetic field B, the
wave function at the screen will take on the net phase that is the difference between the
one from the upper path and the lower path, as illustrated in figures 8.1 and 8.5

∫ ∫ ∫φ ⃗ ⃗ =
ℏ

⃗ · ⃗ −
ℏ

⃗ · ⃗ =
ℏ

⃗ · ⃗
⃗

⃗

⃗

⃗
r r

e
c

A upper dr
e
c

A lower dr
e
c

A dr( , ) ( ) ( ) . (8.28)s
r

r

r

r

C
0

s s

0 0

This phase has been calculated with the adiabatic theorem, equation (8.27).
The magnetic field is constrained to be within a cylinder that is so small that it fits

behind the part of the middle screen that separates the two slits. From classical
electromagnetism it is known that the magnitude of the vector potential falls off like

r1/ outside of the cylinder.

Figure 8.5. Trajectories of an electron in Bohm–Aharanov double slit experiment.
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Using Stokes theorem and the fact that the magnetic field is the curl of ⃗A, the
phase can be manipulated

∫ ∫ ∫φ ⃗ ⃗ =
ℏ

⃗ · ⃗ =
ℏ

∇ × ⃗ · ˆ =
ℏ

⃗ · ˆ =
ℏ

Φr r
e
c

A dr
e
c

A dS
e
c

B dS
e
c

n n( , ) ( ) , (8.29)s
C S S

0

where Φ is the total magnetic flux in the cylinder. The electrons passing through the
slits do not touch the cylinder, so every possible trajectory from ⃗r0 to ⃗rs will have the
same phase shift.

If there is no magnetic field, the wave function at the screen will manifest the
ordinary double slit interference pattern as shown in figure 8.3. The addition of a
magnetic field will cause a shift in the interference pattern as illustrated in figure 8.6.

Bohm and Aharanov’s argument that this result cannot be correct is that the path
of a particle cannot be modified by a potential alone. In classical electromagnetism,
potentials are a mathematical convenience. Forces are caused by fields. For
example, the force on an electron is

⃗ = ⃗ × ⃗F ev B . (8.30)

In this experiment, the electrons pass through a region in which ⃗ =B 0 but ⃗ ≠A 0.
Quantum theory in both the Heisenberg and Schrödinger formulations makes use of
Hamiltonians, and Hamiltonians necessarily contain potential functions.

Somewhat surprisingly this experiment can be carried out [5]. Bohm and
Aharanov were visiting the University of Bristol when they proposed it. A professor
at that university, R G Chambers, was aware of a newly discovered form of matter
known as iron whiskers. These are single crystals that are long but only nanometers
wide. They are even better at constraining a magnetic field than soft iron. They can
be grown using a technique in which ferrous chloride is reduced in a hydrogen gas
flow at high temperature. Their small diameter and high susceptibility make them
the perfect material for constructing a Bohm–Aharanov device.

Chambers observed exactly the shift in interference fringes predicted by quantum
theory. The argument that only fields can modify the behavior of particles is simply
another illustration of the difference between the classical world and the quantum
world.

Figure 8.6. Shift in pattern caused by presence of magnetic flux.
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8.8 The Berry phase
The Berry geometrical phase [6] appears when time-dependent parameters in a
quantum Hamiltonian change around a closed path in parameter space. It is an
addition to the standard dynamical phase ∫φ ε τ τ= d( )

t

t

0
predicted by the

adiabatic theorem described above. Traditionally, any observable in quantum
mechanics is regarded as the eigenvalue of a Hermitean operator. Berry showed
by construction that there are observables of a completely different nature. The
Berry phase is a well defined gauge-invariant phase of the state vectors that can
be measured experimentally, but it cannot be expressed as the eigenvalue of any
operator because it depends on the particular path in parameter space that one
chooses to traverse. This is the reason for the term ‘geometrical phase’.

