
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 18.117.73.223

This content was downloaded on 05/05/2024 at 21:19

Please note that terms and conditions apply.

You may also like:

https://iopscience.iop.org/page/terms


IOP Publishing

Quantum Mechanics
Lecture notes

Konstantin K Likharev

Chapter 8

Multiparticle systems

This chapter provides a brief introduction to quantum mechanics of systems of similar
particles, with special attention on the case when they are indistinguishable. For such
systems, theory predicts (and experiment confirms) very specific effects, even in
the case of negligible explicit (‘direct’) interaction between the particles. These
effects notably include the Bose–Einstein condensation of bosons, and the exchange
interaction of fermions.

8.1 Distinguishable and indistinguishable particles
The importance of quantum systems of many similar particles is probably self-
evident; just the very fact that most atoms include several/many electrons is sufficient
to attract our attention. There are also important systems where the number of
electrons is much higher than in one atom; for example, a cubic centimeter of a
typical metal houses ∼1023 conduction electrons that cannot be attributed to
particular atoms, and have to considered as common parts of the system as the
whole. Though quantum mechanics offers virtually no exact analytical results for
systems of substantially interacting particles1, it reveals very important new
quantum effects even in the simplest case when particles do not interact, and least
explicitly (directly).

If non-interacting particles are either different from each other by their nature, or
physically similar but still distinguishable because of other reasons, everything is
simple—at least, conceptually. Then, as was already discussed in section 6.7, a

1As was emphasized in section 7.3, for such systems of similar particles the powerful methods discussed in the
last chapter, based on the separation of the whole Universe into the ‘system of our interest’ and the
‘environment’, typically do not work well—mostly because the quantum state of the ‘particle of interest’ may
be substantially correlated (in particular, entangled) with those of similar particles of its ‘environment’—see
below.
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system of two particles, 1 and 2, each in a pure quantum state, may be described by a
ket-vector being a direct product,

α β β= ⊗ ′ a, (8.1 )1 2

of the single-particle ket-vectors, describing their states β and β′ defined in different
Hilbert spaces. (Below, I will frequently use, for the direct product, the following
convenient shorthand:

α ββ= ′ b, (8.1 )

in which the state symbol’s position within the vector codes the particle’s number.)
Hence the permuted state

Pˆ ββ β β β β′ ≡ ′ ≡ ′ ⊗ , (8.2)1 2

where Pˆ is the permutation operator (defined by this equality), is clearly different
from the initial one.

Such operator may be also used for states of systems of identical particles. This
term may be used to describe:

(i) the ‘really elementary’ particles like electrons, which (at least at this stage of
development of physics) are considered as structure-less entities, and hence are all
identical;

(ii) any objects (e.g. hadrons or mesons) that may be considered as a system of
‘more elementary’ particles (e.g. quarks and gluons), but still are reliably placed in
the same quantum state—most simply, though not necessarily, to the ground state2.

It is important to note that identical particles still may be distinguishable—say by
their clear spatial separation. Such systems of similar but distinguishable particles
(or subsystems) are broadly discussed nowadays, for example in the context of
quantum computing and encryption—see section 8.5 below. This is why it is
insufficient to use the term ‘identical particles’ if we want to say that they are
genuinely indistinguishable, so below I will use the latter term, despite it being rather
unpleasant grammatically.

It turns out that for a quantitative description of systems of indistinguishable
particles we need to use, instead of direct products of the type (8.1), linear
combinations of products such products, for example of ∣ββ′〉 and ∣β′β〉.3 To see

2Note that from this point of view, even complex atoms or molecules, in the same quantum state, may be
considered on the same footing as the ‘really elementary’ particles. For example, the already mentioned recent
spectacular interference experiments by R Lopes et al, which require particle identity, were carried out with
couples of 4He atoms in the same internal state.
3A very legitimate question is why, in this situation, we need to introduce the particles’ numbers to start with.
A partial answer is that in this approach, it is much simpler to derive (or guess) the system Hamiltonians from
the correspondence principle—see, e.g. Eq. (8.27) below. Later in this chapter, we will discuss an alternative
approach (the so-called ‘second quantization’), in which particle numbering is avoided. While this approach is
more logical, writing adequate Hamiltonians (which, in particular, would avoid spurious self-interaction of the
particles) in it is much more challenging—see section 8.3 below.
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this, let us discuss properties of the permutation operator defined by Eq. (8.2).
Consider an observable A, and a system of eigenstates of its operator:

ˆ∣ 〉 = ∣ 〉A a A a . (8.3)j j j

If the particles are indistinguishable, the observable’s expectation value should not
be affected by their permutation. Hence the operators Â andPˆ have to commute,
and share their eigenstates. This is why eigenstates of the operator Pˆ are so
important: in particular, they include the eigenstates of the Hamiltonian, i.e. the
stationary states of a system of indistinguishable particles.

Let us have a look at the action of the permutation operator squared, on an
elementary ket-vector product:

P P P Pˆ ββ ˆ ˆ ββ ˆ β β ββ′ = ′ = ′ = ′( ) , (8.4)2

i.e. Pˆ 2 brings the state back to its original form. Since any pure state of a two-
particle system may be represented as a linear combination of such products, this
result does not depend on the state, and may be represented as the following
operator relation:

Pˆ = Î . (8.5)2

Now let us find the possible eigenvaluesP j of the permutation operator. Acting by
both sides of Eq. (8.5) on any of eigenstates ∣αj〉 of the permutation operator, we get
a very simple equation for its eigenvalues:

P = 1, (8.6)j
2

with two possible solutions:

P = ±1. (8.7)j

Let us find the eigenstates of the permutation operator in the simplest case when
each of the component particles can be only in one of two single-particle states—say,
β and β′. Evidently, none of the simple products ∣ββ′〉 and ∣β′β〉, taken alone, does
qualify for the eigenstate—unless the states β and β′ are identical. For this reason let
us try their linear combination

α ββ β β∣ 〉 = ′ + ′a b , (8.8)j

so that

P Pˆ α α β β ββ∣ 〉 = ∣ 〉 = ′ + ′a b . (8.9)j j j

For the caseP = +1j we have to require the states (8.8) and (8.9) to be the same, so
that a = b, giving the so-called symmetric eigenstate4

4As in many situations we have met earlier, the kets given by Eqs. (8.10) and (8.11) may be multiplied by
exp{iφ} with an arbitrary real phase φ. However, until we discuss coherent superpositions of various states α,
there is no good motivation for taking the phase different from 0; that would only clutter the notation.
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α ββ β β∣ 〉 = ′ + ′+
1

2
( ), (8.10)

where the front coefficient guarantees the orthonormality of the two-particle state,
provided that the single-particle states are orthonormal. Similarly, forP = −1j we
get a = − b, i.e. an antisymmetric eigenstate

α ββ β β∣ 〉 = ′ − ′−
1

2
( ). (8.11)

These are the simplest (two-particle, two-state) examples of entangled states, defined
as multiparticle system’s states whose vectors cannot be factored into a direct
product (8.1) of single-particle vectors.

So far, our math does not preclude either sign ofP j, in particular the possibility
that the sign depends on the state (i.e. on the index j). Here, however, comes in a
crucial experimental fact: all indistinguishable particles fall into two groups5:

(i) bosons, particles with integer spin s, for whose statesP = +1j , and
(ii) fermions, particles with half-integer spin, withP = −1j .

In the non-relativistic theory we are discussing now, this key fact should be
considered as an experimental one. (The relativistic quantum theory, whose elements
will be discussed in chapter 9, offers a proof that the half-integer-spin particles
cannot be bosons and the integer-spin ones cannot be fermions.) However, our
discussion of spin in section 5.7 enables the following plausible interpretation of the
fermion–boson difference. In the free space, the permutation of particles 1 and 2
may be viewed as a result of this pair’s rotation by angle ±π about a certain axis. As
we have seen in section 5.7, at the rotation by such an angle, the state vector ∣β〉 of a
particle with a quantum number ms (which ranges from −s to +s, and hence may
take only integer values for integer s, and only half-integer values for half-integer s)
changes by the factor exp{±iπms}, so that the state product ∣ββ′〉 has to change by
exp{±i2πms}, i.e. by the factor +1 for any integer s, and by the factor (−1) for any
half-integer s.

The most impressive corollaries of Eqs. (8.10) and (8.11) are for the case when the
partial states of the two particles are the same: β = β′. The corresponding Bose state
α+ is possible; in particular, at sufficiently low temperatures, a set of non-interacting
Bose particles condenses on the ground state of each of them—the so-called Bose–
Einstein condensate (‘BEC’).6 Perhaps the most fascinating feature of a Bose–
Einstein condensate is that the dynamics of its observables is governed by laws of

5 Sometimes this fact is described as having two different ‘statistics’: the Bose–Einstein statistics of bosons, and
Fermi–Dirac statistics of fermions, because their statistical distributions in thermal equilibrium are indeed
different—see, e.g. Part SM section 2.8. However, this difference is actually deeper: we are dealing with two
different quantum mechanics.
6 For a quantitative discussion of the Bose–Einstein condensation see, e.g. Part SM section 3.4. Examples of
such condensates include superfluids like helium, Cooper-pair condensates in superconductors, and BECs of
weakly interacting atoms.
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quantum mechanics, while (for nearly all purposes) they may be treated as c-
numbers—see, e.g. Eqs. (1.73) and (1.74).7

On the other hand, if we take β = β′ in Eq. (8.11), we see that state α− becomes the
null-state, i.e. cannot exist at all. This is the mathematical expression of the Pauli
exclusion principle8: two indistinguishable fermions cannot be in the same quantum
state. (As will be discussed below, this is true for systems with more than two
fermions as well.) Probably, the key importance of this principle is self-evident: if it
was not valid for electrons (that are fermions), all electrons of each atom would
condense on its ground (1s-like) level, and all the usual chemistry (and biochemistry,
and biology, including dear us!) would not exist. The Pauli principle makes fermions
implicitly interacting even if they do not interact directly, i.e. in the usual sense of
this word.

8.2 Singlets, triplets, and the exchange interaction
Now let us discuss possible approaches to quantitative analyses of identical particles,
starting from a simple case of two spin-½ particles (say, electrons), whose interaction
with each other and the external world does not involve spin. The description of such
a system may be based on factorable states with ket-vectors

α∣ 〉 = ∣ 〉 ⊗ ∣ 〉− o s , (8.12)12 12

with the orbital function ∣o12〉 and the spin function ∣s12〉 (that depends on the state of
both spins of the pair) belonging to different Hilbert spaces. It is frequently
convenient to use the coordinate representation of such a state, sometimes called
the spinor:

α ψ= ⊗ ∣ 〉 ≡ ∣ 〉− o s sr r r r r r, , ( , ) . (8.13)1 2 1 2 12 12 1 2 12

Since the spin-½ particles are fermions, the particle permutation has to change the
sign:

P ψ ψ ψˆ ∣ 〉 ≡ ∣ 〉 = − ∣ 〉s s sr r r r r r( , ) ( , ) ( , ) , (8.14)1 2 12 2 1 21 1 2 12

of either the orbital factor of the spinor, or its spin factor.
In particular, in the case of a symmetric orbital factor,

ψ ψ=r r r r( , ) ( , ), (8.15)2 1 1 2

the spin factor has to obey the relation

∣ 〉 = −∣ 〉s s . (8.16)21 12

7 For example, for the Bose–Einstein condensate of N ≫ 1 particles, the Heisenberg uncertainty relation may
be reduced to δNδφ > 1, where φ is the condensate wavefunction’s phase, so that it may have δN/〈N〉 ≪ 1 and
δφ ≪ 1 simultaneously.
8 It was formulated by W Pauli in 1925, on the basis of less general rules suggested by G Lewis (1916), I
Langmuir (1919), N Bohr (1922), and E Stoner (1924) for the explanation of experimental spectroscopic data.
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Let us use the ordinary z-basis (where z, in the absence of external magnetic field, is
an arbitrary spatial axis) for both spins. In this basis, the ket-vector of any two-spin
state may be represented as a linear combination of the four following basis vectors:

↑↑ ↓↓ ↑↓ ↓↑, , , and . (8.17)

The first two kets evidently do not satisfy Eq. (8.16), and cannot participate in the
state. Applying to the remaining kets the same argumentation as has resulted in
Eq. (8.11), we get

∣ 〉 = ∣ 〉 ≡ ↑↓ − ↓↑−s s
1

2
( ). (8.18)12

Such an orbital-symmetric and spin-asymmetric state is called the singlet.
The origin of this term becomes clear from the analysis of the opposite (orbital-

asymmetric and spin-symmetric) case:

ψ ψ= − ∣ 〉 = ∣ 〉s sr r r r( , ) ( , ), . (8.19)2 1 1 2 12 21

For the composition of such a symmetric spin state, the first two kets of Eq. (8.17)
are completely acceptable (with arbitrary weights), and so is an entangled spin state
that is a symmetric combination of the two last kets, similar to Eq. (8.10):

∣ 〉 ≡ ↑↓ + ↓↑+s
1

2
( ), (8.20)

so that the general spin state is a triplet:

∣ 〉 = ↑↑ + ↓↓ + ↑↓ + ↓↑+ −s c c c
1

2
( ). (8.21)12 0

Note that such a state, with values of the coefficients c (satisfying the normalization
condition), corresponds to the same orbital wavefunction and hence the same
energy. However, each of these three states has a specific value of the z-component
of the net spin—evidently equal to, respectively, +ℏ, −ℏ, and 0. Because of this, even
a small external magnetic field lifts their degeneracy, splitting the energy level in
three; hence the term ‘triplet’.

In the particular case when the particles do not interact at all, for example

ˆ = ˆ + ˆ ˆ =
ˆ

+ ˆ =H h h h
p

m
u kr,

2
( ), with 1, 2, (8.22)k

k
k1 2

2

the two-particle Schrödinger equation for the symmetrical orbital wavefunction
(8.15) is obviously satisfied by the direct products,

ψ ψ ψ= ′r r r r( , ) ( ) ( ), (8.23)n n1 2 1 2

of single-particle eigenfunctions, with arbitrary sets n, n′ of quantum numbers. For
the particular but very important case n = n′, this means that the eigenenergy of the
(only acceptable) singlet state,
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ψ ψ↑↓ − ↓↑ r r
1

2
( ) ( ) ( ), (8.24)n n1 2

is just 2εn, where εn is the single-particle energy level9. In particular, for the ground
state of the system, such singlet spin state gives the lowest energy Eg = 2εg, while any
triplet spin state (8.19) would require one of the particles to be in a different orbital
state, i.e. in a state of higher energy, so that the total energy of the system would be
also higher.

Now moving to the systems in which two indistinguishable spin-½ particles do
interact, let us consider, as their simplest but important10 example, the lower energy
states of a neutral atom11 of helium—more exactly, 4He. Such an atom consists of a
nucleus with two protons and two neutrons, with the total electric charge q = +2e,
and two electrons ‘rotating’ about the nucleus. Neglecting the small relativistic
effects that were discussed in section 6.3, the Hamiltonian describing the electron
motion may be expressed as

πε πε
ˆ = ˆ + ˆ + ˆ ˆ =

ˆ
− ˆ =

−
H h h U h

p

m
e

r
U

e
r r

,
2

2
4

,
4

. (8.25)k
k

k
1 2 int

2 2

0
int

2

0 1 2

As most problems of multiparticle quantum mechanics, the eigenvalue/eigenstate
problem for this Hamiltonian does not have an exact analytical solution, so let us
carry out its approximate analysis considering the electron–electron interaction Uint

as a perturbation. As was discussed in chapter 6, we have to start with the ‘0th-order’
approximation in which the perturbation is ignored, so that the Hamiltonian is
reduced to the sum (8.22). In this approximation, the ground state of the atom is the
singlet (8.24), with the orbital factor

ψ ψ ψ=r r r r( , ) ( ) ( ), (8.26)g 1 2 100 1 100 2

and the energy 2εg. Here each factor ψ100(r) is the single-particle wavefunction of
the ground (1s) state of the hydrogen-like atom with Z = 2, with quantum numbers
n = 1, l = 0, m = 0. According to Eqs. (3.174) and (3.208),

Rψ θ φ
π

= = = =−Y r
r

e r
r
Z

r
r( ) ( , ) ( )

1

4

2
, with

2
, (8.27)r r

100 0
0

1,0
0
3/2

/
0

B B0

so that according to Eqs. (3.191) and (3.201), in this approximation the total ground
state energy is

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟ε ε= = − = − = − ≈ −

= = =

E
n

Z E
E2 2

2
2

2
4 109 eV. (8.28)

n Z Z
g
(0)

g
(0) 0

2
1, 2

2
H

2

H

9 In this chapter, I try to use lower-case letters for all single-particle observables (in particular, ε for their
energies), in order to distinguish them as clearly as possible from system’s observables (including the total
energy E of the system), typeset in capital letters.
10 Indeed, helium makes up more than 20% of all ‘ordinary’ matter of our Universe.
11 Evidently, the positive ion He+1 of this atom, with just one electron, is fully described by the hydrogen-like
atom theory with Z = 2, whose ground-state energy, according to Eq. (3.191), is −Z2EH/2 = −2EH ≈ − 55.4 eV.
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This is still somewhat far (though not terribly far!) from the experimental value Eg ≈
−78.8 eV—see the bottom level in figure 8.1a.