It will be seen that the Berry phase only exists when the Hamiltonian that is used
to describe the system contains time-dependent parameters. Such a Hamiltonian
does not describe an isolated system. The time-dependent parameters describe the
rest of the Universe that is not included in the Hilbert space that is being considered,
e.g., external fields that are not being treated quantum mechanically. In a truly
isolated system, there will be no time-dependent parameters and hence no Berry
phase. In this sense, the Berry phase is an unnecessary semiclassical concept. Its
value stems from the fact that on many occasions a parameterized Hamiltonian is
the most convenient way to treat a physical problem. On such occasions, a Berry
phase will also be useful and unavoidable.

The Berry phase is based on the concepts of holonomy and anholonomy [7] in the
abstract space of the parameters in the quantum Hamiltonian. Anholonomy is the
failure of certain variables to return to their original values in a system that appears
to be periodic. Anholonomy can be illustrated in a non quantum mechanical context
by considering the parallel transport of a vector around a closed path in curved
space. A sphere can be considered to be a curved two-dimensional space, for
example, a globe that shows the map of the Earth. Put a pencil on the north pole of
such a globe pointing along any longitude. Move the pencil in the direction of its
point along the longitude until it reached the equator. Now move the pencil along
the equator with the eraser end always pointing toward the north pole. When it
reaches some other longitude, move it in the direction of the eraser back to the north
pole. Although the pencil is kept parallel throughout this circuit in the sense that the
eraser always points in the same direction, the curvature of the space leads to the
result that the final position of the pencil makes an angle ϕ with the original position.
This experiment is shown in figure 8.7.

In order to use this concept in a quantum mechanical context, consider a
Hamiltonian that depends on the momentum operators for N particles ⃗pi, the
position operators ⃗ri , the spins of the particles si, and some number d of time-
dependent parameters αR t( ),

⃗ ⃗ … ⃗ ⃗ ⃗ … ⃗ … …( )H p p p r r r s s s R t R t R t, , , , , , , , , , , , ( ), ( ), , ( ) . (8.31)N N N d1 2 1 2 1 2 1 2

Modern Quantum Mechanics and Quantum Information

8-13



In the following equations, the parameters that are not of immediate interest will be
suppressed, and the ones that appear are abbreviated. The wave function

Ψ … … …s s s s R t R t R t R tr r r r( , , , , , , , , , , ( ), ( ), ( ), , ( )), (8.32)N N d1 2 3 1 2 3 1 2 3

is a solution of

Ψ = ℏ ∂Ψ
∂

H R t t i
R t t

t
( ( ), )

( ( ), )
, (8.33)

and hence

Ψ = ΨR t t U t t R t t( ( ), ) ( , ) ( ( ), ). (8.34)0 0 0

The Hamiltonian has eigenvalues and eigenvectors that depend on time through the
variation of the αR t( )

ψ ε ψ=H R t t R t R t t( ( ), ) ( ( )) ( ( ), ). (8.35)j j j

According to the adiabatic approximation

∫ψ ψ ψ= = ε− ℏ
′ ′

R t t U t t R t t e R t t( ( ), ) ( , ) ( ( ), ) ( ( ), ). (8.36)
j j

i R t dt
j0 0 0

( ( ))
0t

t

j
0

Suppose the system is cyclic in the sense that the time-dependent parameters all
return to their original values =α αR t R t( ) ( )1 0 at time t1. Then the preceding formula
becomes

ψ ψ ψ= = φR t t U t t R t t e R t t( ( ), ) ( , ) ( ( ), ) ( ( ), ), (8.37)j j
i

j0 1 1 0 0 0 0 0

Figure 8.7. Sphere to illustrate anholonomy.
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with

∫φ ε= −
ℏ

′ ′R t dt
1

( ( )) . (8.38)
t

t

0

1

The dynamical phase factor φ can be measured experimentally by interference if the
cycled system is recombined with another that was separated from it at an earlier
time and for which =α αR t R t( ) ( )0 for all t. The dynamical phase factor for the
system for which the αR t( ) are constant is obviously

φ ε= −
ℏ

−R t t t
1

( ( ))( ) (8.39)0 0 1 0

and the experiment will measure φ φ− 0.
Berry showed that, for certain physical systems, there will be a geometrical phase

factor γ C( ) that depends on the circuit C that the R t( )k trace out in parameter space,
which is in addition to the dynamical phase factor φ. It follows that the interference
experiment will measure γ φ φ+ −C( ) 0. He presented a derivation of γ C( ), and
studied the conditions that are necessary for it to be non-zero.