Making a small (but useful) detour from our main topic, let us note that we can
get a much better agreement with experiment by calculating the electron interaction
energy in the 1st order of the perturbation theory. Indeed, in application to our
system, Eq. (6.14) reads

∫ ∫ ψ ψ= ˜ = *E U d r d r Ur r r r r rg g ( , ) ( , ) ( , ). (8.29)g
(1)

int
3

1
3

2 g 1 2 int 1 2 g 1 2

Plugging in Eqs. (8.25)–(8.27), we get

⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎫⎬⎭∫ ∫π πε

=
−

− +
E

r
d r d r

e r r
rr r

1
4

4
4

exp
2( )

. (8.30)g
(1)

0
3

2
3

1
3

2

2

0 1 2

1 2

0

As may be readily evaluated analytically (this exercise is left for the reader), this
expression equals (5/4)EH, so that the corrected ground state energy,

≈ + = − + = −E E E E( 4 5/4) 74.8 eV, (8.31)g g
(0)

g
(1)

H

is much closer to experiment.
There is still room for ready improvement, using the variational method discussed

in section 2.9. For our particular case of a 4He atom, we may try to use, as the trial
state, the wavefunction given by Eqs. (8.26) and (8.27), but with the atomic number

Figure 8.1. The lower energy levels of a helium atom: (a) experimental data and (b) a schematic structure of
an excited state in the first order of the perturbation theory. On panel (a), all energies are referred to that
(−2EH ≈ −55.4 eV) of the ground state of the positive ion He+1, so that their magnitudes are the (readily
measurable) energies of atom’s ionization starting from the corresponding bound state. Note that the ‘spin
direction’ nomenclature on panel (b) is rather crude: it does not reflect the difference between the entangled
states s+ and s−.
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Z considered as an adjustable parameter Zef < Z = 2 rather than a fixed number.
The physics behind this approach is that the electric charge density ρ(r) = −e∣ψ(r)∣2 of
each electron forms a negatively charged ‘cloud’ that reduces the effective charge of
the nucleus, as seen by another electron, to Zefe

2, with some Zef < 2. As a result, the
single-particle wavefunction spreads further in space (with the scale r0 = rB/Zef > rB/
Z), while keeping its functional form (8.27) nearly intact. Since the kinetic energy T in
system’s Hamiltonian (8.25) is proportional to r0

−2 ∝Zef
2, while the potential energy is

proportional to r0
−1 ∝ Zef

1, we can write

⎜ ⎟⎛
⎝

⎞
⎠= 〈 〉 + 〈 〉= =E Z

Z
T

Z
U( )

2 2
. (8.32)Z Zg ef

ef
2

g 2
ef

g 2

Now we can use the fact that according to Eq. (3.212), for any stationary state of
a hydrogen-like atom (just as for the classical circular motion in the Coulomb
potential), 〈U〉 = 2E, and hence 〈T〉 = E − 〈U〉 = −E. Using Eq. (8.30), and adding
the correction Ug

(1) = −(5/4)EH, calculated above, to the potential energy, we get

⎜ ⎟ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥= + − +E Z

Z Z
E( ) 4

2
8

5
4 2

. (8.33)g ef
ef

2
ef

H

This expression allows an elementary calculation of the optimal value of Zef, and the
corresponding minimum of the function Eg(Zef):

⎜ ⎟⎛
⎝

⎞
⎠= − = ≈ − ≈ −Z E E( ) 2 1

5
32

1.6875, ( ) 2.85 77.5 eV. (8.34)ef opt g min H

Given the trial state’s crudeness, this number is in a surprisingly good agreement
with experimental value cited above, with a difference of the order of 1%.

Now let us return to the basic topic of this section—the effects of particle (in this
case, electron) indistinguishability. As we have just seen, the ground level energy of
the helium atom is not affected directly by this fact, but the situation is different for
its excited states—even the lowest ones. The reasonably good convergence of the
perturbation theory, which we have seen for the ground state, tells us that we can
base our analysis of wavefunctions (ψe) of the lowest excited state orbitals, on
products like ψ100(rk)ψnlm(rk′), with n > 1. However, in order to satisfy the fermion
permutation rule,P = −1j , we have to take the orbital factor of the state in the either
symmetric or asymmetric form:

ψ ψ ψ ψ ψ= ±r r r r r r( , )
1

2
[ ( ) ( ) ( ) ( )], (8.35)nlm nlm1e 2 100 1 2 1 100 2

with the proper total permutation asymmetry provided by the corresponding spin
factor (8.18) or Eq. (8.21), so that the upper/lower sign in Eq. (8.35) corresponds to
the singlet/triplet spin state. Let us calculate the expectation values of the total
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energy of the system in the first order of the perturbation theory. Plugging Eq. (8.35)
into the 0th-order expression

∫ ∫ ψ ψ〈 〉 = ˆ + ˆ*E d r d r h hr r r r( , )( ) ( , ), (8.36)e
(0) 3

1
3

2 e 1 2 1 2 e 1 2

we get two groups of similar terms that differ only by the particle index. We can
merge the terms of each pair by changing the notation as (r1 → r, r2 → r′) in one of
them, and (r1 → r′, r2 → r) in the other term. Using Eq. (8.25), and the mutual
orthogonality of wavefunctions ψ100(r) and ψnlm(r), we get the following result:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∫

∫

ψ
πε

ψ

ψ
πε

ψ ε ε

〈 〉 = − ℏ ∇ −

+ ′ − ℏ ∇ −
′

′ ′ ≡ +

*

* ′

E
m

e
r

d r

m
e

r
d r

r r

r r

( )
2

2
4

( )

( )
2

2
4

( ) .

(8.37)

nlm nlm nlm

r

r

e
(0)

100

2 2 2

0
100

3

2 2 2

0

3
100

It may be interpreted as the sum of eigenenergies of two separate single particles, one
in the ground state 100, and another in the excited state nlm—despite the fact that
actually the electron states are entangled. Thus, in the 0th order of the perturbation
theory, the electron entanglement does not affect their energy.

However, the potential energy of the system also includes the interaction term
Uint, which does not allow such separation. Indeed, in the 1st approximation of the
perturbation theory, the total energy Ee of the system may be expressed as ε100 + εnlm
+ Eint

(1), with

∫ ∫ ψ ψ= 〈 〉 = *E U d r d r Ur r r r r r( , ) ( , ) ( , ), (8.38)int
(1)

int
3

1
3

2 e 1 2 int 1 2 e 1 2

Plugging Eq. (8.35) into this result, using the symmetry of the function Uint with
respect to the particle number permutation, and the same particle coordinate re-
numbering as above, we get

= ±E E E , (8.39)int
(1)

dir ex

with the following, deceivingly similar expressions for the two terms:

∫ ∫ ψ ψ ψ ψ≡ ′ ′ ′ ′* *E d r d r Ur r r r r r( ) ( ) ( , ) ( ) ( ), (8.40)nlm nlmdir
3 3

100 int 100

∫ ∫ ψ ψ ψ ψ≡ ′ ′ ′ ′* *E d r d r Ur r r r r r( ) ( ) ( , ) ( ) ( ). (8.41)nlm nlmex
3 3

100 int 100

Since the single-particle orbitals can be always made real, both components are
positive (or at least non-negative). However, their physics is completely different.
The integral (8.40), called the direct interaction energy, allows a simple semi-classical
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interpretation as the Coulomb energy of interacting electrons, each distributed in
space with the electric charge density ρ ψ ψ= − *er r r( ) ( ) ( ):12

∫ ∫ ∫
∫

ρ ρ
πε

ρ ϕ

ρ ϕ

= ′
′

− ′
≡

≡

E d r d r d r

d r

r r
r r

r r

r r

( ) ( )

4
( ) ( )

( ) ( ) ,
(8.42)

nlm
nlm

nlm

dir
3 3 100

0
100

3

100
3

where ϕ(r) are the electrostatic potentials created by the electrons’ ‘electric charge
clouds’:13
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However, the integral (8.41), called the exchange interaction energy, evades a
classical interpretation, and (as is clear from its derivation) is the direct corollary of
electrons’ indistinguishability. The magnitude of Eex is also very much different from
Edir, because the function under the integral (8.41) disappears in the regions where
single-particle wavefunctions do not overlap. This is in a full agreement with the
discussion in section 8.1: if two particles are identical but well separated, i.e. their
wavefunctions do not overlap, the exchange interaction disappears, i.e. measurable
effects of particle indistinguishability vanish.

Figure 8.1b shows the structure of an excited energy level, with certain quantum
numbers n > 1, l, and m, given by Eqs. (8.39)–(8.41). The upper, so-called
parahelium14 level, with the energy

ε ε ε ε= + + + > +E E E( ) , (8.44)nlm nlmpara 100 dir ex 100

corresponds to the symmetric orbital state and hence to the singlet spin state (8.18),
while the lower, orthohelium level, with

ε ε= + + − <E E E E( ) , (8.45)nlmorth 100 dir ex para

corresponds to the degenerate triplet spin state (8.21). This degeneracy may be lifted
by an external magnetic field, whose effect of the electron spins15 is described by the
following evident generalization of the Pauli Hamiltonian (4.163),

12 See, e.g. Part EM section 1.3, in particular Eq. (1.54).
13Note that the result for Edir correctly reflects the basic fact that a charged particle does not interacts with
itself, even if its wavefunction is quantum-mechanically spread over a finite space volume. Unfortunately, this
is not true for some other approximate theories of multiparticle systems—see section 8.4 below.
14 This traditional terminology reflects the historic fact that the observation of two different hydrogen-like
spectra, corresponding to opposite signs in Eq. (8.39), was first taken as an evidence for two different species of
4He, which were called, respectively, the ‘orthohelium’ and the ‘parahelium’.
15As we know from section 6.4, the field also affects the orbital motion of the electrons, so that the simple
analysis based on Eq. (8.46) is strictly valid only for the s excited state (l = 0, and hence m = 0). However,
orbital effects of a very weak magnetic field do not affect the triplet level splitting we are analyzing now.
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BB BB BBγ γ γ γ γ μˆ ˆ ˆˆ = − ⋅ − ⋅ ≡ − ⋅ = ≡ − ≡ −
ℏ

H
e

m
s s S , with

2
, (8.46)field 1 2 e

e
B

where

ˆ ˆ ˆ≡ +S s s , (8.47)1 2

is the operator of the (vector) sum of the system of two spins16.
In order to analyze this effect, we need first to make one more detour, to address

the general issue of spin addition. The main rule17 here is that in a full analogy with
the net spin of a single particle, defined by Eq. (5.170), the net spin operator (8.47) of
any system of two spins, and its component Ŝz along an arbitrary axis, obey the same
commutation relations (5.168) as the component operators, and hence have proper-
ties similar to those expressed by Eqs. (5.169) and (5.175):

ˆ ∣ 〉 = ℏ + ∣ 〉
ˆ ∣ 〉 = ℏ ∣ 〉 − ⩽ ⩽ +

S S M S S S M

S S M M S M S M S

, ( 1) , ,

, , , with ,
(8.48)S S

z S S S S

2 2

where the ket vectors correspond to the coupled basis of joint eigenstates of the
operators of S2 and Sz (but not necessarily all component operators—see again the
Venn shown in figure 5.12 and its discussion, with the replacements S, L → s1,2 and
J → S). Repeating the discussion of section 5.7 with these replacements, we see that
in both coupled and uncoupled bases, the net magnetic number MS is simply
expressed via those of the components

= +M m m( ) ( ) . (8.49)S s s1 2

However, the net spin quantum number S (in contrast to the Nature-given spins s1,2
of its elementary components) is not quite certain, and we may immediately say only
that it has to obey the following analog of the relation ∣l − s∣ ⩽ j ⩽ l + s, discussed in
section 5.7:

− ⩽ ⩽ +s s S s s . (8.50)1 2 1 2

What exactly S is (within these limits), depends on the spin state of the system.
For the simplest case of two spin-½ components, with each s = ½ and ms = ±½,

Eq. (8.49) gives three possible values of MS, equal to 0 and ±1, while Eq. (8.50)
limits the possible values of S to just either 0 or 1. Using the last of Eqs. (8.48), we
see that the possible combinations of the quantum numbers are

16Note that similarly to Eqs. (8.22) and (8.25), here the uppercase notation of the component spins is replaced
with their lowercase notation, to avoid any possibility of their confusion with the total spin of the system.
17 Since we already know that the spin of a particle is physically nothing more than a (specific) part of its
angular momentum, the similarity of the properties (8.48) of the sum (8.47) of spins of different particles to
those of the sum (5.170) of different spin components of the same particle is very natural, but still has to be
considered as a new law of Nature—confirmed by a vast body of experimental data.
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⎧⎨⎩
⎧⎨⎩

=
=

=
= ±

S
M

S
M

0,
0,

and
1,
0, 1.

(8.51)
S S

It is virtually evident that the singlet spin state s− belongs to the first class, while the
simple (separable) triplet states ↑↑ and ↓↓ belong to the second class, with MS = +1
andMS = −1, respectively. However, for the entangled triplet state s+, evidently with
MS = 0, the value of S is less obvious. Perhaps the easiest way to recover it18 is to use
the ‘rectangular diagram’, similar to that shown in figure 5.14, but redrawn for our
case, i.e. with the replacements ml → (ms)1 = ±½, ms → (ms)2 = ±½—see figure 8.2.

Just as at the addition of angular momenta of a single particle, the top-right and
bottom-left corners of this diagram correspond to the factorable triplet states ↑↑ and
↓↓, which participate in both the uncoupled-representation and coupled-representa-
tion bases, and have the largest value of S, i.e. 1. However, the entangled states s±,
which are linear combinations of the uncoupled-representation states ↑↓ and ↓↑,
cannot have the same value of S, so that for the triplet state s+, S has to take the
value different from that (0) of the singlet state, i.e. 1. With that, the first of Eqs.
(8.48) gives the following expectation values for the square of the net spin operator:

⎧⎨⎩〈 〉 = ℏ
S

2 , for each triplet state,
0, for the singlet state.

(8.52)2
2

Note that for the entangled triplet state s+, whose ket-vector (8.20) is a linear
superposition of two kets of states with opposite spins, this result is highly counter-
intuitive, and shows how careful we should be interpreting quantum entangled
states. (As will be discussed in chapter 10, the entanglement brings even more
surprises for quantum measurements.)

Now returning for a moment to the particular issue of the magnetic field effect on
the spins of 4He atom’s electrons, directing the axis z along the field, we may reduce
Eq. (8.46) to

Figure 8.2. The ‘rectangular diagram’ showing the relation between the uncoupled-representation states (dots)
and the coupled-representation states (straight lines) of a system of two spins-½—cf. figure 5.14.

18Another, somewhat longer but perhaps more prudent way is to directly calculate the expectation values of Ŝ2

for the states s±, and then find S by comparing the results with the first of Eqs. (8.48); it is highly recommended
to the reader as a useful exercise.
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B Bγ μˆ = − ˆ ≡
ˆ

ℏ
H S

S
2 . (8.53)z

z
field e B

Since all three triplet states (8.21) are eigenstates, in particular, of the operator Ŝz,
and hence of this Hamiltonian, we may use the second of Eqs. (8.48) to calculate
their energy change simply as

⎧
⎨⎪
⎩⎪

B Bμ μΔ = = ×
+ ↑ ↑

− ↓ ↓
+E M s2 2

1, for the factorable triplet state ,
0, for the entangled triplet state ,
1, for the factorable triplet state .

(8.54)Sfield B B

This splitting of the ‘orthohelium’ level is schematically shown in figure 8.1b.19

8.3 Multiparticle systems
Leaving several other problems on two-particle systems for the reader’s exercise, let
me proceed to the discussion of systems with N > 2 indistinguishable particles,
whose list notably includes atoms, molecules, and condensed-matter systems. In this
case, Eq. (8.7) for fermions is generalized as

Pˆ α α∣ 〉 = −∣ 〉 ′ = …′ − − k k N, for all , 1, 2, , , (8.55)kk

where the operatorPˆ ′kk permutes particles with numbers k and k′. As a result, for
systems with non-directly-interacting fermions, the Pauli principle forbids any state
in which any two particles have similar single-particle wavefunctions. Nevertheless,
it permits two fermions to have similar orbital wavefunctions, provided that their
spins are in the singlet state (8.18), because this satisfies the permutation requirement
(8.55). This fact has the paramount importance for the ground state of the systems
whose Hamiltonians do not depend on spin, because it allows the fermions to be in
their orbital single-particle ground states, with two electrons of the spin singlet
sharing the same orbital state. Hence, for the limited (but very important!) goal of
finding ground-state energies of multi-fermion systems with negligible direct
interaction, we may ignore the actual singlet spin structure, and reduce the Pauli
exclusion principle to the simple picture of single-particle orbital energy levels, each
‘occupied’ with two fermions.

As a very simple example, let us find the ground energy of five fermions, confined
in a hard-wall, cubic-shaped 3D volume of side a, ignoring their direct interaction.
From section 1.7, we know the single-particle energy spectrum of the system:

19 It is interesting that another very important two-electron system, the hydrogen (H2) molecule, which was
briefly discussed in section 2.6, also has two similarly named forms, parahydrogen and orthohydrogen.
However, their difference is due to two possible (respectively, singlet and triplet) states of the system of two
spins of the hydrogen nuclei (protons), which are also spin-½ particles. The resulting energy of the
parahydrogen is lower than that of the orthohydrogen by only ∼45 meV per molecule—the difference
comparable with kBT at room temperature (∼26 meV). As a result, at the ambient conditions, the equilibrium
ratio of these two spin isomers is close to 3:1. Curiously, the theoretical prediction of this minor effect by W
Heisenberg (together with F Hund) in 1927 was cited in his 1932 Nobel Prize award as the most noteworthy
application of quantum theory.
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ε ε ε π= + + ≡ ℏ = …( )n n n
ma

n n n, with
2

, and , , 1, 2, (8.56)n n n x y z x y z, , 0
2 2 2

0

2 2

2x y z

so that the lowest-energy states are:

– one ground state with {nx,ny,nz} = {1,1,1}, and energy ε111 = (12 + 12 + 12)ε0 =
3ε0, and

– three excited states, with {nx,ny,nz} equal to {2,1,1}, {1,2,1}, and {1,1,2}, with
equal energies ε211 = ε121 = ε112 = (22 + 12 + 12)ε0 = 6ε0.