If Berry’s postulate is correct, the standard adiabatic formula must be modified
to read

∫ψ ψ ψ= = γ ε− ℏ
′ ′

R t t U t t R t t e R t t( ( ), ) ( , ) ( ( ), ) ( ( ), ). (8.40)
j j

i i R t dt
j0 0 0

( ( ))
0

j
t

t

j
0

Insert this wave function into the time-dependent Schrödinger equation

ψ ε ψ
ψ

= = ℏ
∂

∂
H R t t R t R t t i

R t t

t
( ( ), ) ( ( )) ( ( ), )

( ( ), )
, (8.41)

j j j
j

leads to

∫

∫

ψ
ε ψ

γ
ψ

ψ

ℏ
∂

∂
=

+ ℏ +
∂

∂

γ ε

γ ε

− ℏ
′ ′

− ℏ
′ ′

i
R t t

t
e R t t

i e i
d

dt
R t t

R t t

t

( ( ), )
( ( ), )

( ( ), )
( ( ), ) . (8.42)

j
j

i i R t dt
j

i i R t dt j
j

j

( ( ))
0

( ( ))
0

0

j
t

t

j

j
t

t

j

0

0

⎧⎨⎩
⎫⎬⎭

The Berry form for the wave function can only be consistent with the Schrödinger
equation if

γ
ψ

ψ
=

∂
∂

d

dt
R t t i

R t t

t
( ( ), )

( ( ), )
. (8.43)j

j
j

0
0

The normalization condition ∫ ψ ψ* =dv 1j j leads to

∫γ
ψ

ψ
= *

∂
∂

d

dt
i R t t

R t t

t
dv( ( ), )

( ( ), )
, (8.44)j

j
j

0
0
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or, because the time dependence comes from the time-dependent parameters

∫ ∑
γ

ψ
ψ

= *
∂

∂ α

αd

dt
i R t t

R t t

R
dR
dt

dv( ( ), )
( ( ), )

. (8.45)j
j

j
0

0

Integrating the left side of this equation from t0 to t1 obviously gives

∫ γ
γ γ= −

d

dt
dt t t( ) ( ). (8.46)

t

t
j

j j1 0
0

1

The integral on the right is the same as a line integral in d-dimensional space. The
line follows a path defined by the values the αR t( ) take as t increases from t0 to t1. The
case for which all of the αR t( )1 equal αR t( )0 is focused on. That is, a closed contour C
in αR space. Thus,

∮ ∫ ∑γ ψ
ψ

= *
∂

∂ α
αC i R t t

R t t

R
dvdR( ) ( ( ), )

( ( ), )
(8.47)j

C
j

j
0

0

where γ γ γ= −C t t( ) ( ) ( )j j j1 0 .
At this point, the notation will be switched to a version that is similar to the vector

notation used in the conventional vector analysis that appears in elementary physics
texts. In the field of differential geometry it is shown that operations like gradients,
curls, etc can be extended to multidimensional space. With this notation,

∮ ∫γ ψ ψ= * ∇ · ⃗αC i R t t R t t dv dR( ) ( ( ), ) ( ( ), ) (8.48)j
C

j j0 0

where a generalization of the gradient concept to the d-dimensional space of the
parameters αR has been used. The subscript on the gradient operator is to remind us
that the derivatives are with respect to the Ra. The gradient of the normalization
condition can be written