According to the above simple formulation of the Pauli principle, each of these
orbital energy levels can accommodate up to two fermions. Hence the lowest-energy
(ground) state of the five-fermion system is achieved by placing two of them on the
ground level ε111 = 3ε0, and the remaining three particles, in any degenerate ‘excited’
states of energy 6ε0, so that the ground-state energy of the system is

ε ε ε π= × + × ≡ ≡ ℏ
E

ma
2 3 3 6 24

12
. (8.57)g 0 0 0

2 2

2

Moreover, in many cases a relatively weak interaction between fermions does not
blow up such a simple quantum state classification scheme qualitatively, and the
Pauli principle allows tracing the order of single-particle state filling. This is exactly
the simple approach that has been used at our discussion of atoms in section 3.7.
Unfortunately, it does not allow for a more specific characterization of the ground
states of most atoms, in particular the evaluation of the corresponding values of the
quantum numbers S, L, and J that characterize the net angular momenta of the
atom, and hence its response to external magnetic field. These numbers are defined
by relations similar to Eqs. (8.48), for the vector-operators of total angular
momenta:

∑ ∑ ∑ˆ ˆ ˆ ˆ ˆ ˆ≡ ≡ ≡
= = =

S s L l J j, , ; (8.58)
k

N

k

N

k

N

1 1 1

k k k

note that these definitions are consistent with Eq. (5.170) applied both to the angular
momenta sk, lk, and jk of each particle, and to the full vectors S, L, and J. When the
numbers S, L, and J for a state are known, they are traditionally recorded in the
form of the so-called Russell–Saunders symbols20:

L+ , (8.59)S
J

2 1

where S and J are the corresponding values of these quantum numbers, whileL is a
capital letter, encoding the quantum number L via the same spectroscopic notation
as for single particles (see section 3.6):L = S for L = 0,L = P for L = 1,L = D for
L = 2, etc. (The reason why the front superscript of the Russel–Saunders symbol lists
2S + 1 rather than S, is that according to the last of Eqs. (8.48), it shows the number

20Named after H Russell and F Saunders, whose pioneering (circa 1925) processing of experimental spectral-
line data has established the very idea of vector addition of electron spins, described by the first of Eqs. (8.58).
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of possible values of the quantum number MS, which characterizes the state’s spin
degeneracy, and is called its multiplicity.)

For example, for the simplest, hydrogen atom (Z = 1), with its single electron in the
ground1s state,L= l= 0,S= s=½,and J=S=½, so that itsRussell–Saunders symbol is
2S1/2. Next, the discussion of the helium atom (Z = 2) in the previous section has shown
that in its ground state L= 0 (because of the 1s orbital state of both electrons), and S= 0
(becauseof the singlet spin state), so that the total angularmomentumalsovanishes:J=0.
As a result, theRussell–Saunders symbol is 1S0.The structure of the next atom, lithium (Z
= 3) is also easy to predict, because, as was discussed in section 3.7, its ground-state
electron configuration is 1s22s1, i.e. includes two electrons in the ‘helium shell’, i.e. on the
1s orbitals (nowwe know that they are actually in a singlet spin state), and one electron in
the 2s state, of much higher energy, also with zero orbital moment, l = 0. As a result, the
totalL in this state is evidently equal to 0, andS is equal to½, so that J=½,meaning that
the Russell-Saunders symbol of lithium is 2P1/2. Even the next atom, beryllium (Z = 4),
with the ground-state configuration 1s22s2, is readily predictable, because none of its
electronshasorbitalmomentum,givingL=0.Also, eachelectronpair is in the singlet spin
state, i.e. we haveS= 0, so that J= 0—the quantumnumber set described by theRussell-
Saunders symbol 1S0—just as for helium.

However, for the next, boron atom (Z = 5), with its ground-state electron
configuration 1s22s22p1 (see, e.g. figure 3.24), there is no obvious way to predict the
result. Indeed, this atom has two pairs of electrons, with opposite spins, on its two
lowest s-orbitals, giving zero contributions to the net S, L, and J. Hence these total
quantum numbers may be only contributed by the last, fifth electron with s = ½ and
l = 1, giving S =½, L = 1. As was discussed in section 5.7 for the single-particle case,
the vector addition of the angular momenta S and L enables two values rather than
one of the quantum number J: either L + S = 3/2, or L − S = ½. Experiment shows
that the difference between the energies of these two states is very small (∼2 meV), so
that at room temperature they are both occupied, with the genuine ground state
having J = ½, so that its Russell–Saunders symbol is 2P1/2.

Such energy differences, which become larger for heavier atoms, are determined
both by the Coulomb and spin–orbit21 interactions between the electrons. Their
quantitative analysis is rather involved (see below), but the results tend to follow
simple phenomenological Hund rules, with the following hierarchy:

Rule 1. For a given electron configuration, the ground state has the largest
possible S, and hence the largest multiplicity.

Rule 2. For a given S, the ground state has the largest possible L.

Rule 3. For given S and L, J has its smallest possible value, ∣L − S∣, if the given
sub-shell {n, l} is filled not more than by half, while in the opposite case, J has its
largest possible value, L + S.

21 In light atoms, the spin–orbit interaction is so weak that it may be reasonably well described as interaction of
the total momenta L and S of the system—the so-called LS (or ‘Russell–Saunders’) coupling. On the other
hand, in very heavy atoms, the interaction is effectively between the net momenta jk = lk + sk of the individual
electrons—the so-called jj coupling. This is the reason why in such atoms the Hund’s Rule 3 may be violated.
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Let us see how these rules work for the boron atom. For it, the Hund Rules 1 and
2 are satisfied automatically, while the sub-shell {n = 2, l = 1}, which can house up to
(2l + 1)s = 6 electrons, is filled less than by half with just one 2p electron. As a result,
the Hund Rule 3 predicts the ground state’s value J = ½, in agreement with
experiment. Generally, for lighter atoms the Hund rules are well obeyed. However,
the lower down the Hund rule hierarchy, the less ‘powerful’ the rules are, i.e. in more
heavier atoms they are violated.

Now let us discuss possible approaches to a quantitative theory of multiparticle
systems—not only atoms. As was discussed in section 8.1, if fermions do not interact
directly, the stationary states of the system have to be the antisymmetric eigenstates
of the permutation operator, i.e. satisfy Eq. (8.55). In order to understand how such
states may be formed from the single-electron ones, let us return for a minute to the
case of two electrons, and rewrite Eq. (8.11) in the following compact form:

(8.60a)

where the direct product signs are just implied. In this way, the Pauli principle is
mapped on the well-known property of matrix determinants: if any of two columns
of a matrix coincide, its determinant vanishes. This Slater determinant approach22

may be readily generalized to N fermions in N (not necessarily the lowest) single-
particle states β, β′, β″, etc:

⎫
⎬⎪

⎭⎪� ����� �����

α

β β β
β β β
β β β

→

∣ 〉 =
!

′ ″ …
′ ″ …
′ ″ …

… … … … ↓
−

N
N b

state list

1
( )

particle
list (8.60 )

N

1/2

Even though the Slater determinant form is extremely nice and compact (in
comparison with direct writing of a sum of N! products, each of N ket factors), there
are two major problems with using it for practical calculations:

(i) For the calculation of any bra–ket product (say, within the perturbation
theory) we still need to spell out each bra- and ket-vector as a sum of component
terms. Even for a limited number of electrons (say N ∼ 102 in a typical atom), the
number N! ∼ 10160 of terms in such a sum is impracticably large for any analytical
or numerical calculation.

(ii) In the case of interacting fermions, the Slater determinant does not describe
the eigenvectors of the system; rather the stationary state is a superposition of such

22 It was suggested in 1929 by J Slater.
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basis functions, i.e. the Slater determinants—each for a specific selection of N states
from the general set of single-particle states—that is generally larger than N.

For atoms and simple molecules, whose filled-shell electrons may be excluded
from an explicit analysis (by describing their effects, approximately, with effective
pseudo-potentials), the effective number N may be reduced to a smaller number Nef

of the order of 10, so that Nef! < 106, and the Slater determinants may be used for
numerical calculations—for example, in the Hartree–Fock theory—see the next
section. However, for condensed-matter systems, such as metals and semiconduc-
tors, with the number of free electrons is of the order of 1023 per cm3, this approach
is generally unacceptable, though with some smart tricks (such as using crystal
periodicity) it may be still used for some approximate (also numerical) calculations.

These challenges make the development of a more general theory that would not
use particle numbers (which are superficial for indistinguishable particles to start
with) a must for getting any final analytical results for multiparticle systems. The
most effective formalism for this purpose, that avoids particle numbering at all, is
called the second quantization23. Actually, we have already discussed a particular
version of this formalism, for the case of 1D harmonic oscillator, in section 5.4. As a
reminder, after the definition (5.65) of the ‘creation’ and ‘annihilation’ operators via
those of the particle’s coordinate and momentum, we have derived their key
properties (5.89),

ˆ = − ˆ = + +†a n n n a n n n1 , ( 1) 1 , (8.61)1/2 1/2

where n were the stationary (Fock) states of the oscillator. This property allows an
interpretation of the operators’ actions as the creation/annihilation of a single
excitation with the energy ℏω0—thus justifying the operator names. In the next
chapter, we will show that such an excitation of an electromagnetic field mode may
be interpreted as a massless boson with s = 1, called the photon.

In order to generalize this approach to arbitrary bosons, not appealing to a
specific system, we may use relations similar to Eq. (8.61) to define the creation and
annihilation operators. The definitions look simple in the language of the so-called
Dirac states, described by ket-vectors

∣ … …〉N N N, , , , (8.62)j1 2

where Nj is the state occupancy, i.e. the number of bosons in the single-particle state
j. Let me emphasize that here the indices 1, 2, …j,… number single-particle states
(including their spin parts) rather than particles. Thus the very notion of an
individual particle’s number is completely (and for indistinguishable particles,
very relevantly) absent from this formalism. Generally, the set of single-particle

23 It was invented (first for photons and then for arbitrary bosons) by P Dirac in 1927, and then modified in
1928 for fermions by E Wigner and P Jordan. Note that the term ‘second quantization’ is rather misleading for
the non-relativistic applications we are discussing here, but finds certain justification in the quantum field
theory.
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states participating in the Dirac state may be selected in an arbitrary way, provided
that it is full and orthonormal in the sense

δ δ δ′ ′… ′ … … … = … …′ ′ ′′N N N N N N, , , , , , , (8.63)j j N N N N N N1 2 1 2
j j1 1 2 2

though for systems of non- (or weakly) interacting bosons, using the stationary states
of individual particles in the system under analysis is almost always the best choice.

Now we can define the particle annihilation operator as follows:

ˆ ∣ … …〉 ≡ ∣ … − …〉a N N N N N N N, , , , , 1, . (8.64)j j j j1 2
1/2

1 2

Note that the pre-ket coefficient, similar to that in the first of Eqs. (8.61), guarantees
that an attempt to annihilate a particle in an unpopulated state gives the non-
existing (‘null’) state:

ˆ ∣ … …〉 =a N N, , 0 , 0, (8.65)j j1 2

where the symbol 0j means zero occupancy of the jth state. According to Eq. (8.63),
an alternative way to write Eq. (8.64) is

δ δ δ′ ′ … ′ … ˆ … = … …′ ′ ′ −N N N a N N N N, , , , . , , .., , (8.66)j j j j N N N N N N1 2 1 2
1/2

, 1j j1 1 2 2

According to the general Eq. (4.65), the matrix element of the Hermitian conjugate
operator ˆ †a j is

δ δ δ

δ δ δ

′ ′ … ′ … ˆ … …

= … … ˆ ′ ′ … ′ …

= … … ′ ′ ′ … ′ − …

= ′ … …

= + … …

′ ′ ′

′ ′ ′

†

*

−

+

( )

( )

N N N a N N N

N N N a N N N

N N N N N N N

N

N

, , , , , , ,

, , , , , , , ,

, , , , , , , 1,

( 1) ,

(8.67)

j j j

j j j

j j j

j N N N N N N

j N N N N N N

1 2 1 2

1 2 1 2

1 2

1/2

1 2

1/2

, 1

1/2
1,

j j

j j

1 1 2 2

1 1 2 2

meaning that

ˆ ∣ … …〉 = + ∣ … + …〉†a N N N N N N N, , , , ( 1) , , , 1, , (8.68)j j j j1 2
1/2

1 2

in the total compliance with the second of Eqs. (8.61). In particular, this particle
creation operator allows the description of the generation of a single particle from
the vacuum (not null!) state ∣0, 0, …〉:

ˆ ∣ … … 〉 = ∣ … … 〉†a 0, 0, , 0 , , 0 0, 0, , 1 , 0 , (8.69)j j j
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and hence a product of such operators may create, from the vacuum, a multiparticle
state with an arbitrary set of occupancies24:

� �� �� � �� ��ˆ ˆ … ˆ ˆ ˆ … ˆ … … = ! !… ∣ …〉† † † † † †a a a a a a N N N N0, 0, ( ) , , .
(8.70)

N Ntimes times

1 1 1 2 2 2 1 2
1/2

1 2

1 2

Next, combining Eqs. (8.64) and (8.68), we get

ˆ ˆ ∣ … …〉 = ∣ … …〉†a a N N N N N N N, , , , , , , , (8.71)j j j j j1 2 1 2

so that, just as for the particular case of harmonic oscillator excitations, the operator

ˆ ≡ ˆ ˆ†N a a (8.72)j j j

‘counts’ the number of particles in the jth single-particle state, while preserving the
whole multiparticle state. Acting on a state by the creation–annihilation operators in
the reverse order, we get

ˆ ˆ ∣ … …〉 = + ∣ … …〉†a a N N N N N N N, , , , ( 1) , , , , . (8.73)j j j j j1 2 1 2

Eqs. (8.71) and (8.73) show that for any state of a multiparticle system (which always
may be represented as a linear superposition of Dirac states with all possible sets of
numbers Nj), we may write

ˆ ˆ − ˆ ˆ ≡ ˆ ˆ = ˆ† † †a a a a a a I[ , ] , (8.74)j j j j j j

again in agreement with what we had for the 1D oscillator—cf. Eq. (5.68).
According to Eqs. (8.63), (8.64) and (8.68), the creation and annihilation operators
corresponding to different single-particle states do commute, so that Eq. (8.74) may
be generalized as

δˆ ˆ = ˆ′
†

′a a I[ , ] , (8.75)j j jj

while the similar operators commute, regardless of which states do they act upon:

⎡⎣ ⎤⎦ˆ ˆ = ˆ ˆ = ˆ†
′

†
′a a a a, [ , ] 0. (8.76)j j j j

As was mentioned earlier, a major challenge in the Dirac approach is to rewrite
the Hamiltonian of a multiparticle system, that naturally carries particle numbers k
(see, e.g. Eq. (8.22) for k = 1, 2), in the second quantization language, in which there
are not these numbers. Let us start with single-particle components of such
Hamiltonians, i.e. operators of the type

∑ˆ = ˆ
=

F f . (8.77)
k

N

1
k

24 The resulting Dirac state is not an eigenstate of every multiparticle Hamiltonian. However, we will see below
that for a set of non-interacting particles it is a stationary state, so that the full set of such states may be used as
a good basis in perturbation theories of systems of weakly interacting particles.
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where all N operators f̂k are similar, besides that each of them acts on one specific
(kth) particle, and N is the total number of particles in the system, which is evidently
equal to the sum of single-particle state occupancies:

∑=N N . (8.78)
j

j

The most important examples of such operators are the kinetic energy of N similar
single particles, and their potential energy in an external field:

∑ ∑ˆ =
ˆ ˆ = ˆ

= =

T
p

m
U u r

2
, ( ). (8.79)

k

N

k

N

1 1

k
k

2

For bosons, instead of the Slater determinant (8.60), we have to write a similar
expression, but without the sign alternation at permutations:

⎛
⎝⎜

⎞
⎠⎟ � �� ��∑ ββ β∣ … …〉 =

!… !…
!

… ′ ″…N N
N N

N
, , , (8.80)

P N operands

j
j

1
1

1/2

sometimes called the permanent. Note again that the left-hand side of this relation is
written in the Dirac notation (that does not use particle numbering), while on its
right-hand side, just in relations of sections 8.1 and 8.2, the particle numbers are
coded with the positions of the single-particle states inside the ket-vectors, and the
sum is over all different permutations of the states in the ket—cf. Eq. (8.10).
(According to the basic combinatorics25, there are N!/(N1!…Nj!…) such permuta-
tions, so that the front coefficient in Eq. (8.80) ensures the normalization of the
Dirac state, provided that the single-particle states β, β′, …are normalized.) Let us
use Eq. (8.80) to spell out the following matrix element for a system with (N − 1)
particles:

∑ ∑ ∑ββ β ββ β

〈… … − …∣ ˆ∣… − … …〉

=
!… − !… − !…

− !

× … ′ ″… ˆ … ′ ″…
− − =

−

′ ′

′
′

N N F N N

N N N

N
N N

f

, 1, 1, ,

( 1) ( 1)

( 1)
( )

,

(8.81)

P N P N k

N

1 1 1

1

j j j j

j j
j j

k

1 1/2

where all non-specified occupation numbers in the corresponding positions of the
bra- and ket-vectors are equal to each other. Each single-particle operator f̂k,
participating in the operator sum, acts on the bra- and ket-vectors of states only in
one (kth) position, giving the result, which does not depend on the position number:

25 See, e.g. Eq. (A.6).
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β β β β〈 ∣ ˆ ∣ 〉 = 〈 ∣ ˆ ∣ 〉 ≡′ ′ ′f f f . (8.82)j k k j k j j jjin position in positionth th

Since in both permutation sets participating in Eq. (8.81), with (N − 1) state vectors
each, all positions are equivalent, we can fix the position (say, take the first one) and
replace the sum over k with the multiplication by of the bracket by (N − 1). The
fraction of permutations with the necessary bra-vector (with number j) in that
position is Nj /(N − 1), while that with the necessary ket-vector (with number j′) in
the same position in Nj′/(N − 1). As a result, the permutation sum in Eq. (8.81)
reduces to

∑ ∑ ββ β ββ β−
− −

… ′ ″… … ′ ″…
− −

′
′N

N

N

N

N
f( 1)

1 1
, (8.83)

P N P N2 2

j j
jj

where our specific position k is now excluded from both the bra- and ket-vector
permutations. Each of these permutations now includes only (Nj − 1) states j and
(Nj′ − 1) states j′, so that, using the state orthonormality, we finally arrive at a very
simple result:

〈… … − …∣ ˆ∣… − … …〉

=
!… − !… − !…

− !
−

×
− −

− !
!… − !… − !…

≡

′ ′

′
′

′
′

′
′ ′

N N F N N

N N N

N
N N N

N

N

N

N
f

N
N N N

N N f

, 1, 1, ,

( 1) ( 1)

( 1)
( ) ( 1)

1 1
( 2)

( 1) ( 1)
( ) .

(8.84)

j j j j

j j
j j

j j
jj

j j
j j jj

1 1/2

1

1/2

On the other hand, let us calculate matrix elements of the following operator:

∑ ˆ ˆ
′

′
†

′f a a . (8.85)
j j,

jj j j

A direct application of Eqs. (8.64) and (8.68) shows that the only nonvanishing of
the elements are

〈… … − …∣ ˆ ˆ ∣… − … …〉 =′ ′
†

′ ′ ′ ′N N f a a N N N N f, 1, 1, , , ( ) . (8.86)j j jj j j j j j j jj
1/2

But this is exactly the last form of Eq. (8.84), so that in the basis of Dirac states, the
operator (8.77) may be represented as

∑ˆ = ˆ ˆ
′

′
†

′F f a a . (8.87)
j j,

jj j j

This beautifully simple equation is the key formula of the second quantization
theory, and is essentially the Dirac-language analog of Eq. (4.59) of the single-
particle quantum mechanics. Each term of the sum (8.87) may be described by a very
simple mnemonic rule: for each pair of single-particle states j and j′, kill a particle in
the state j′, create one in the state j, and weigh the result with the corresponding
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single-particle matrix element. One of corollaries of Eq. (8.87) is that the expectation
value of an operator whose eigenstates coincide with the Dirac states, is

∑≡ 〈… …∣ ˆ∣… …〉 =F N F N f N, , , (8.88)
j

j j jj j

with an evident physical interpretation as the sum of single-particle expectation
values over all states, weighed by the occupancy of each state.

Proceeding to fermions, which have to obey the Pauli principle, we immediately
notice that any occupation number Nj may only take two values, 0 or 1. In order to
account for that, and also make the key relation (8.87) valid for fermions as well, the
creation–annihilation operators are now defined by the following relations:

ˆ ∣ … …〉 =
ˆ ∣ … …〉 = − ∣ … …〉Σ −

a N N

a N N N N

, , , 0 , 0,

, , , 1 , ( 1) , , , 0 , ,
(8.89)

j j

j j
j

j

1 2

1 2
(1, 1)

1 2

ˆ ∣ … …〉 = − ∣ … …〉

ˆ ∣ … …〉 =

† Σ −

†

a N N N N

a N N

, , , 0 , ( 1) , , , 1 , ,

, , , 1 , 0,
(8.90)

j j
j

j

j j

1 2
(1, 1)

1 2

1 2

where the symbol Σ(J, J′) means the sum of all occupancy numbers in the states with
numbers from J to J′, including the border points:

∑Σ ′ ≡
=

′

J J N( , ) , (8.91)
j J

J

j

so that the sum participating in Eqs. (8.89) and (8.90) is the total occupancy of all
states with the numbers below j. (The states are supposed to be numbered in a fixed
albeit arbitrary order.) As a result, these relations may be conveniently summarized
in the following verbal form: if an operator replaces the jth state’s occupancy with
the opposite one (either 1 with 0, or vice versa), it also changes the sign before the
result if (and only if) the total number of particles in the states with j′ < j is odd.

Let us use this (perhaps somewhat counter-intuitive) sign alternation rule to spell
out the ket-vector ∣11〉 of a completely filled two-state system, formed from the
vacuum state ∣00〉 in two different ways. If we start from creating a fermion in the
state 1, we get

ˆ = − ≡
ˆ ˆ = ˆ = − ≡ −

†

† † †

a

a a a
a

0, 0 ( 1) 1, 0 1, 0 ,

0, 0 1, 0 ( 1) 1, 1 1, 1 ,
(8.92 )1

0

2 1 2
1

while if the operator order is different, the result is

ˆ = − ≡
ˆ ˆ = ˆ = − ≡

†

† † †

a

a a a
b

0, 0 ( 1) 0, 1 0, 1 ,

0, 0 0, 1 ( 1) 1, 1 1, 1 ,
(8.92 )2

0

1 2 1
0
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so that

ˆ ˆ + ˆ ˆ =† † † †( )a a a a 0, 0 0. (8.93)1 2 2 1

Since the action of any of these operator products on any initial state rather than the
vacuum one also gives the null ket, we can write the following operator equality:

ˆ ˆ + ˆ ˆ ≡ ˆ ˆ = ˆ† † † † † †{ }a a a a a a, 0. (8.94)1 2 2 1 1 2

It is straightforward to check that this result is valid for the Dirac vector of an
arbitrary length, and does not depend on the occupancy of other states, so that we
can always write

ˆ ˆ = ˆ ˆ = ˆ†
′

†
′{ }a a a a, { , } 0; (8.95)j j j j

these equalities hold for j = j′ as well. On the other hand, an absolutely similar
calculation shows that the mixed creation–annihilation commutators do depend on
whether the states are different or not26:

δˆ ˆ = ˆ′
†

′a a I{ , } . (8.96)j j jj

These equations look very much like Eqs. (8.75) and (8.76) for bosons, ‘only’ with
the replacement of commutators with anticommutators. Since the core laws of
quantum mechanics, including the operator compatibility (section 4.5) and the
Heisenberg equation (4.199) of operator evolution in time, involve commutators
rather than anticommutators, one might think that all the behavior of bosonic and
fermionic multiparticle systems should be dramatically different. However, the
difference is not as huge as one could expect; indeed, a straightforward check shows
that the sign factors in Eqs. (8.89) and (8.90) just compensate those in the Slater
determinant, and thus make the key relation (8.87) valid for the fermions as well.
(Indeed, this is the very goal of the introduction of these factors.)

To illustrate this fact on the simplest example, let us examine what the second
quantization formalism says about the dynamics of non-interacting particles in the
system whose single-particle properties we have discussed repeatedly, namely two
nearly-similar potential wells, coupled by tunneling through the separating potential
barrier—see, e.g. figures 2.21 or 7.4. If the coupling is so small that the states
localized in the wells are only weakly perturbed, then in the basis of these states, the
single-particle Hamiltonian of the system may be represented by the 2 × 2 matrix
(5.3). With the energy reference selected at the middle between the energies of
unperturbed states, the coefficient b vanishes, this matrix is reduced to

σ= ⋅ ≡ − ≡ ±−
+ ±( )c c

c c c c icch , with , (8.97)z

z
x y

26A by-product of this calculation is a proof that the operator defined by Eq. (8.72) counts the number of
particles Nj (now equal to either 1 or 0), just at it does for bosons.
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and its eigenvalues to

ε = ± ≡ ≡ + +± ( )c c c c cc, . (8.98)x y z
2 2 2 1/2

Now following the recipe (8.87), we can use Eq. (8.97) to represent the Hamiltonian
of the whole system of particles in terms of the creation–annihilation operators:

ˆ = ˆ ˆ + ˆ ˆ + ˆ ˆ − ˆ ˆ†
−

†
+

† †H c a a c a a c a a c a a , (8.99)z z1 1 1 2 2 1 2 2

where ˆ †a1,2 and â1,2 are the operators of creation and annihilation of a particle in the
corresponding potential well. (Again, in the second quantization approach the
particles are not numbered at all!) As Eq. (8.72) shows, the first and the last terms
of the right-hand side of Eq. (8.99) describe the particle energies ε1,2 = ±cz in
uncoupled wells,

ε εˆ ˆ = ˆ ≡ ˆ − ˆ ˆ = − ˆ ≡ ˆ† †c a a c N N c a a c N N, , (8.100)z z z z1 1 1 1 1 2 2 2 2 2

while the sum of the middle two terms is the second-quantization description of
tunneling between the wells.

Now we can use the general Eq. (4.199) of the Heisenberg picture to spell out the
equations of motion of the creation–annihilation operators. For example,

ℏ ˆ ̇ = ˆ ˆ = ˆ ˆ ˆ + ˆ ˆ ˆ + ˆ ˆ ˆ − ˆ ˆ ˆ†
−

†
+

† †i a a H c a a a c a a a c a a a c a a a[ , ] [ , ] [ , ] [ , ] [ , ]. (8.101)z z1 1 1 1 1 1 1 2 1 2 1 1 2 2

Since the Bose and Fermi operators satisfy different commutation relations, one
could expect the right hand part of this equation to be different for bosons and
fermions. However, it is not so. Indeed, all commutators on the right-hand side of
Eq. (8.101) have the following form:

ˆ ˆ ˆ ≡ ˆ ˆ ˆ − ˆ ˆ ˆ′
†

″ ′
†

″ ′
†

″a a a a a a a a a[ , ] . (8.102)j j j j j j j j j

According to Eqs. (8.74) and (8.94), the first pair product of the operators may be
recast as

δˆ ˆ = ˆ ± ˆ ˆ′
†

′ ′
†a a I a a , (8.103)j j jj j j

where the upper sign pertains to bosons and the lower one to fermions, while
according to Eqs. (8.76) and (8.95), the very last pair product is

ˆ ˆ = ± ˆ ˆ″ ″a a a a , (8.104)j j j j

with the same sign convention. Plugging these expressions into Eq. (8.102), we see
that regardless of the particle type, we arrive at a universal (and generally very
useful) commutation relation

δˆ ˆ ˆ = ˆ′
†

″ ″ ′a a a a[ , ] , (8.105)j j j j jj
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valid for both bosons and fermions. As a result, the Heisenberg equation of motion
for the operator â1, and the equation for â2 (which may be obtained absolutely
similarly), are also universal27:

ℏ ˆ ̇ = ˆ + ˆ
ℏ ˆ ̇ = ˆ − ˆ

−

+

i a c a c a

i a c a c a

,

.
(8.106)z

z

1 1 2

2 1 2

This is a system of two coupled, linear differential equations, which is similar to
the equations for the c-number probability amplitudes of single-particle wave-
functions of a two-level system—see, e.g. Eq. (2.201) and the model solution of
problem 4.25. Their general solution is a linear superposition

∑α λˆ = ˆ
±

±
±a t t( ) exp{ }. (8.107)1,2 1,2

( )

As usual, in order to find the exponents λ±, it is sufficient to plug in a particular
solution α λˆ = ˆa t t( ) exp{ }1,2 1,2 into Eq. (8.106) and require that the determinant of the
resulting homogeneous, linear system for the ‘coefficients’ (actually, time-independent
operators) α̂1,2 equals zero. This gives us the following characteristic equation

λ
λ

− ℏ
− − ℏ =−

+

c i c
c c i

0, (8.108)z

z

with two roots λ± = ±iΩ/2, where Ω ≡ 2cℏ—cf. Eq. (5.20). Now plugging each of the
roots, one by one, into the system of equations for α̂1,2, we can find these operators,
and hence the general solution of system (8.98) for arbitrary initial conditions.

Let us consider the simple case cy = cz = 0 (meaning in particular that the wells are
exactly aligned, see figure 2.21), so that ℏΩ/2 ≡ c = cx; then the solution of Eq.
(8.106) is

ˆ = ˆ Ω − ˆ Ω

ˆ = − ˆ Ω + ˆ Ω

a t a
t

ia
t

a t ia
t

a
t

( ) (0)cos
2

(0)sin
2

,

( ) (0)sin
2

(0)cos
2

.
(8.109)

1 1 2

2 1 2

Multiplying the first of these relations by its Hermitian conjugate, and ensemble-
averaging the result, we get

〈 〉 ≡ 〈 ˆ ˆ 〉 = 〈 ˆ ˆ 〉 Ω + 〈 ˆ ˆ 〉 Ω

− 〈 ˆ ˆ + ˆ ˆ 〉 Ω Ω

† † †

† †

N a t a t a a
t

a a
t

i a a a a
t t

( ) ( ) (0) (0) cos
2

(0) (0) sin
2

(0) (0) (0) (0) sin
2

cos
2

.
(8.110)

1 1 1 1 1
2

2 2
2

1 2 2 1

27 Equations of motion for the creation operators ˆ †a1,2 are just the Hermitian-conjugates of Eqs. (8.106), and do
not add any new information about system’s dynamics.
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Let the initial state of the system be a Dirac state, i.e. have a definite number of
particles in each well; in this case only the two first terms on the right hand side of
Eq. (8.110) are different from zero, giving28:

〈 〉 = Ω + Ω
N N

t
N

t
(0)cos

2
(0)sin

2
. (8.111)1 1

2
2

2

For one particle, initially placed in either well, this gives us our old result (2.181)
describing quantum oscillations of the particle between two wells with the frequency
Ω. However, Eq. (8.111) is valid for any set of initial occupancies; let us use this fact.
For example, starting from two particles, with initially one particle in each well, we get
〈N1〉 = 1, regardless of time. So, the occupancies do not oscillate, and no experiment
may detect the quantum oscillations, though their frequency Ω is still formally present
in the time evolution equations. This fact may be interpreted as the simultaneous
quantum oscillations of two particles between the wells, exactly in anti-phase. For
bosons, we can go to even larger occupancies by preparing the system, for example, in
the state with N1(0) =N, N2(0) = 0. The result (8.111) says that in this case we see that
the quantum oscillation amplitude increases N-fold; this is a particular manifestation
of the general fact that bosons can be (and evolve in time) in the same quantum state.
On the other hand, for fermions we cannot increase the initial occupancies beyond 1,
so that the largest oscillation amplitude we can get is if we initially fill just one well.

The Dirac approach may be readily generalized to more complex systems. For
example, Eq. (8.99) implies that an arbitrary system of potential wells with weak
tunneling coupling between the adjacent wells may be described by the Hamiltonian

∑ ∑ε δˆ = ˆ + ˆ +
′

†
′

†
′H a a a a h.c., (8.112)

j j j,

j j j jj j j

where the symbol 〈j,j′〉 means that the second sum is restricted to pairs of next-
neighbor wells—see, e.g. Eq. (2.203) and its discussion. Note that this Hamiltonian
is still a quadratic form of the creation–annihilation operators, so the Heisenberg-
picture equations of motion of these operators are still linear, and its exact solutions,
though possibly cumbersome, may be studied in detail. Due to this fact, the
Hamiltonian (8.112) is widely used for the study of some phenomena, for example
the very interesting Anderson localization effects, in which a random distribution of
the localized-site energies εj prevents tunneling particles, within a certain energy
range, from spreading to unlimited distances29.

8.4 Perturbative approaches
The situation becomes much more difficult if we need to account for direct
interactions between the particles. Let us assume that the interaction may be
reduced to that between their pairs (as is the case at their Coulomb interaction

28 For the second well’s occupancy, the result is complementary, N2(t) = N1(0)sin
2Ωt + N2(0)cos

2Ωt, giving in
particular a good sanity check: N1(t) + N2(t) = N1(0) + N2(0) = const.
29 For a review of the 1D version of this problem, see, e.g. [1].
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and most other interactions30), so that it may be described by the following ‘pair-
interaction’ Hamiltonian

∑ˆ = ˆ
′=

≠ ′

′U u r r
1
2

( , ), (8.113)
k k
k k

N

, 1
k kint int

with the front factor ½ compensating the double-counting of each particle pair. The
translation of this operator to the second-quantization form may be done absolutely
similarly to the derivation of Eq. (8.87), and gives a similar (though naturally more
involved) result

∑ˆ = ˆ ˆ ˆ ˆ
′ ′

′ ′
†

′
†

′U u a a a a
1
2

, (8.114)
j j l l, , ,

jj ll j j l lint

where the two-particle matrix elements are defined similarly to Eq. (8.82):

β β β β≡ 〈 ∣ ˆ ∣ 〉′ ′ ′ ′u u . (8.115)jj ll j j l lint

The only new feature of Eq. (8.114) is a specific order of the indices of the creation
operators. Note the mnemonic rule of writing this expression, similar to that for
Eq. (8.87): each term corresponds to moving a pair of particles from states l and l′ to
states j′ and j (in this order!) factored with the corresponding two-particle matrix
element (8.115).

However, with the account of such term, the resulting Heisenberg equations of time
evolution of the creation/annihilation are nonlinear, so that solving them and calculat-
ing observables from the results is usually impossible, at least analytically. The only case
when some general results may be obtained is the weak interaction limit. In this case the
unperturbed Hamiltonian contains only single-particle terms such as (8.79), and we can
always (at least conceptually) find such a basis of orthonormal single-particle states βj in
which that Hamiltonian is diagonal in the Dirac representation:

∑εˆ = ˆ ˆ†H a a . (8.116)
j

j j j
(0) (0)

Now we can use Eq. (6.14), in this basis, to calculate the interaction energy as a first-
order perturbation:

∑

∑

= 〈 …∣ ˆ ∣ …〉

= 〈 …∣ ˆ ˆ ˆ ˆ ∣ …〉

= 〈 …∣ ˆ ˆ ˆ ˆ ∣ …〉

′ ′

′ ′

′ ′
†

′
†

′

′ ′
†

′
†

′

E N N U N N

N N u a a a a N N

u N N a a a a N N

, , , ,
1
2

, , , ,

1
2

, , , , .

(8.117)j j l l

j j l l

, , ,

, , ,

jj ll j j l l

jj ll j j l l

int
(1)

1 2 int 1 2

1 2 1 2

1 2 1 2

30A simple but important example from the condensed matter theory is the so-called Hubbard model, in which
there may be only two particles on each of localized sites, which strongly interact, with negligible interaction of the
particles on different sites—though the next-neighbor sites are still connected by tunneling—as in Eq. (8.112).
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Since, according to Eq. (8.63), the Dirac states with different occupancies are
orthogonal, the last bracket is different from zero only for three particular subsets of
its indices:

(i) j ≠ j′, l = j, and l′ = j′. In this case the four-operator product in Eq. (8.117) is
equal to ˆ ˆ ˆ ˆ†

′
†

′a a a a ,j j j j and applying the commutation rules twice, we can bring it to the
so-called normal ordering, with each creation operator standing to the right of the
corresponding annihilation operator, thus forming the particle number operator
(8.72):

ˆ ˆ ˆ ˆ = ± ˆ ˆ ˆ ˆ = ± ˆ ± ˆ ˆ ˆ = ˆ ˆ ˆ ˆ = ˆ ˆ†
′

†
′

†
′

†
′

†
′

†
′

†
′

†
′ ′a a a a a a a a a a a a a a a a N N( ) , (8.118)j j j j j j j j j j j j j j j j j j

with the similar sign of the final result for bosons and fermions.