∫ ∫ ∫ψ ψ ψ ψ ψ ψ∇ * = = ∇ * + *∇α α αdv dv dv0 , (8.49)j j j j j j

so it follows that ∫ ψ ψ*∇α dvj j is pure imaginary.
The equation for γ C( )j may be rewritten

∮γ = ⃗ · ⃗C A dR( ) , (8.50)j
C

j

where

∫ ψ ψ⃗ = − * ∇A R t t R t t dvIm ( ( ), ) ( ( ), ) . (8.51)j j a j0 0

Stokes theorem in three dimensions is

∫ ∮ ∮ ∑∇ × ⃗ · ˆ = ⃗ · ⃗ =
α

α α αA ds A dR A dRn( ) , (8.52)
S
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and this is another operation that generalizes to multiple dimensions. A vector
quantity ⃗Bj can be defined

∫ ψ ψ⃗ = ∇ × ⃗ = − ∇ *×∇α α αB A dvIm ( ) . (8.53)j j j j

Using the preceding equations

∫γ = ⃗ · ˆC B dsn( ) . (8.54)j
S

j

The normalization integral can be written

∫ ψ ψ* =dv j j , (8.55)j j

in the Dirac notation where ∣ 〉j R t, ( ) is an abstract vector that depends on the αR .
With this notation and using the fact that the eigenvectors are a complete set

∑ =k k I , (8.56)

leads to

∑⃗ = − ∇ × ∇α αB j k k jIm . (8.57)
k

j

Taking the derivative of the eigenvalue equation leads to

∑⃗ = − ∇ × ∇α αB j k k jIm . (8.58)
k

j

Premultiplying by 〈 ∣k leads to

ε ε
∇ = − ∇

−α
αk j

k H j
, (8.59)

k j

if ≠k j , so

∑
ε ε

⃗ = − ∇ × ∇
−≠

α αB
j H k k H j

Im
( )

. (8.60)
k j

j
k j

2

The advantage to this equation is that it eliminates the need for differentiating all of
the eigenvectors and replaces it with finding the derivatives of H R t( ( )) with respect
to the αR . It can be shown that ∇ · ⃗ =B 0j . From this it follows that integrating over
any surface S that has the trajectory C as an edge will lead to the same Berry phase.

If there are no singularities, the Berry phase will be zero. The typical way that the
Berry phase will be non-zero is that a surface S with a boundary C passes through a
point for which ε ε=j k for some value of k. Of course, this cannot be the case for a
point on the trajectory C because then the adiabatic theorem would not hold.

This sounds like Cauchy’s theorem in complex variable theory that leads to the
result that the value of a contour integral is given by the poles of the singularities
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included within the contour. This is an analogy, but Berry and others have pointed
out that it should not be pushed too far. The underlying mathematics is not the same.

As an example, consider the case of a spin 1/2 particle in a time-dependent
magnetic field. Calling the magnetic field ⃗R, the Hamiltonian is

μσ= − ⃗ · ⃗H R t
2

( ), (8.61)

where μ = ℏe
mc
. If it is assumed that ⃗R is in the ẑ direction, then

μσ ε
ε= − = −

+
H R

2
0

0
(8.62)z z

⎛
⎝⎜

⎞
⎠⎟

and the two eigenvalues of this system are

ε μ= ±± R
2

. (8.63)z

They are degenerate when =R 0z . Obviously, the gradient of the Hamiltonian in
equation (8.61) is

μσ∇ = ⃗αH
2

(8.64)

where

σ ⃗ = ˆ + − ˆ +
−

ˆi
i

x y z0 1
1 0

0
0

1 0
0 1

. (8.65)⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

The eigenvectors for the eigenvalues ε± are ∣+〉 and ∣−〉. The matrix elements for
equation (8.60) are

σ
σ

+ ⃗ − = ˆ − ˆ
− ⃗ + = ˆ + ˆ

i
i

x y
x y.

(8.66)

If the state ∣ 〉j is chosen to be ∣+〉, then the vector +⃗B is

μ σ σ

μ
⃗ = −

+ ⃗ − × − ⃗ +
+B

R
Im 4

( )
(8.67)

z

2

2

or

⃗ = − ˆ = −
ˆ

+B
R
z R

R2 2
(8.68)

z
2 2

where, more generally, the magnetic field is chosen to point in the direction R̂.
Assume that the trajectory C lies on the surface of a sphere of radius R that is
centered at the origin of parameter space. The easiest surface S to use in the integral

∫γ = ⃗ · ˆ+ +B dsn , (8.69)
S
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is the portion of the surface of that sphere inside of the trajectory. The area of that
surface is ΔΩR2 , where ΔΩ is the solid angle subtended by the surface. Then

∫γ Ω ΔΩ= ⃗ · ˆ = −+ +B R dR
1
2

. (8.70)
S

2

Several conclusions can be drawn from this derivation. It provides a concrete
example of a model for which the Berry phase is non-zero. It demonstrates that the
singularity at R = 0 in parameter space where ε ε=+ − is crucial to the existence of
γ+ C( ). Finally, the physical example of the rotation of spins in a magnetic field can
be realized in the laboratory.

There are two experiments in which the spins of neutrons under the influence of a
rotating magnetic field are studied [8]. Neutrons are the particle of choice for this
experiment because they have no charge but they have the same spin as an electron.
Neutron diffraction devices are a ready source of a monoenergetic stream of
neutrons that can be sent through a field. As a neutron with fixed velocity in the
z-direction travels through a cylinder wrapped in a helical pattern with super-
conducting wires carrying very large currents it sees a time-dependent magnetic field
perpendicular to the z-direction ⊥B t( ).

There is also a fixed field in the z-direction Bz although the solenoid that creates
that is not shown in figure 8.8. The easiest way to calculate the Berry phase for this
experiment is to use equation (8.69), which leads to

γ π=+ ⊥B B . (8.71)z
2

When the neutrons were sent through the device illustrated in figure 8.8 they
measured the phase shift predicted by Berry’s theory. This differs from ordinary
precession discussed previously which takes place in a magnetic field that is fixed in
direction.

There have been hundreds of papers on the Berry phase, and many other
experiments have been done that demonstrate its existence. The Bohm–Aharanov
phase described above can be looked upon as a special case of the Berry phase.
There is an effect known as the molecular Aharonov–Bohm effect that can best be
treated as a Berry phase. In this effect, the Jahn–Teller distortion in a molecule

Figure 8.8. Sketch of a cylinder wrapped with wires in a helical pattern.
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treated in the Born–Oppenheimer approximation causes a linkage between the
electronic states and the vibrational states. The effect is observed in metallic
trimmers such as Na3 and Li3. Many phenomena that were known before Berry’s
work have been reanalyzed using his theory. The modern theory of polarization in
solids and ferroelectricity is based on the Berry phase. The effects of anholonomy in
the scattering of polarized optical waves in a crystal was recognized by S
Pancharatnam before Berry did his work.

John Hannay set out to answer a question posed by Berry, namely, what is the
classical limit ℏ → 0 of the Berry phase? Instead of accomplishing that, Hannay
derived a different anholonomy effect that arises when the parameters in a classical
Hamiltonian trace out a closed trajectory in parameter space adiabatically. The
Hannay phase that appears in the angle variable in an action-angle analysis of an
integrable classical system. There are limits on the systems for which it will occur
that do not exist in the quantum case. Berry showed the semiclassical connection
between the Hannay phase and the Berry phase. The precession of a Foucault
pendulum is an example of the Hannay phase.