(ii) j ≠ j′, l = j′, and l′ = j. In this case the four-operator product is equal to
ˆ ˆ ˆ ˆ†

′
†

′a a a aj j j j , and bringing it to the form ˆ ˆ ′N Nj j requires only one commutation:

ˆ ˆ ˆ ˆ = ˆ ± ˆ ˆ ˆ = ± ˆ ˆ ˆ ˆ = ± ˆ ˆ†
′

†
′

†
′

†
′

†
′

†
′ ′a a a a a a a a a a a a N N( ) , (8.119)j j j j j j j j j j j j j j

with the upper sign for bosons and the lower sign for fermions.

(iii) All indices equal to each other, giving ˆ ˆ ˆ ˆ = ˆ ˆ ˆ ˆ†
′

†
′

† †a a a a a a a aj j l l j j j j. For fermions,
such operator (that ‘tries’ to create or to kill two particles in a row, in the same state)
immediately gives the null vector. In the case of bosons, we may use Eq. (8.74) to
commute the internal pair of operators, getting

ˆ ˆ ˆ ˆ = ˆ ˆ ˆ − ˆ ˆ = ˆ ˆ − ˆ† † † † ( )a a a a a a a I a N N I( ) . (8.120)j j j j j j j j j j

Note, however, that this expression formally covers the fermion case as well (always
giving zero). As a result, Eq. (8.117) may be rewritten in the following universal
form:

∑ ∑= ± + −
′

≠ ′

′ ′ ′ ′ ′E N N u u N N u
1
2

( )
1
2

( 1) .
(8.121)j j

j j
j,

j j jj jj jj j j j j jjjjint
(1)

The corollaries of this important result are very different for bosons and fermions.
In the former case, the last term usually dominates, because the matrix elements
(8.115) are typically the largest when all basis functions coincide. Note that this term
allows a very simple interpretation: the number of the diagonal matrix elements it
sums up for each state ( j) is just the number of interacting particle pairs residing in
that state.

In contrast, for fermions the last term is zero, and the interaction energy is the
difference of the two terms inside the first parentheses. In order to spell them out, let
us consider the case when there is no direct spin–orbit interaction. Then the vectors
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∣β〉j of the single-particle state basis may be represented as direct products ∣oj〉⊗ ∣mj〉
of their orbital and spin-orientation parts. (Here, for brevity, I am using m instead of
ms.) For spin-½ particles, including electrons, these orientations mj may equal only
either +½ or −½; in this case the spin part of the first matrix element, ujj′jj′, equals

⊗ ′ ⊗ ′m m m m , (8.122)

where, as in the general Eq. (8.115), the position of a particular vector in a direct
product codes the particle’s number. Since the spins of different particles are defined
in different Hilbert spaces, we may move their vectors around to get

⊗ ′ ⊗ ′ = × ′ ′ =m m m m m m m m( ) ( ) 1, (8.123)1 2

for any pair of j and j′. On the other hand, the second matrix element, ujj′j′j, is
proportional to

δ⊗ ′ ′ ⊗ = ′ × ′ = ′m m m m m m m m( ) ( ) . (8.124)mm1 2

In this case, it is convenient to rewrite Eq. (8.121) in the coordinate representa-
tion, using single-particle wavefunctions called spin–orbitals

ψ β≡ = ⊗o mr r r( ) ( ) . (8.125)j j j

They differ from the spatial parts of the usual orbital wavefunctions of the type
(4.233) only in that their index j should be understood as the set of the orbital-state
and the spin-orientation indices31. Also, due to the Pauli-principle restriction of
numbers Nj to either 0 or 1, Eq. (8.121) may be also rewritten without the explicit
occupancy numbers, with the understanding that the summation is extended only
over the pairs of occupied states. As a result, it becomes

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥∫ ∫∑

ψ ψ ψ ψ

ψ ψ ψ ψ
= ′

′ ′ ′

− ′ ′ ′′
≠ ′

*
′
*

′

*
′
*

′

E d r d r
u

u

r r r r r r

r r r r r r

1
2

( ) ( ) ( , ) ( ) ( )

( ) ( ) ( , ) ( ) ( )
. (8.126)

j j
j j
,

j j j j

j j j j
int
(1) 3 3

int

int

In particular, for a system of two electrons, we may limit the summation to just
two states ( j, j′ = 1, 2). As a result, we return to Eqs. (8.39)–(8.41), with the bottom
(minus) sign in Eq. (8.39), corresponding to the triplet spin states. Hence, Eq. (8.126)
may be considered as the generalization of the direct and exchange interaction
balance picture to an arbitrary number of orbitals and an arbitrary total number N
of electrons. Note, however, that this equation cannot correctly describe the energy
of the singlet spin state, corresponding to the plus sign in Eq. (8.39), and also of the

31 The spin–orbitals (8.125) are also close to spinors (8.13), besides that the former definition takes into
account that the spin s of a single particle is fixed, so that the spin–orbital may be indexed by the spin’s
orientation m ≡ ms only. Also, if an orbital index is used, it should be clearly distinguished from j, i.e. the set
of the orbital and spin indices. This is why I believe that the frequently met notation of spin-orbitals as ψj,s(r)
may lead to confusion.
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entangled triplet state32. The reason is that the description of entangled spin states,
given in particular by Eqs. (8.18) and (8.20), requires linear superpositions of
different Dirac states. (A proof of this fact is left for the reader’s exercise.)

Now comes a very important fact: the approximate result (8.126), added to the
sum of unperturbed energies εj

(0), equals the sum of exact eigenenergies of the
so-called Hartree–Fock equation33:

⎛
⎝⎜

⎞
⎠⎟

∫∑

ψ

ψ ψ ψ ψ ψ ψ ε ψ

− ℏ ∇ +

+ ′ ′ ′ − ′ ′ ′ =
′≠

′
*

′ ′
*

′

m
u

u u d r

r r

r r r r r r r r r r r

2
( ) ( )

[ ( ) ( , ) ( ) ( ) ( ) ( , ) ( ) ( )] ( ),
(8.127)

j j

j

j j j j j j j j

2
2

int int
3

where u(r) is the external-field potential acting on each particle separately—see the
second of Eqs. (8.79). An advantage of this equation in comparison with Eq. (8.126)
is that it allows the (approximate) calculation of not only the energy spectrum of the
system, but also the corresponding spin–orbitals, taking into account their electron–
electron interaction. Of course Eq. (8.127) is an integro-differential rather than just
differential equation. There are, however, efficient methods of numerical solution of
such equations, typically based on iterative methods. One more important trick is
the exclusion of the filled internal electron shells (see section 3.7) from the explicit
calculations, because the shell states are virtually unperturbed by the valence
electron effects involved in typical atomic phenomena and chemical reactions. In
this approach, the Coulomb field of the shells, described by fixed, pre-calculated and
tabulated pseudo-potentials, is added to that of the nuclei. This approach dramat-
ically cuts the computing resources necessary for systems of relatively heavy atoms,
enabling a pretty accurate simulation of electronic and chemical properties of rather
complex molecules, with thousands of electrons34. As a result, the Hartree–Fock
approximation has become the de-facto baseline of all so-called ab initio (‘first-
principle’) calculations in the most important field of quantum chemistry35.

In departures from this baseline, there are two opposite trends. For larger
accuracy (and typically smaller systems), several ‘post-Hartree–Fock methods’,
notably including the configuration interaction method36, that are more complex
but may provide higher accuracy, have been developed.

32 Indeed, due to the condition j′ ≠ j, and Eq. (8.124), the calculated negative exchange interaction is limited to
electron state pairs with the same spin direction—such as the factorable triplet states (↑↑ and ↓↓) of a two-
electron system, in which the contribution of Eex, given by Eq. (8.41), to the total energy is also negative.
33 This equation was suggested in 1929 by D Hartree for the direct interaction, and extended to the exchange
interaction by V Fock in 1930. In order to verify its equivalence to Eq. (8.126), it is sufficient to multiply all
terms of Eq. (8.127) by ψ* r( ),j integrate them over all r space (so that the right-hand side would give εj), and
then sum these single-particle energies over all occupied states j.
34 For condensed-matter systems, this and other computational methods are applied to single elementary
spatial cells, with a limited number of electrons in them, using cyclic boundary conditions.
35 See, e.g. [2].
36 That method, in particular, allows the calculation of proper linear superpositions of the Dirac states (such as
the entangled states for N = 2, discussed above) which are missing in the generic Hartree–Fock approach—see,
e.g. the just-cited monograph by Szabo and Ostlund.
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There is also a strong opposite trend of extending ab initio methods to larger
systems, while sacrificing the results’ accuracy and reliability. The ultimate case of
this trend is applicable when the single-particle wavefunction overlaps are small and
hence the exchange interaction is negligible, the last term in the square brackets of
Eq. (8.127) may be ignored, the term ψj(r) may be taken out of the integral, and it is
reduced to a differential equation, which is formally just the Schrödinger equation
for a single particle in the following self-consistent effective potential:

∫∑ ψ ψ= + = ′ ′ ′ ′
′≠

′
*

′u u u u u d rr r r r r r r r( ) ( ) ( ), ( ) ( ) ( , ) ( ) . (8.128)
j j

j jef dir dir int
3

This is the so-called Hartree approximation—that gives reasonable results for some
systems37, especially those with low electron density. However, in dense electron
systems (such as typical atoms, molecules, and condensed matter) the exchange
interaction, described by the second term in the square brackets of Eqs. (8.126) and
(8.127), may be as high as ∼30% of the direct interaction, and frequently cannot be
ignored.

The tendency of taking this interaction in the simplest possible form is currently
dominated by the Density Functional Theory38, universally known by its acronym
DFT. In this approach, the equation solved for each eigenfunction ψj(r) is a
differential, Schrödinger-like Kohn–Sham equation

⎡
⎣⎢

⎤
⎦⎥ ψ ε ψ− ℏ ∇ + + + =

m
u u ur r r r r

2
( ) ( ) ( ) ( ) ( ), (8.129)j j j

2
2

dir
KS

xc

where

∫ϕ ϕ
πε

ρ ρ= − = ′ ′
− ′

= −u e d r enr r r
r

r r
r r( ) ( ), ( )

1
4

( )
, ( ) ( ), (8.130)dir

KS

0

3

and n(r) is the total electron density in a particular point, calculated as

∑ψ ψ≡ *n r r r( ) ( ) ( ). (8.131)
j

j j

The most important feature of the Kohn–Sham Hamiltonian is the simplified
description of the exchange and correlation effects by the effective exchange-
correlation potential uxc(r). This potential is calculated in various approximations,
most valid only in the limit when the number of electrons in the system is very high.
The simplest of them (proposed by Kohn et al in the 1960s) is the Local Density
Approximation (LDA) in which the effective exchange potential at each point is a

37An extreme example the Hartree approximation is the Thomas–Fermi model of heavy atoms (with Z≫ 1), in
which atomic electrons, at each distance r from the nucleus, are treated as an ideal, uniform Fermi gas, with a
certain density n(r) corresponding to the local value uef(r), but a common value of their highest full single-
particle energy, ε = 0, to ensure the equilibrium. (The analysis of this model is left for the reader’s exercise.)
38 It had been developed by WKohn and his associates in 1965–66, and eventually (in 1998) was marked with a
Nobel Prize in Chemistry.
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function only of the electron density (8.131) at the same point, taken from the theory
of a uniform gas of free electrons39. However, for many tasks of quantum chemistry,
the accuracy given by the LDA is insufficient, because inside molecules the density n
typically changes very fast. As a result, the DFT has become widely accepted in this
field only after the introduction, in the 1980s, of more accurate, though more
cumbersome models for uxc(r), notably the so-called Generalized Gradient
Approximations (GGAs).

Due to its relative simplicity, the DFT enables the calculation, with the same
computing resources and reasonable precision, some properties of much larger
systems than the methods based on the Hartree–Fock theory. As a result, is has
become a very popular tool of ab initio calculations40. Please note, however, that
despite this undisputable success, this approach has its problems. From my personal
point of view, the most offensive of them is the implicit assumption of the unphysical
Coulomb interaction of an electron with itself (by dropping, on the way from
Eq. (8.128) to Eq. (8.130), the condition j′ ≠ j at the calculation of udir

KS). As a result
of these issues, for a reasonable description of some effects, the available DFT
packages are either inapplicable at all or require substantial artificial tinkering41.
Unfortunately, because of lack of time, for details I have to refer the reader to
specialized literature42.

8.5 Quantum computation and cryptography
Now I have to review the emerging fields of quantum computation and encryption43.
These fields are currently the subject of a very intensive research effort, which has
already brought (besides much hype) some results of general importance. My
coverage, by necessity short, will focus on these results, referring the reader
interested in details to special literature44. Because of the very active stage of the
fields, I will also provide, in the last part of the section, quite a few references to
recent publications, making its style closer to a brief research review than to a part of
a textbook.

Presently, most work on quantum computation and encryption is based on
systems of spatially-separated (and hence distinguishable) two-level systems—in this
context, commonly called qubits45. Due to this distinguishability, the issues that were

39 Just for the reader’s reference: for a uniform, degenerate Fermi-gas of electrons (with the Fermi energy εF ≫
kBT), the most important, exchange part ux of uxc may be calculated analytically: ux = −(3/4π)e2kF/4πε0, where
the Fermi momentum kF = (2meεF)

1/2/ℏ is defined by the electron density: n = 2(4π/3)kF
3/(2π)3 ≡ kF

3/3π2.
40 This popularity is enhanced by the availability of several advanced DFT software packages, some of them
(such as SIESTA, see https://departments.icmab.es/leem/siesta/) in public domain.
41As just a few examples, see [3–5].
42 See, e.g. either the monograph by [6], or the later textbook [7]. For a popular recent review, and references to
more recent work in this still-developing field, see [8].
43 Since these fields are much related, they are often referred to under the common title of ‘quantum
information science’, though this term is somewhat misleading, obscuring the physical aspects of the field.
44Despite the recent flood of new books on the field, one of its first surveys, [9], is perhaps still the best one.
45 In some texts, the term qubit (or ‘Qbit’, or ‘Q-bit’) is used instead for the information contents of a two-level
system—very much like the classical bit of information (in this context, frequently called ‘Cbit’ or ‘C-bit’)
describes the information contents of a classical bistable system—see, e.g. Part SM section 2.2.
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the focus of the first sections of this chapter, including the second quantization
approach, are irrelevant here. On the other hand, systems of qubits have some
interesting properties that have not been discussed in this course yet.

First of all, a system of N ≫ 1 qubits may contain much more information than
the same number ofN classical bits. Indeed, according to the discussions in chapter 4
and section 5.1, an arbitrary pure state of a single qubit may be represented by its ket
vector (4.37)—see also Eq. (5.1):

α α α= ∣ 〉 + ∣ 〉= u u , (8.132)N 1 1 1 2 2

where {uj} is any orthonormal two-state basis. It is natural and common to employ,
as uj, the eigenstates aj of the observable A that is eventually measured in the
particular physical implementation of the qubit—say, a certain Cartesian compo-
nent of spin-½. It is also common to write the kets of these base states as ∣0〉 and
∣1〉,46 so that Eq. (8.132) takes the form

∑α = + ≡
=

= a a a j0 1 . (8.133)
j 0,1

N j1 0 1

(Here, and in the balance of this section, the letter j is used to denote an integer equal
to either 0 or 1.) According to this relation, any state α of a qubit is completely
defined by two complex c-numbers aj, i.e. by four real numbers. Moreover, due to
the normalization condition ∣a1∣2 + ∣a2∣2 = 1, we need just three independent real
numbers—say, the Bloch sphere coordinates θ and φ (see figure 5.3), plus the
common phase γ, which becomes important only when we consider coherent states
of a several-qubit system.

This is a good time to note that a qubit is very different from any classical bistable
system used to store single bits of information—such as two possible voltage states of
the usual SRAM cell (a positive-feedback loop of two transistor-based inverters).
Namely, the stationary states of a classical bistable system, due to its nonlinearity, are
stable with respect to small perturbations, so that they may be rather robust with
respect to unintentional interaction with its environment. In contrast, the qubit’s state
may be readily disturbed (i.e. its representation point on the Bloch sphere shifted) by
even minor perturbations, because it does not have such internal state stabilization
mechanism47. Due to this reason, qubit-based systems are rather vulnerable to
environment-induced drifts, including the dephasing and relaxation discussed in the
previous chapter, creating major experimental challenges—see below.

Now, if we have a system of 2 qubits, the vector (4.37) of its arbitrary pure state
may be represented as a sum of 22 = 4 terms48,

46 In this notation, at the Bloch sphere representation (figure 5.3), the North Pole state (that is traditionally
denoted as ↑ in quantum mechanics) is taken for 0, and the South Pole state ↓ for 1, so that in Eq. (8.133), a0 =
cos(θ/2), a1 = sin(θ/2)exp{iφ}.
47 In this aspect as well, the information processing systems based on qubits are closer to classical analog
computers (which were popular once, but are now virtually abandoned) rather than classical digital ones.
48Here and in most instances below I use the same shorthand notation as was used in the beginning of this
chapter—cf. Eq. (8.1). In this short form, qubit’s number is coded by the order of its state index inside the
single ket-vector, while in the long form, such as in Eq. (8.137), it is coded by the order of single-qubit vectors.
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∑α = + + + ≡ ∣ 〉
=

= a a a a a j j00 01 10 11 , (8.134)
j j, 0,1

N j j2 00 01 10 11 1 2

1 2

1 2

with four complex coefficients, i.e. 4 × 2 = 8 real numbers, subject to just one
normalization condition, which follows from the requirement α α = 1:

∑ =
=

a 1. (8.135)
j 0,1

j j
2

1,2

1 2

The evident generalization of Eqs. (8.133) and (8.134) to an arbitrary pure state of
an N-qubit system is given by a sum of 2N terms:

∑α = ∣ … 〉
=

…a j j j , (8.136)
j j j, ,.. 0,1

N j j j N1 2

N

N

1 2

1 2

including all possible combinations of 0s and 1s inside the ket, so that the state is
fully described by 2N complex numbers, i.e. 2 · 2N = 2N+1 real numbers, with only
one constraint, similar to Eq. (8.135), imposed by the normalization condition. Let
me emphasize that this exponential growth of the information contents would not be
possible without the qubit state entanglement. Indeed, in the particular case when
qubit states are unentangled (factorable),

α α α α= ∣ 〉∣ 〉…∣ 〉, (8.137)N N1 2

where each ∣αn〉 is described by an equality similar to Eq. (8.133) with its individual
expansion coefficients, the system state description requires only 3N − 1 real
numbers—e.g. N sets {θ, φ, γ} less one common phase.

However, it would be wrong to project this exponential growth of information
contents directly on the capabilities of quantum computation, because this process
has to include the output information readout, i.e. qubit state measurements. Due to
the fundamental intrinsic uncertainty of quantum systems, the measurement of a
single qubit even in a pure state (8.133) generally may give either of two results, with
probabilities W0 = ∣a0∣2 and W1 = ∣a1∣2. In order to comply with the general notion
of computation, any quantum computer has to provide certain (or virtually certain)
results, and hence the probabilities Wj have to be very close to either 0 or 1, so that
before the measurement, each measured qubit has to be in a basis state—either 0 or
1. This means that the computational system with N output qubits, just before the
final readout, has to be in one of the factorable states

α = ∣ 〉∣ 〉…∣ 〉 ≡ ∣ … 〉j j j j j j , (8.138)N N N1 2 1 2

which is a very small subset even of the set of all unentangled states (8.137), and
whose maximum information contents is just N classical bits.

Now the reader may start thinking that this constraint strips quantum compu-
tations of any advantages over their classical counterparts, but this view is also
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superficial. In order to show that, let us consider the scheme of the most actively
explored type of quantum computation, shown in figure 8.3.49

Here each horizontal line (sometimes called a ‘wire’50) corresponds to a single
qubit, tracing its time evolution in the same direction as at the usual time function
plots: from left to right. This means that the left column ∣α〉in of ket-vectors describes
the initial state of the qubits51, while the right column ∣α〉out describes their final (pre-
measurement) state. The box labeled U represents the qubit evolution in time due to
their specially arranged interactions between each other and/or external drive
‘forces’. Besides these forces, during this evolution the system is supposed to be
ideally isolated from the dephasing and energy-dissipating environment, so that the
evolution may be described by a unitary operator defined in the 2N-dimensional
Hilbert space of N qubits:

α α= Û . (8.139)out in

With the condition that the input and output states have the simple form (8.138), this
equality reads

∣ … 〉 = ˆ ∣ … 〉j j j U j j j( ) ( ) ( ) ( ) ( ) ( ) . (8.140)N N1 out 2 out out 1 in 2 in in

Figure 8.3. The baseline scheme of quantum computation.

49Numerous modifications of this ‘baseline’ scheme have been suggested, for example with the number of
output qubits different from that of input qubits, etc. Some other options are discussed at the end of this
section.
50 The notion of ‘wires’ stems from the similarity between these diagrams and the drawings used to describe
classical computation circuits (see, e.g. figure 8.4a below); in the classical case the lines may be indeed
understood as physical wires connecting physical devices: logic gates and/or memory cells. In this context, note
that classical computer components also have nonvanishing time delays, so that even in this case the left-to-
right device ordering is useful to indicate the timing of (and frequently the causal relation between) the signals.
51As follows from our discussions in chapter 7, the preparation of a pure state (8.133) is (conceptually)
straightforward. Placing a qubit into a weak contact with an environment of temperature T≪ Δ/kB, where Δ is
the difference between energies of the eigenstates 0 and 1, we may achieve its relaxation into the lowest-energy
state. Then, if the qubit must be set into a different pure state, it may be driven there by the application of a
pulse of a proper external classical ‘force’. For example, if an actual spin-½ is used as qubits, a pulse of
magnetic field with proper direction and duration may be applied to arrange its torque-induced precession to
the required Bloch sphere point—see figure 5.3c. In most qubit systems, using a proper part of the Rabi
oscillation period (see section 6.5) is more practicable for this purpose.
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The art of quantum computer design consists of selecting such unitary operators Û
that would:

– satisfy Eq. (8.140),
– be physically implementable, and
– enable substantial performance advantages of the quantum computation over
its classical counterparts with similar functionality, at least for some digital
functions (algorithms).

I will have time/space to demonstrate the possibility of such advantages on just
one, perhaps the simplest example—the so-called Deutsch problem52. Let us consider
the family of single-bit classical Boolean functions jout = f( jin). Since both j are
Boolean variables, i.e. may take only values 0 and 1, there are evidently only four
such functions53:

(8.141) 

f f(0) f(1) class F f(1)-f(0)
f1 0 0 constant 0 0 
f2 0 1 balanced 1 1 
f3 1 0 balanced 1 -1 
f4 1 1 constant 0 0 

Of them, the functions f1 and f4, whose values are independent of their arguments,
are called constants, while the functions f2 (called ‘YES’ or ‘IDENTITY’) and f3
(‘NOT’ or ‘INVERSION’) are called balanced. The Deutsch problem is to determine
the class of a single-bit function, implemented with a ‘black box’, as being either
constant or balanced, using just one experiment.

Classically, this is clearly impossible, and the simplest way to perform the
function’s classification involves two similar black boxes f—see figure 8.4a.54 This
solution uses the so-called exclusive-OR (for short, XOR) gate whose output is
described by the following function F of its two Boolean arguments j1 and j2:

55

⎧⎨⎩= ⊕ ≡
=
≠

F j j j j
j j

j j
( , )

0, if ,

1, if .
(8.142)1 2 1 2

1 2

1 2

In the particular circuit shown in figure 8.4a, the gate produces the following output:

= ⊕F f f(0) (1), (8.143)

52 It is named after D Deutsch, whose 1985 paper (motivated by an inspirational but not very specific
publication by R Feynman in 1982) launched the whole field of quantum computation.
53 The function F will be defined imminently—see Eq. (8.142).
54Alternatively, we may perform two sequential experiments on the same black box f, first recording and then
recalling the first experiment’s result. However, the Deutsch problem calls for a single experiment.
55 The XOR sign ⊕ should not be confused with the sign ⊗ of the direct product of state vectors (which in this
section is just implied).
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which is equal to 1 if f(0) ≠ f(1), i.e. if the function f is balanced, and to 0 in the
opposite case—see the 5th column in Eq. (8.141).

On the other hand, as will be proved below, all four functions f may be
implemented quantum-mechanically, for example as a unitary transform of two
input qubits, acting as follows on each basis component ∣ j1 j2〉 ≡ ∣ j1〉∣ j2〉 of the
general input state (8.134):

ˆ ∣ 〉∣ 〉 = ∣ 〉∣ ⊕ 〉f j j j j f j( ) , (8.144)1 2 1 2 1

where f is any of the classical Boolean functions listed in the table of Eq. (8.141)—see
figure 8.5a.

In the particular case when f in Eq. (8.144) is just the YES function: f( j) = f2( j) =
j, this ‘circuit’ is reduced to the so-called CNOT gate, a key ingredient of many other
quantum computation schemes, performing the following two-qubit transform:

ˆ ∣ 〉 = ∣ 〉∣ ⊕ 〉C j j j j j a. (8.145 )1 2 1 2 1

Let us use Eq. (8.142) to spell out this function for all four possible input qubit
combinations:

ˆ = ˆ = ˆ = ˆ =C C C C b00 00 , 01 01 , 10 11 , 11 10 . (8.145 )

In plain English, this means that acting on a basis state j1j2, the CNOT gate leaves
the state of the first, source qubit (shown by the upper lines in figure 8.5) intact, but
flips the state of the second, target qubit if the first one is in the basis state 1. In even
simpler words, the state j1 of the source qubit controls the NOT function acting on
the target qubit—hence the gate’s name CNOT (the semi-acronym of ‘Controlled
NOT’).

Figure 8.5. Two-qubit quantum gates: (a) a two-qubit function f and (b) its particular case C (CNOT), and
their actions on a basis state.

Figure 8.4. The simplest (a) classical and (b) quantum ways to classify a single-bit Boolean function f.
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For the quantum function (8.144), with an arbitrary and unknown f, the Deutsch
problem may be solved within the general scheme shown in figure 8.3, with the
particular structure of the unitary-transform box U spelled out in figure 8.4b, which
involves just one implementation of the function f. Here the singe-qubit quantum
gate H performs the so-called Hadamard (or ‘Walsh–Hadamard‘) transform56,
whose operator is defined by the following actions on the qubit’s basis states:

H Hˆ ˆ= + = −0
1

2
( 0 1 ), 1

1

2
( 0 1 ), (8.146)

—see also the two leftmost state label columns in figure 8.4b.57 Since its quantum-
mechanical operator has to be linear (to be physically realistic), it needs to perform
the action (8.146) on the basis states even when they are parts of an arbitrary linear
superposition—as they are, for example, for the two right Hadamard gates in figure
8.4b. For example, as immediately follows from Eqs. (8.146) and the operator’s
linearity,

H H H H H
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ˆ ˆ ˆ ˆ ˆ= + = +

= + + − =
a

( 0 )
1

2
( 0 1 )

1

2
( 0 1 )

1

2

1

2
( 0 1 )

1

2
( 0 1 ) 0 ,

(8.147 )

Absolutely similarly, we may get58

H Hˆ ˆ = b( 1 ) 1 . (8.147 )

Now let us carry out a sequential analysis of the ‘circuit’ shown in figure 8.4b.
Since the input states of the gate f in this particular circuit are described by
Eqs. (8.146), its output state’s ket is

H H
⎛
⎝⎜

⎞
⎠⎟

ˆ ˆˆ = ˆ + −

= ˆ − ˆ + ˆ − ˆ

f f

f f f f

( 0 1 )
1

2
( 0 1 )

1

2
( 0 1 )

1
2

( 00 01 10 11 ).

(8.148)

Now we may apply Eq. (8.144) to each basis ket to get:

56 In order to exclude any chance of confusion between the Hadamard transform’s operator Hˆ and the
Hamiltonian operator Ĥ , they are typeset using different fonts.
57Note that according to Eq. (8.146), the operatorHˆ does not belong to the classÛ described by Eq. (8.140)—
while the whole ‘circuit’ shown in figure 8.4b, does—see below.
58 Since the states 0 and 1 form a full basis of a single qubit, both Eqs. (8.147) may be summarized as an operator
equality:Hˆ = Î

2 . It is also easy to check that the Hadamard transform of an arbitrary state may be represented
on the Bloch sphere (figure 5.3) as a π-rotation about the axis that bisects the angle between x and z.
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ˆ − ˆ + ˆ − ˆ

≡ ˆ − ˆ + ˆ − ˆ

= ⊕ − ⊕ + ⊕ − ⊕

≡ ⊕ − ⊕ + ⊕ − ⊕

f f f f

f f f f

f f f f

f f f f

00 01 10 11

0 0 0 1 1 0 1 1

0 0 (0) 0 1 (0) 1 0 (1) 1 1 (1)

0 ( 0 (0) 1 (0) ) 1 ( 0 (1) 1 (1) ).

(8.149)

Note that the expression in the first parentheses, characterizing the state of the target
qubit, is equal to (∣0〉 − ∣1〉) ≡ (−1)0 (∣0〉 − ∣1〉) if f(0) = 0 (and hence 0⊕ f(0) = 0 and
1⊕ f(0) = 1), and to (∣1〉 − ∣0〉) ≡ (−1)1(∣0〉 − ∣1〉) in the opposite case f(0) = 1, so that
both cases may be described in one shot by rewriting the parentheses as (−1) f(0)(∣0〉 −
∣1〉). The second parentheses is absolutely similarly controlled by the value of f(1), so
that the outputs of the gate f are unentangled:

H Hˆ ˆˆ = − + − −

= ± + − −

f ( 0 1 )
1
2

(( 1) 0 ( 1) 1 )( 0 1 )

1

2
( 0 ( 1) 1 )

1

2
( 0 1 ),

(8.150)

f f

F

(0) (1)

where the last step has used the fact that the classical Boolean function F, defined by
Eq. (8.142), equals ±[ f(1) − f(0)]—please compare the last two columns in
Eq. (8.141). The front sign ± in Eq. (8.150) may be prescribed to any of the
component ket-vectors—for example to that of the target qubit, as shown by the
third column of state labels in figure 8.4b.

This intermediate result is already rather remarkable. Indeed, it shows that,
despite the impression one could get from figure 8.5, the gates f and C, being
‘controlled’ by the source qubit, may change that qubit’s state as well! This fact
(partly reflected by the vertical direction of the control lines in figures 8.4 and 8.5,
symbolizing the same stage of system’s time evolution) shows how careful one
should be interpreting quantum-computational ‘circuits’, thriving on qubits’ entan-
glement, because the ‘signals’ on different sections of a ‘wire’ may differ—see figure
8.4b again.

At the last stage of the circuit shown in figure 8.4b, the qubit components of
the state (8.150) are fed into one more pair of Hadamard gates, whose outputs
therefore are

H H H

H H H

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ˆ ˆ ˆ

ˆ ˆ ˆ

+ − = + −

± − = ± −

1

2
( 0 ( 1) 1 )

1

2
( 0 ( 1) 1 ), and

1

2
( 0 1 )

1

2
( 1 0 ).

(8.151)

F F

Now using Eqs. (8.146) again, we see that the output state ket-vectors of the source
and target qubits are, respectively,

+ − + − − ±1 ( 1)
2

0
1 ( 1)

2
1 , and 1 . (8.152)

F F
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Since, according to Eq. (8.142), the Boolean function F may take only values 0 or 1,
the final state of the source qubit is always one of its basis states j, namely the one
with j = F. Its measurement tells us whether the function f, participating in
Eq. (8.144), is constant or balanced—see Eq. (8.141) again59.

Thus, the quantum circuit shown in figure 8.4b indeed solves the Deutsch
problem in one shot. Reviewing our analysis, we may see that this is possible
because the unitary transform performed by the quantum gate f is applied to the
entangled states (8.146) rather than to the basis states. Due to this trick, the quantum
state components depending on f(0) and f(1) are processed simultaneously, in
parallel. This quantum parallelism may be extended to circuits with many (N ≫ 1)
qubits and, for some tasks, provide a dramatic performance increase—for example,
reducing the necessary circuit component number from O(2N) to O(Np), where p is a
finite (and not very big) number.

However, this efficiency comes at a high price. Indeed, let us discuss the possible
physical implementation of quantum gates, starting from the Hadamard gate, which
performs a single-qubit transform—see Eq. (8.146). With the linearity requirement,
its action on the arbitrary state (8.133) should be

H H Hˆ α ˆ ˆ= + = + + −

= + + −

a a a a

a a a a

0 1
1

2
( 0 1 )

1

2
( 0 1 )

1

2
( ) 0

1

2
( ) 1 ,

(8.153)
0 1 0 1

0 1 0 1

meaning that the state probability amplitudes in the end ( T=t ) and beginning
(t = 0) of the qubit evolution in time have to be related as

T T= + = −
a

a a
a

a a
( )

(0) (0)

2
, ( )

(0) (0)

2
. (8.154)0

0 1
1

0 1

This task may be again performed using the Rabi oscillations, which were
discussed in section 6.5, i.e. by applying to the qubit (a two-level system), for a
limited time periodT , a weak sinusoidal external signal of frequency ω equal to the
intrinsic quantum oscillation frequency ωnn′ defined by Eq. (6.85). A perturbative
analysis of the Rabi oscillations was carried out in section 6.5, even for nonvanishing
(though small) detuning Δ = ω − ωnn, but only for the particular initial conditions
when at t = 0 the system was in one on the basis states (there labeled as n′), i.e.
another state (there labeled n) was empty. For our current purposes we need to find
the amplitudes a0,1(t) for arbitrary initial conditions a0,1(0), subject only to the time-
independent normalization condition ∣a0∣2 + ∣a1∣2 = 1. For the case of exact tuning,

59Note that the last Hadamard transform of the target qubit (i.e. the Hadamard gate shown in the lower right
corner of figure 8.4b) is not necessary for the Deutsch problem’s solution—though it should be included if we
want the whole circuit to satisfy the general condition (8.140).

Quantum Mechanics: Lecture notes

8-41



Δ = 0, the solution of the system (6.94) is elementary60, and gives the following
solution61:

= Ω − Ω
= Ω − Ω

φ

φ−

a t a t ia e t

a t a t ia e t

( ) (0)cos (0) sin ,

( ) (0)cos (0) sin ,
(8.155)

i

i
0 0 1

1 1 0

where Ω is the Rabi oscillation frequency (6.99), in the exact-tuning case propor-
tional to the amplitude ∣A∣ of the external ac drive A = ∣A∣exp{iφ}—see Eq. (6.86).
Comparing these expressions with Eqs. (8.154), we see that for t =T π= Ω/4 and φ =
π/2 they ‘almost’ coincide, besides the opposite sign of a1(T ). Conceptually the
simplest way to correct this deficiency is to follow the ac ‘π/4-pulse’, just discussed,
by a short dc ‘π-pulse’ of the durationT π δ= / , which temporarily creates a small
additional energy difference δ between the basis states 0 and 1. According to the
basic Eq. (1.62), such a difference creates an additional phase difference T δ= ℏ/
between the states, equal to π for the ‘π-pulse’.

Another way (that may be also useful for two-qubit operations) is to use another,
auxiliary energy level E2 whose distances from the basic levels E1 and E0 are
significantly different from the difference (E1 − E0)—see figure 8.6a. In this case, the
weak external ac field tuned to any of three potential quantum transition frequencies
ωnn′ ≡ (En − En′)/ℏ initiates such transitions between the corresponding states only,
with a negligible perturbation of the third state. (Such transitions may be again
described by Eqs. (8.155), with the appropriate index changes.) For the Hadamard
transform implementation, it is sufficient to apply (after the already discussed π/4-
pulse of frequency ω10, and with the initially empty level E2), an additional π-pulse
of frequency ω20, with any phase φ. Indeed, according to the first of Eqs. (8.155),
with the due replacement a1(0) → a2(0) = 0, such a pulse flips the sign of the
amplitude a0(t), while the amplitude a1(t), not involved in this additional transition,
remains unchanged.