8.9 Quantum erasure
8.9.1 First experiment

This is the standard Young’s double slit experiment. Light leaves the source one
photon at a time (figure 8.9). The photons that pass through the upper slit are said to
be on path one, and the ones that pass through the lower slit are on path two. The
wave function at the screen for a photon seen by a counter at the position shown
may be written as a superposition

ψ α α= ∣ 〉 + ∣ 〉δ δAe Aer( onscreen) , (8.72)i i
1 2

1 2

where δ = π
λ
−l l2 ( )

1
1 0 and δ = π

λ
−l l2 ( )

2
2 0 and the kets are vectors that describe the

polarization of the wave. The intensity at the screen is the absolute value of this wave
function

ψ ψ α α α α= = + + +δ δ−I A e e(1 1 ), (8.73)i i2
1 2 2 1

Figure 8.9. First experiment
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where δ = π
λ
−l l2 ( )2 1 . Normally, the polarization vector that applies to both paths is

the same, the one that the photon had when it left the source. For this case, the
intensity simplifies to

ψ ψ δ= = +I A2 (1 cos ). (8.74)2

This is the standard equation for two slit interference, ignoring the diffraction due to
the finite widths of the slits.

8.9.2 Quarter-wave plate

In order to understand the next experiments the reader must be familiar with an
experimental tool called a quarter-wave plate. This device consists of a carefully
adjusted thickness of a birefringent material such that the light associated with the
larger index of refraction is retarded by 90° in phase (a quarter wave length) with
respect to that associated with the smaller index. The material is cut so that the optic
axis is parallel to the front and back sides of the plate. Any linearly polarized light
which strikes the plate will be divided into two components with different indices of
refraction. One of the useful applications of this device is to convert linearly
polarized light to circularly polarized light and vice versa by adjusting the plane
of the incident light so that it makes 45° angle with the optic axis. This gives equal
amplitude o- and e-waves. When the o-wave is slower, as in calcite, the o-wave will
fall behind by 90° in phase, producing circularly polarized light.

= + = −
= + = +

δ δ π δ

δ δ π δ

−

+

R e x e y e x i y

L e x e y e x i y

( )

( )
. (8.75)

i i i

i i i

( 2)

( 2)

8.9.3 Second experiment

This starts out as a standard interference experiment, but quarter-wave plates are
placed behind the two slits (figure 8.10). They are oriented so that a photon with
polarization in the x direction is converted to one with right circular polarization by
the red plate and left polarized by the blue. A y-polarized photon is transformed in
the opposite way, as illustrated in the figure above

→ →
→ → −

x L y i R
x R y i L

Path1:
Path2:

. (8.76)

These may be looked upon as experimental results.
If a linear polarizer is put behind the source so that only x-polarized photons pass

through

ψ = + → +δ δ δ δAe x Ae x Ae L Ae R , (8.77)x
i i i i1 2 1 2

and the intensity is
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ψ ψ= = + + + =δ δ−I A L R e R L e A(1 1 ) 2 . (8.78)x x x
i i2 2

If a y-polarizer is put behind the source,

ψ = + → −δ δ δ δAe y Ae y iAe R iAe L (8.79)y
i i i i1 2 1 2

and the intensity is

ψ ψ= = + + + =δ π δ π− − −I A R L e L R e A(1 1 ) 2 . (8.80)y y y
i i2 ( ) ( ) 2

Obviously, there is no interference pattern for these cases.
Suppose now the polarizer is oriented so that the polarization of the photon is at

an angle α away from the x direction, which is the state

α α α+ = +x ycos sin . (8.81)

Then

ψ α α α α= + + −α
δ δ

+ Ae L i R Ae R i L(cos sin ) (cos sin ), (8.82)i i1 2

and the intensity of this state is

α δ= +α+I A2 (1 sin 2 sin ). (8.83)2

The polarization state vector orthogonal to α∣ +〉 is

α α α− = − +x ysin cos , (8.84)

and the intensity from this state is

α δ= −α−I A2 (1 sin 2 sin ). (8.85)2

These intensities are consistent with the Ix and Iy derived before because sin2α is zero
for α = 0 or π/2.

Figure 8.10. Second experiment.
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The quantum mechanical explanation for these experiments is that in an
interference experiment a photon can only interfere with itself. The quarter-wave
plates make it possible to distinguish the path that the photon takes and this
information destroys the interference.

8.9.4 Third experiment

In this experiment, the information given by using quarter-wave plates in the
previous experiment is now erased by inserting another polarizer after the two slits
as shown in figure 8.11.

Suppose the first polarizer is oriented in the x direction. This light is passed
through the two slits where it is converted to circularly polarized light of two
different kinds. As shown above, light in this condition will show no interference
fringes. Passing the light through a linear polarizer after the two slits filters out the
linearly polarized light. Experiments show that this light shows interference fringes
when it reaches the screen

ψ = + → +

→ +

δ δ δ δ

δ δ

Ae x Ae x Ae L Ae R

Ae x Ae x .
(8.86)x

i i i i

i i

1 2 1 2

1 2

The effect of the quarter-wave plates has thus been erased.
Whoa! We claimed above that the conversion to circularly polarized light

introduced information about the slit that the photon went through, and this
information makes it impossible for the photon to interfere with itself. It is
intuitively obvious that when interference is destroyed, it cannot be brought back.
The quantum mechanical answer to this conundrum is that light, which was
described above with simple equations, is made up of a huge number of photons.
The quarter-wave plates put the photons into a statistical state, but, as seen in
equation (8.75), circularly polarized light can be looked on as a superposition of
light linearly polarized in two directions. Some photons were always in a state in
which they could interfere with themselves. The last linear polarizer filters out these
photons so that the interference pattern can be seen.

The relation of photons to light is analogous to the relation of molecules to liquid.
If there is a high enough density of molecules, they behave according to the fluid

Figure 8.11. Third experiment.
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dynamics laws like the Euler equations. A large enough number of photons will
behave according the classical laws of optics.

8.9.5 Fourth experiment

A more interesting quantum erasure experiment using photons and a Young’s
double slit apparatus was done by S P Walborn et al from the Universidade Federal
de Minas Gerais in Brazil [9].

In order to understand this experiment, the reader must familiarize themselves
with two devices that have not been described above. Entangled particles are used in
the EPR experiment, but this experiment requires entangled photons. Present
research on QI has led to devices to produce them. Walborn et al used the following.
The entangled photons are produced by a process called spontaneous parametric
down conversion. This takes place in a special nonlinear crystal called beta-barium
borate (BBO). A photon from an argon ion pump laser (351.1 nm) is converted to
two longer wave length (702.2 nm) photons. The two photons go off in two different
directions.

The other device is a coincidence counter. Coincidence counting has been used
for years in experimental particle physics. The determination that two events occur
at the same time is made electronically with a coincidence system. This unit
operates on standardized pulses and determines whether events occur within a
certain time interval, called the resolving time. The standard pulses from any
single channel analyzer are used as input, with one input from each detector.

The ordinary laser is replaced by a BBO crystal which will emit entangled
photons with wave length 2λ when it is excited by a photon with wave length λ. The
photons are sent on two different paths. Path s leads from the source to Alice’s friend
Bob. The signal that Bob has counted a photon after processing it is sent to the
coincidence counter. Photons on path p reach the coincidence counter at a point on
the screen by passing through double slits with half-wave plates as in the second
experiment above. This set of operations is shown in figure 8.12.

8.9.5.1 Double slit experiment
There is no polarizer in the path from Alice to Bob and there are no quarter-wave
plates next to the slits. The entangled s and p photons are in the state

ψ ψ ψ ψ ψ= +x y y x1 2 . (8.87)s p s p
⎡⎣ ⎤⎦

The counting at the screen is done as follows. The counter is placed at the top of the
screen and counts the number of pulses that it senses for x seconds. The number of
counts is put in a bin. It is then moved down by an increment, and counts the pulses
for another x seconds. Those counts are put in the next bin. This process is repeated
until it reaches the bottom of the screen. It is assumed that the spatial increments are
small so that plotting the number of counts in the bins gives an approximately
continuous curve.
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If the coincidence counter is ignored, the counting described above gives a curve
that shows no interference.