Now let me describe the conceptually simplest (though, for some qubit types, not
the most practically convenient) scheme for the implementation of the CNOT gate,
whose action is described by a linear unitary operator satisfying Eq. (8.145). For

Figure 8.6. Energy-level schemes used for unitary transformations of (a) single qubits and (b, c) two-qubit
systems.

60An alternative way to analyze the qubit evolution is to use the Bloch equation (5.21), with an appropriate
function Ω(t) describing the control field.
61 To comply with our current notation, the coefficients an’ and an of section 6.5 are replaced with a0 and a1.
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that, evidently, the involved qubits have to interact for some time T . As was
repeatedly discussed in the two last chapters, in most cases such interaction of two
subsystems is factorable—see Eq. (6.145). For qubits, i.e. two-level systems, each of
the component operators may be represented by a 2 × 2 matrix in the basis of the
states 0 and 1. According to Eq. (4.106), such a matrix may be always expressed as a
linear combination (bI + c · σ), where b and three Cartesian components of the
vector c are c-numbers. Let us consider the simplest form of such factorable
interaction Hamiltonian:

T⎧⎨⎩
κσ σˆ = ˆ ˆ < <

H t
t

( )
, for 0 ,

0, otherwise,
(8.156)z z

int

(1) (2)

where the upper index is the qubit number, and κ is a c-number constant62

According to Eq. (4.175), by the end of the interaction period, this Hamiltonian
produces the following unitary transform:

T Tκσ σˆ = −
ℏ

ˆ ≡ −
ℏ

ˆ ˆ{ } { }U
i

H
i

exp exp . (8.157)z zint int
(1) (2)

Since in the basis of unperturbed two-bit basis states ∣ j1 j2〉, the product operator
σ σˆ ˆz z

(1) (2) is diagonal, so is the unitary operator (8.157), with the following action on
these states:

θσ σˆ ∣ 〉 = ∣ 〉{ }U j j i j jexp , (8.158)z zint 1 2
(1) (2)

1 2

where Tθ κ= − ℏ/ , and σz are the eigenvalues of the Pauli matrix σz for the basis
states of the corresponding qubit: σz = +1 for ∣ j〉 = ∣0〉, and σz = −1 for ∣ j〉 = ∣1〉. Let
me, for clarity, spell out Eq. (8.158) for the particular case θ = −π/4 (corresponding
to the qubit coupling timeT π κ= ℏ/4 ):

ˆ = ˆ =
ˆ = ˆ =

π π

π π

−

−

U e U e

U e U e

00 00 , 01 01 ,

10 10 , 11 11 .
(8.159)

i i

i i

int
/4

int
/4

int
/4

int
/4

In order to compensate the undesirable parts of this joint phase shift of the basis
states, let us now apply similar individual ‘rotations’ of each qubit by angle θ′ = +π/4,

62 The assumption of simultaneous time independence of the basis state vectors and the interaction operator
(within the time interval T< <t0 ) is possible only if the basis state energy difference Δ of both qubits is
exactly the same. For this case, the simple physical explanation of the time evolution (8.156) follows from
figure 8.6b, c, which shows the spectrum of the total energy E = E1 + E2 of the two-bit system. In the absence
of interaction (figure 8.6b), the energies of two basis states, ∣01〉 and ∣10〉, are equal, enabling even a weak qubit
interaction to cause their substantial evolution in time—see section 6.7. If the qubit energies are different
(figure 8.6c), the interaction may still be reduced, in the rotating-wave approximation, to Eq. (8.156), by
compensating the energy difference (Δ1 − Δ2) with an external ac signal of frequency ω = (Δ1 − Δ2)/ℏ—see
section 6.5.
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using the following product of two independent operators, plus (just for the result
clarity) a common, and hence inconsequential, phase shift θ′ = −π/4:63

θ σ σ θ π σ π σˆ = ′ ˆ + ˆ + ″ ≡ ˆ ˆ π−{ } { }{ }U i i i i eexp ( ) exp
4

exp
4

. (8.160)z z z z
i

com
(1) (2) (1) (2) /4

Since this operator is also diagonal in the ∣j1j2〉 basis, it is easy to calculate the change
of the basis states by the total unitary operator ˆ ≡ ˆ ˆU U Utot com int:

ˆ = ˆ =
ˆ = ˆ = −

U U

U U

00 00 , 01 01 ,

10 10 , 11 11 .
(8.161)tot tot

tot tot

This result already shows the main ‘miracle action’ of two-qubit gates, such as the
one shown in figure 8.4b: the source qubit is left intact (only if it is in a basis state!),
while the state of the target qubit is altered. True, this change (of the sign) is still
different from the CNOT operator’s action (8.145), but may be readily used for its
implementation by sandwiching of the transform Utot between two Hadamard
transforms of the target qubit alone:

H Hˆ = ˆ ˆ ˆC U
1
2

. (8.162)(2)
tot

(2)

So, we have spent quite a bit of time on the discussion of the CNOT gate64, and
now I can reward the reader for his/her effort with a bit of good news: it has been
proved that an arbitrary unitary transform that satisfies Eq. (8.140), i.e. may be used
within the general scheme outlined in figure 8.3, may be decomposed into a set of
CNOT gates, possibly augmented with simpler single-qubit gates—for example, the
Hadamard gate plus the π/2 rotation discussed above65. Unfortunately, I have no
time for a detailed discussion of more complex circuits66. The most famous of them
is the scheme for integer number factoring, suggested in 1994 by P Shor67. Due to its
potential practical importance for breaking broadly used communication encryption

63 It Eq. (4.175) shows, each of component unitary transforms θ σ′ ˆiexp{ }z may be created by applying to each
qubit, for a time periodT θ κ= ℏ ′ ′/ , a constant external field described by Hamiltonian κ σˆ = − ′ ˆH z. We already
know that for a charged, spin-½ particle, this Hamiltonian may be created by applying z-oriented external
constant magnetic field—see Eq. (4.163). For most other physical implementations of qubits, the organization
of such Hamiltonian is also straightforward—see, e.g. figure 7.4 and its discussion.
64As was discussed above, this gate is identical to the two-qubit gate shown in figure 8.5a for f = f3, i.e. f( j) = j.
The implementation of the gate of f for 3 other possible functions f requires straightforward modifications,
whose analysis is left for reader’s exercise.
65 This fundamental importance of the CNOT gate was perhaps a major reason why DWineland, the leader of
the NIST group that had demonstrated its first experimental implementation in 1995 (following the theoretical
suggestion by J Cirac and P Zoller), was awarded the 2012 Nobel Prize in Physics—shared with S Haroche, the
leader of another group working towards quantum computation.
66 For that, the reader may be referred to either the monographs by Nielsen–Chuang and Reiffel–Polak, cited
above, or to a shorter (but much more formal) textbook [10].
67A clear description of this algorithm may be found in several accessible sources, including Wikipedia—see
the article Shor’s Algorithm.
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schemes such as the RSA code68, this opportunity has incited a huge wave of
enthusiasm, and triggered experimental efforts to implement quantum gates and
circuits using a broad variety of two-level quantum systems. By now, the following
experimental options have given most significant results69:

(i) Trapped ions. The first experimental demonstrations of quantum state
manipulation (including the already mentioned first CNOT gate) have been carried
out using deeply cooled atoms in optical traps, similar to those used in frequency
and time standards. Their total spins are natural qubits, whose states may be
manipulated using the Rabi transfers excited by suitably tuned lasers. The spin
interactions with the environment may be very weak, resulting in large dephasing
times T2—up to a few seconds. Since the distances between ions in the traps are
relatively large (of the order of a micron), their direct spin–spin interaction is even
weaker, but the ions may be made effectively interacting either via their mechanical
oscillations about the potential minima of the trapping field, or via photons in
external electromagnetic resonators (‘cavities’)70. Perhaps the main challenge of
using this approach for quantum computation is a poor ‘scalability’, i.e. the
enormous experimental difficulty of creating large, ordered systems of individually
addressable qubits. So far, only a-few-qubit systems have been demonstrated71.

(ii) Nuclear spins are also typically very weakly connected to environment, with
dephasing times T2 exceeding 10 s in some cases. Their eigenenergies E0 and E1 may
be split by external dc magnetic fields (typically, of the order of 10 T), while the
interstate Rabi transfers may be readily achieved by using the nuclear magnetic
resonance, i.e. the application of external ac fields with frequencies ω = (E1 − E0)/ℏ—
typically, of a few hundred MHz. The challenges of this option include the weakness
of spin–spin interactions (typically mediated through molecular electrons), resulting in
a very slow spin evolution, whose time scale ℏ/κmay become comparable with T2, and
also very small level separations E1 − E0, corresponding to a few K, i.e. much smaller
than the room temperature, creating a challenge of qubit state preparation72. Despite
these challenges, the nuclear spin option was used for the first implementation of the
Shor algorithm for factoring of a small number (15 = 5 × 3) as early as in 200173.
However, the extension of this success to larger systems, beyond the set of spins inside
one molecule, is extremely challenging.

68Named after R Rivest, A Shamir, and L Adleman, the authors of the first open publication of the code in
1977, but actually invented earlier (in 1973) by C Cocks.
69 For a discussion of other possible implementations (such as quantum dots and dopants in crystals) see, e.g.
[11], and references therein.
70A brief discussion of such interactions (so-called Cavity QED) will be given in section 9.4 below.
71 See, e.g. [12]. Note also the related work on arrays of trapped, optically-coupled neutral atoms—see, e.g. [13]
and references therein.
72 This challenge may be partly mitigated using ingenious spin manipulation techniques such as refocusing—
see, e.g. either section 7.7 in Nielsen and Chuang, or the J Keeler’s monograph cited in the end of section 6.5.
73 [14].
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(iii) Josephson-junction devices. Much better scalability may be achieved with
solid state devices, especially using superconductor integrated circuits including
weak contacts—Josephson junctions (see their brief discussion in section 1.6). The
qubits of this type all based on the fact that the energy U of such a junction is a
highly nonlinear function of the Josephson phase difference φ—see section 1.6.
Indeed, combining Eqs. (1.73) and (1.74), we can readily calculate U(φ) as the work
W of an external circuit increasing the phase from, say, zero to some value φ:

W∫ ∫ ∫φ φ φ

φ

− = = =
ℏ

′ ′

=
ℏ

−

φ

φ φ

φ

φ φ

φ

φ φ

′=

′=

′=

′=

′=

′=

U U d IVdt
eI d

dt
dt

eI

( ) (0)
2

sin

2
(1 cos ).

(8.163)0 0

c

0

c

There are several options of using this nonlinearity for creating qubits74; currently
the leading option, called the phase qubit, is using two lowest eigenstates localized in
one of the potential wells of the periodic potential (8.163). A major problem of such
qubits is that at the very bottom of this well the potential U(φ) is almost quadratic,
so that the energy levels are nearly equidistant—cf. Eqs. (2.262), (6.16), and (6.23).
This is even more true for the so-called ‘transmons’ (and ‘Xmons’, and ‘Gatemons’,
and several other similar devices75)—the currently used phase qubits versions, where
a Josephson junction is made a part of an external electromagnetic oscillator,
making its relative net nonlineartity (anharmonism) even smaller. As a result, the
external rf drive of frequency ω = (E1 − E0)/ℏ, used to arrange the state transforms
described by Eq. (8.155), may induce simultaneous undesirable transitions to (and
between) higher energy levels. This effect may be mitigated by a reduction of the ac
drive amplitude, but at a price of the proportional increase of the operation time. (I
am leaving a quantitative estimate of this increase for the reader’s exercise.)

Since the coupling of Josephson-junction qubits may be most readily controlled
(and, very importantly, kept stable if so desired), they have been used to
demonstrate the largest prototype quantum computing systems to date, despite
quite modest dephasing times T2—for purely integrated circuits, in the tens of
microseconds at best, even at the operation temperatures in tens of mK. By the time
of this writing (mid-2018), several groups have announced chips with more than 10

74 The ‘most quantum’ option in this technology is to use Josephson junctions very weakly coupled to their
dissipative environment (so that the effective resistance shunting the junction is much higher than the quantum
resistance unit RQ ≡ (π/2) ℏ/e2 ∼ 104 Ω). In this case, the Josephson phase variable φ behaves as a coordinate of
a 1D quantum particle, moving in the 2π-periodic potential (8.163), forming the energy band structure E(q)
similar to those discussed in section 2.7. Both theory and experiment show that in this case, the quantum states
in adjacent Brillouin zones differ by the charge of one Cooper pair 2e. (This is exactly the effect responsible for
the Bloch oscillations of frequency (2.252).) These two states may be used as the basis states of a charge qubit.
Unfortunately, such a qubit is rather sensitive to random charged impurities in the junction’s vicinity, causing
uncontrollable changes of it parameters, so that currently, to the best of my knowledge, this option is not
actively pursued.
75 For a recent review of these devices see, e.g. [15], and references therein.
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qubits, but to the best of my knowledge, only their smaller subsets could be used for
high-fidelity quantum operations76.

(iv) Optical systems, attractive because of their inherently enormous bandwidth,
pose a special challenge for quantum computation: due to the virtual linearity of
most electromagnetic media at reasonable light power, the implementation of qubits
(i.e. two-level systems), and interaction Hamiltonians such as the one given by
Eq. (8.156), is problematic. In 2001, a very smart way around this hurdle was
invented77. In this KLM scheme (also called the ‘linear optical quantum comput-
ing’), nonlinear elements are not needed at all, and quantum gates may be composed
just of linear devices (such as optical waveguides, mirrors and beam splitters), plus
single-photon sources and detectors. However, estimates show that this approach
requires a much larger number of physical components than those using nonlinear
quantum systems such as usual qubits78, so that right now it is not very popular.

So, despite more than two decades of large-scale efforts, the progress of the
quantum computing development has been rather modest. The main culprit here is the
unintentional coupling of qubits to environment, leading most importantly to their
state dephasing, and eventually to errors. Let me discuss this major issue in detail.

Of course, some error probability exists in classical digital logic gates and memory
cells as well79. However, in this case, there is no conceptual problem with the device
state measurement, so that the error may be detected and corrected in many ways;
perhaps the simplest one is the so-called majority voting. For that, the input bit set is
reproduced in several (say, three) copies and sent to three similar devices whose outputs
are measured and compared. If the outputs differ, at least one of the devices has made
at error. This error may be not only detected, but also corrected by taking the two
coinciding outputs for the correct one. If the probability of a single device error isW≪
1, the probability of error of one device pair is close to W2, and that of two pairs (and
hence of the whole majority voting scheme) is close to W3. Since for the currently
dominating CMOS integrated circuits, W is extremely small (<10−5 even for relatively
complex logic blocks), even such a simple error correction circuit creates a dramatic
fidelity improvement—at the cost of higher circuit complexity and consumed power.

For quantum computation, the general idea of using several devices (say, qubits)
for coding the same information remains valid; however, there are two major
complications, both due to the analog nature of qubit states. First, as we know from
chapter 7, the dephasing effect of environment may be described as a slow random
drift of the probability amplitudes aj, leading to the deviation of the output state αfin
from the required form (8.140), and hence to a nonvanishing probability of wrong
qubit state readout—see figure 8.3. Hence the quantum error correction has to

76 See, e.g. [16] and references therein.
77 [17].
78 See, e.g. [18].
79 In modern integrated circuits, such ‘soft’ (runtime) errors are created mostly by the high-energy neutron
component of cosmic rays, and also by the α-particles emitted by radioactive impurities in silicon chips and
their packaging.
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protect the result not against possible random state flips 0 ↔ 1, as in the classical
digital computer, but against these ‘creeping’ analog errors.

Second, the qubit state is impossible to copy exactly (clone) without disturbing it,
as follows from the following simple calculation80. Cloning some state α of one qubit
to another qubit that is initially in an independent state (say, the basis state 0),
without any change of α, means the following transformation of the two-qubit ket:
∣α0〉 → ∣αα〉. If we want such a transform to be performed by a real quantum system
whose operation is described by a unitary operator û, and to be correct for an
arbitrary state α, it has to work not only for both basis states of the qubit:

ˆ = ˆ =u u00 00 , 10 11 , (8.164)

but also for their arbitrary linear combination (8.133). Since the operator û has to be
linear, we may use that relation, and then Eq. (8.164) to write

αˆ ≡ ˆ + ≡ ˆ + ˆ
= +

u u a a a u a u
a a

0 ( 0 1 ) 0 00 10
00 11 .

(8.165)0 1 0 1

0 1

On the other hand, the desired result of the state cloning is

αα = + +
≡ + + +

a a a a

a a a a

( 0 1 )( 0 1 )

00 ( 10 01 ) 11 ,
(8.166)

0 1 0 1

0
2

0 1 1
2

i.e. is evidently different, so that, for an arbitrary state α, and an arbitrary unitary
operator û,

α ααˆ ≠u 0 , (8.167)

meaning that the qubit state cloning is indeed impossible81.
This problem may be partly circumvented—for example, in the way shown in

figure 8.7a. Here the CNOT gate, whose action is described by Eq. (8.145), entangles
an arbitrary input state (8.133) of the source qubit with a basis initial state of an

Figure 8.7. (a) Quasi-cloning, and (b) detection and correction of dephasing errors in a single qubit.

80Amazingly, this simple no-cloning theorem was discovered as late as in 1982 (to the best of my knowledge,
independently by W Wooters and W Zurek, and by D Dieks), in the context of work toward quantum
cryptography—see below.
81Note that this does not mean that the two (or several) qubits cannot be put into the same, arbitrary quantum
state—theoretically, with arbitrary precision. Indeed, they may be first set into their lowest-energy stationary
states, and then driven into the same arbitrary state (8.133) by exerting on them similar classical external fields.
So, the no-cloning theorem pertains only to qubits in unknown states α—but this is exactly what we need for
error correction—see below.
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ancillary target qubit—frequently called the ancilla. Using Eq. (8.145), we may
readily calculate the output two-qubit state’s vector:

α = ˆ + ≡ ˆ + ˆ
= +

= C a a a C a C
a a

( 0 1 ) 0 00 10
00 11 .