Leaving everything else the same, the counting is done differently. Any pulse that
is not in coincidence with a pulse that reaches Bob’s counter is ignored. This does not
determine the polarization of the photon that left the source, but it has the effect of
determining it. The resulting curve shows interference as in the first experiment.

8.9.5.2 Which-way experiment
There is still no polarizer in the path from Alice to Bob and there are quarter-wave
plates next to the slits. There is no interference pattern. The only pulses counted are
the ones that are coincident with the ones seen by Bob. This caused an interference
pattern in the preceding case, but the presence of the quarter-wave plates destroys it.
The reason for this was discussed in detail in connection with the second experiment
described above.

8.9.5.3 Quantum erasure
There is a linear polarizer in the path from Alice to Bob and there are quarter-wave
plates next to the slits. The direction of polarization makes no difference. There is no
interference pattern in the counts at the screen but counting only the pulses that are
coincident with the ones counted by Bob brings back the interference pattern. The
reason for this is that the photons being counted at the screen are in the same
orientation state as they were when they left the source. Using the coincidence
counter has the same effect as the polarizer after the slits in the third experiment.

The explanation for this effect is the same as for the third experiment, but it is
made more interesting because it has the extra wrinkle of entanglement. In the first
experiment, all of the photons are allowed to interfere with themselves. Even with
the quarter-wave plates, some will. The coincidences with photons that all have the
same polarization filters out the ones that will interfere.

Figure 8.12. Fourth experiment. The red box is Bob’s counter. The green box measures photons that go
through path p and reach the screen.
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8.9.5.4 Delayed erasure
To this point the implication has been that Bob measures the pulses that hit his
counter at exactly the same time as they hit the counter at the screen. This does not
have to be the case. The time stamps on all of the electrons in a bin can be retained.
The path from the source to Bob’s counter can be lengthened so that his copy of the
entangled photons is measured later than the copy that hit the screen. The time
increment for the delay Δt is the same for all the photons, and it can be calculated
from the experimental parameters. The photons from a given entangled pair can
thus be found by combining Bob’s counts with the ones on the screen even when they
are not counted at the same time.

It is thus possible to reproduce the preceding experiments with delayed photons.
Somehow the fact that interference is identified with information that did not exist
when the photons struck the screen makes the erasure experiment seem even more
mysterious.

8.10 Resume
It could be argued that the EPR effect and the Bohm–Aharanov effect are
discoveries of interesting quantum phenomena that were found for the wrong
reason. The predictions of quantum theory seemed so outlandish that very good
scientists proposed experiments that they were convinced would not work. The
experiments suggested by Berry and Walborn also seem to contradict intuition, but
they expected quantum theory to be validated.

Problems
P8.1 Is the idea of a collapsing wave function a general feature of the

measurement process?
P8.2 Draw a cartoon showing what Alice putting electrons in her box must look

like according to hidden variable theory.
P8.3 Work out the Bell’s inequalities for ˆ + ˆ +P b c( ; ).
P8.4 Suppose there were four men and four women in a quantum mechanics

class. They are standing in the hall outside the classroom. There is a row of
eight chairs in the classroom. One at a time, they enter the classroom, pick a
chair, write their name on a piece of tape, and place it on the bottom of the
seat. When the process is finished, they go into the classroom and sit in the
chair they picked. What is the chance that no two students picked the same
chair and that the arrangement of the students would be alternating man,
woman, man, woman, …?

P8.5 Why is the Hamiltonian in quantum mechanics normally time
independent?

P8.6 Is the Bohm–Aharanov effect gauge invariant?
P8.7 Hold a cat with his feet pointing toward the ceiling. Drop the cat.

Hopefully the cat will land with his feet on the floor. Is angular momentum
conserved? Is this an example of anholonomy?
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P8.8 When entangled electrons are used in a two slit experiment, is the rule that
an electron can only interfere with itself broken?
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