(8.168)N 2 0 1 0 1

0 1

We see that this circuit does perform the operation (8.165), i.e. gives the initial
source qubit’s probability amplitudes a0 and a1 equally to two qubits, i.e. duplicates
the input information. However, in contrast with the ‘genuine’ cloning, it changes
the state of the source qubit as well, making it entangled with the target (ancilla)
qubit. Such ‘quasi-cloning’ is the key element of most suggested quantum error
correction techniques.

Consider, for example, the three-qubit ‘circuit’ shown in figure 8.7b, which uses
two ancilla qubits (see two lower lines). At its first two stages, the double application
of the quasi-cloning produces an intermediate state A with the following ket-vector:

= +A a a000 111 , (8.169)0 1

which is an evident generalization of Eq. (8.168).82 Next, subjecting the source qubit
to the Hadamard transform (8.146), we get the three-qubit state B represented by the
vector

= + + −B a a
1

2
( 0 1 ) 00

1

2
( 0 1 ) 11 . (8.170)0 1

Now let us assume that at this stage, the source qubit comes into a contact with a
dephasing environment (in figure 8.7b, symbolized by the single-qubit ‘gate’ φ). As we
know from section 7.3, its effect (besides some inconsequential shift of the common
phase) may be described by a random mutual phase shift of the basis states83:

→ →φ φ−e e0 0 , 1 1 . (8.171)i i

As a result, for the intermediate state C (see figure 8.7b) we may write

= +

+ −

φ φ

φ φ

−

−

C a e e

a e e

1

2
( 0 1 ) 00

1

2
( 0 1 ) 11 .

(8.172)

i i

i i

0

1

At this stage, in this simple theoretical model, the coupling with environment is
completely stopped (ahhh, if this could be possible! we might have quantum

82 Such a state is also the 3 qubit example of the so-called Greeenberger–Horne–Zeilinger (GHZ) states, which
are frequently called the ‘most entangled’ states of a system of N > 2 qubits.
83 For example, in the Hilbert space of this qubit, the model Hamiltonian (7.70), which was explored in section
7.3, is diagonal in the z-basis of states 0 and 1, so that the unitary transform it provides is also diagonal, giving
phase shifts described by Eq. (8.171). Let me emphasize again that Eq. (8.171) is strictly valid only if the
interaction with environment is a pure dephasing, i.e. does not include the energy relaxation of the qubit or its
thermal activation to the higher eigenstate; however, it is a reasonable description of errors at T2 ≪ T1.
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computers by now :-), and the source qubit is fed into one more Hadamard gate.
Using Eqs. (8.146) again, for the state D after this gate we get

φ φ
φ φ

= +
+ +

D a i
a i
(cos 0 sin 1 ) 00

( sin 0 cos 1 ) 11 .
(8.173)0

1

Now the qubits are passed through the second, similar pair of CNOT gates—see
figure 8.7b. Using Eq. (8.145), for the resulting state E we readily get the following
expression:

φ φ φ
φ

= + +
+

E a a i a i
a

a
cos 000 sin 111 sin 011

cos 100 ,
(8.174 )0 0 1

1

whose right-hand side may by evidently grouped as

φ
φ

= +
+ +

E a a
a a i

b
( 0 1 )cos 00

( 0 1 ) sin 11 .
(8.174 )0 1

1 0

This is already a rather remarkable result. It shows that if we measured the ancilla
qubits at the stage E, and both results corresponded to states 0, we might be 100%
sure that the source qubit (which is not affected by these measurements!) is in its
initial state even after the interaction with environment. The only result of an
increase of this unintentional interaction (as quantified by the magnitude of the
random phase shift φ) is the growth of the probability,

φ=W sin , (8.175)2

of getting the opposite result, which signals a dephasing-induced error in the source
qubit. Such implicit measurement, without disturbing the source qubit, is called the
quantum error detection. An even more impressive result may be achieved by the last
component of the circuit, the so-called Toffoli (or ‘CCNOT’) gate, denoted by the
rightmost symbol in figure 8.7b. This 3 qubit gate is conceptually similar to the
CNOT gate discussed above, besides that it flips the basis state of its target qubit
only if both its source qubits are in the state 1. (In the circuit shown in figure 8.7b, the
former role is played by our source qubit, while the latter role, by the two ancilla
qubits.) According to its definition, the Toffoli gate has no effect on the first
parentheses in Eq. (8.174b), but flips the source qubit’s states in the second
parentheses, so that for the output 3 qubit state F we get

φ φ= + + +F a a a a i a( 0 1 )cos 00 ( 0 1 ) sin 11 . (8.176 )0 1 0 1

Obviously, this result may be factored as

φ φ= + +F a a i b( 0 1 )(cos 00 sin 11 ), (8.176 )0 1

showing that now the source qubit is again fully unentangled from the ancilla qubits.
Moreover, calculating the norm squared of the second operand, we get

φ φ φ φ φ φ− + = + =i i(cos 00 sin 11 ) (cos 00 sin 11 ) cos sin 1, (8.177)2 2

Quantum Mechanics: Lecture notes

8-50



so that the final state of the source qubit always, exactly coincides with its initial state.
This is the famous miracle of quantum state correction, taking place ‘automatically’—
without any qubit measurements, and for any random phase shift φ.

The circuit shown in figure 8.7b may be further improved by adding Hadamard
gate pairs, similar to that used for the source qubit, to the ancilla qubits as well. It is
straightforward to show that if the dephasing is small in the sense that the W given
by Eq. (8.175) is much less than 1, this modified circuit may provide a substantial
error probability reduction (to ∼W2) even if the ancilla qubits are also subjected to a
similar dephasing and the source qubits, at the same stage—i.e. between two
Hadamard gates. Such perfect automatic correction of any error (not only an inner
dephasing of a qubit and its relaxation/excitation, but also the mutual dephasing
between qubits) of any used qubit needs even more parallelism. The first circuit of
that kind, based on 9 parallel qubits, which is a natural generalization of the circuit
discussed above, had been invented in 1995 by the same P Shor. Later, 5qubit
circuits enabling similar error correction were suggested. (The further parallelism
reduction has been proved impossible.)

However, all these results assume that the error correction circuits as such are
perfect, i.e. completely isolated from the environment. In the real world this cannot
be done. Now the key question is what maximum levelWmax of the error probability
in each gate (including those in the used error correction scheme) can be automati-
cally corrected, and how many qubits with W < Wmax would be required to
implement quantum computers producing important results—first of all, factoring
of large numbers84. To the best of my knowledge, estimates of these two related
numbers have been made only for some very specific approaches, and they are rather
pessimistic. For example, using the so-called surface codes, which employ many
physical qubits for coding an informational one, and hence increase its fidelity,Wmin

may be increased to a few times 10−3, but then we would need ∼108 physical qubits
for the Shor’s algorithm implementation85. This is very far from what currently
looks doable.

Because of this hard situation, the current development of quantum computing is
focused on finding at least some problems that could be within the reach of either the
existing systems, or their immediate extensions, and simultaneously would present
some practical interest—a typical example of a technology in search for applica-
tions. Currently, to my knowledge, all suggested problems of this kind address
properties of some simple quantum systems—such as the molecular hydrogen86 or
the deuteron (the deuterium’s nucleus, i.e. the proton–neutron system)87. In the
simplest option of this approach, the interaction between the qubits of a system is

84 In order to compete with the existing classical factoring algorithms, such numbers should have at least 103

bits.
85 [19].
86 [20].
87 [21].
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organized so that the system’s Hamiltonian is similar to that of the quantum system
of interest88.

A similar work direction (for which ‘quantum system modeling’ would be a more
appropriate name than ‘quantum computation’) is pursued by the teams using
schemes different from that shown in figure 8.3. Of those, the most developed is the
so-called adiabatic quantum computation89, which drops the hardest requirement of
negligible interaction with the environment. In this approach, the qubit system is
first prepared in a certain initial state, and then is allowed to evolve on its own, with
no effort to couple-uncouple qubits by external control signals during the evolu-
tion90. Due to the interaction with the environment, in particular the dephasing and
the energy dissipation it imposes, the system eventually relaxes to a final incoherent
state, which is then measured. (This recalls the scheme shown in figure 8.3, with the
important difference that the transform U should not necessarily be unitary.) From
numerous runs of such an experiment, the outcome statistics may be revealed. Thus,
at this approach the interaction with the environment is allowed to play a certain role
in the system evolution, though every effort is made to reduce it, thus slowing down
the relaxation process—hence the word ‘adiabatic’ in the name of this approach. This
slowness allows the system to exhibit some quantum properties, in particular quantum
tunneling91 through the energy barriers separating close energy minima in the multi-
dimensional space of states. This tunneling may create a substantial difference of the
finite state statistics from that in purely classical systems, where such barriers may be
overcome only by thermally-activated jumps over them92.

Due to technical difficulties of the organization and precise control of long-range
interaction in multi-qubit systems, the adiabatic quantum computing demonstra-
tions so far have been limited to a few simple arrays described by the so-called
extended quantum Ising (‘spin-glass’) model

∑ ∑σ σ σˆ = − ˆ ˆ − ˆ
′

′
H J h , (8.178)

j j j{ , }
z
j

z
j

j z
j( ) ( ) ( )

where the curly brackets denote the summation over pairs of close (though not
necessarily closest) neighbors. Though the Hamiltonian (8.178) is the traditional
playground of phase transitions theory (see, e.g. Part SM chapter 4), to the best of
my knowledge there are not many practically important tasks that could be achieved
by studying the statistics of its solutions. Moreover, even for this limited task, the

88 By the moment of this writing (mid-2018), even for such specially-tailored problems, the performance of
existing quantum computing systems has been still below that of classical computers—see, e.g. [22].
89Note that the qualifier ‘quantum’ is important in this term, to distinguish this research direction from the
classical adiabatic (or ‘reversible’) computation—see, e.g. Part SM section 2.3 and references therein.
90Recently, some hybrids of this approach with the ‘usual’ scheme of quantum computation have been
demonstrated, in particular, using some control of inter-bit coupling during the relaxation process—see, e.g. [23].
91As a reminder, this process was repeatedly discussed in this course, starting from section 2.3.
92A quantitative discussion of such jumps may be found in Part SM section 5.6.
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speed of the largest experimental adiabatic quantum ‘computers’, with several
hundreds of Josephson-junction qubits93 is still comparable with that of classical,
off-the-shelf semiconductor processors (with the dollar cost lower by many orders of
magnitude), and no dramatic change of this comparison is predicted for realistic
larger systems.

To summarize the current situation with the quantum computation development,
it faces a very hard challenge of mitigating the effects of unintentional coupling with
the environment. This problem is exacerbated by the lack of algorithms, beyond the
Shor’s number factoring, that would give quantum computation a substantial
advantage over the classical competition in solving real-world problems, and hence
a potential customer base much broader that the communication encryption
community, that would provide the field with the necessary long-term motivation
and resources. So far, the leading experts in this field abstain from predictions on
when the quantum computation may become a self-supporting commercial
technology94.

There seem to be better prospects for another application of entangled qubit
systems, namely to telecommunication cryptography95. The goal here is to replace
the currently dominating classical encryption, based on the public-key RSA code
mentioned above, that may be broken by factoring very large numbers, with a
quantum encryption system that would be fundamentally unbreakable. The basis
of this opportunity are the measurement postulate and the no-cloning theorem: if a
message is carried over by a qubit, it is impossible for an eavesdropper (in
cryptography, traditionally called Eve) to either measure or copy it faithfully,
without also disturbing its state. However, as we have seen from the discussion of
figure 8.7a, state quasi-cloning using entangled qubits is possible, so that the issue
is far from being simple, especially if we want to use a publicly distributed
quantum key, in some sense similar to the classical public key used at the RSA
encryption.

Unfortunately, I would not have time/space to discuss various options for
quantum encryption, but cannot help demonstrating how counter-intuitive they
may be, on the famous example of the so-called quantum teleportation (figure 8.8).96

Suppose that some party A (in cryptography, traditionally called Alice) wants to
send to party B (Bob) the full information about the pure quantum state α of a qubit,
unknown to either party. Instead of sending her qubit directly to Bob, Alice asks him

93 See, e.g. [24]. Similar demonstrations with trapped-ion systems so far have been on a smaller scale, with a
few tens of qubits—see, e.g. [25].
94 See, e.g. [26].
95 This field was pioneered in the 1970s by S Wisener. Its important theoretical aspect (which I, unfortunately,
also will not be able to cover) is the distinguishability of different but close quantum states—for example, of an
original qubit set, and that slightly corrupted by noise. A good introduction to this topic may be found, for
example, in chapter 9 of the monograph by Nielsen and Chuang, cited above.
96 This procedure had been first suggested in 1993 by the same C Bennett, and then repeatedly demonstrated
experimentally—see, e.g. [27], and literature therein.
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to send her one qubit (β) of a pair of other qubits, prepared in a certain entangled
state, for example in the singlet state described by Eq. (8.11); in our current notation

ββ′ = −1

2
( 01 10 ). (8.179)

The initial state of the whole 3 qubit system may be represented in the form

αββ ββ′ = + ′

= − + −

a a
a a a a a

( 0 1 )

2
001

2
010

2
010

2
111 , (8.180 )

0 1

0 0 1 1

which may be equivalently rewritten as the following linear superposition,

αββ αβ αβ

αβ αβ

′ = − + + +

+ − + + − −

+ −

+ −

a a a a

a a a a
b

1
2

( 0 1 )
1
2

( 0 1 )

1
2

( 0 1 )
1
2

( 0 1 ),
(8.180 )

s 1 0 s 1 0

e 0 1 e 0 1

of the following four states of the qubit pair αβ:

αβ αβ≡ ± ≡ ±± ±1

2
( 00 11 ),

1

2
( 01 10 ). (8.181)s e

After having received the qubit β from Bob, Alice measures which of these four
states the pair αβ has. This may be achieved, for example, by measurement of one
observable represented by the operator σ σˆ ˆα β

z z
( ) ( ) and another one corresponding to

σ σˆ ˆα β
x x
( ) ( )—cf. Eq. (8.156). (Since all four states (8.181) are eigenstates of both these

operators, these two measurements do not affect each other and may be performed
in any order.) The measured eigenvalue of the former operator enables distinguish-
ing the couples of states (8.181) with different values of the lower index, while the
latter measurement distinguishes the states with different upper indices.

Then Alice reports the measurement result (which may be coded with just 2
classical bits) to Bob over a classical communication channel. Since the

Figure 8.8. Sequential stages of a ‘quantum teleportation’ procedure: (a) the initial state with entangled qubits
β and β′, (b) back transfer of the qubit β, (c) measurement of the pair αβ, (d) forward transfer of 2 classical bits
with the measurement results, and (e) the final state, with the state of the qubit β′ mirroring the initial state of
the qubit α.
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measurement places the pair αβ definitely into the corresponding state, the remaining
Bob’s bit β′ is now definitely in the unentangled single-qubit state that is represented
by the corresponding parentheses in Eq. (8.180b). Note that each of these
parentheses contains both coefficients a0,1, i.e. the whole information about the
initial state that the qubit α had initially. If Bob likes, he may now use appropriate
single-qubit operations, similar to those discussed earlier in this section, to move his
qubit β′ into the state exactly similar to the initial state of qubit α. (This fact does not
violate the no-cloning theorem (8.167), because the measurement has already
changed the state of α.) This is of course a ‘teleportation’ only in a very special
sense of this term, but a good example of the importance of qubit entanglement’s
preservation at their spatial transfer97.

Returning for just a minute to quantum cryptography: since its most common
quantum key distribution protocols98 require just a few simple quantum gates,
whose experimental implementation is not a large technological challenge, the main
focus of the current effort is on decreasing the single-photon dephasing in long
electromagnetic-wave transmission channels99, with sufficiently high qubit transfer
fidelity. The recent progress was rather impressive, with demonstrated transfer of
entangled qubits over landlines longer than 100 km,100 and over at least one satellite-
based line longer than 1000 km,101 and also the whole quantum key distribution over
a comparable distance, though as yet at a very low rate102. Let me hope that if not
the author of these notes, then their readers will see this technology used in practical
secure telecommunication systems.

8.6 Problems

Problem 8.1. Prove that Eq. (8.30) indeed yields Eg
(1) = (5/4)EH.

Problem 8.2. For a diluted gas of helium atoms in their ground state, with n atoms
per unit volume, calculate its:

(i) electric susceptibility χe, and
(ii) magnetic susceptibility χm,

and compare the results.

Hint: You may use the model solution of problems 6.8 and 6.14, and the results of
the variational description of the helium atom’s ground state in section 8.2.

97 For this course, this is also a good primer for the forthcoming discussion of the EPR paradox and the Bell’s
inequalities in chapter 10.
98 Two of them are the BB84 suggested in 1984 by C Bennett and G Brassard, and the EPRBE suggested in
1991 by A Ekert. For details, see, e.g. either section 12.6 in the repeatedly cited monograph by Nielsen and
Chuang, or the review [28].
99 For their quantitative discussion see, e.g. Part EM section 7.8.
100 See, e.g. [29], and references therein.
101 [30].
102 [31].
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Problem 8.3. Calculate the expectation values of the following observables: s1 · s2,
S2 ≡ (s1 + s2)

2 and Sz ≡ s1z + s2z, for the singlet and triplet states of the system of two
spins-½, defined by Eqs. (8.18) and (8.21), directly, without using the general rule
(8.48) of spin addition. Compare the results with those for the system of two classical
vectors of magnitude ℏ/2 each.

Problem 8.4. Discuss the factors ±1/√2 that participate in Eqs. (8.18) and (8.20) for
the entangled states of the system of two spins-½, in terms of Clebsh–Gordan
coefficients similar to those discussed in section 5.7.

Problem 8.5.* Use the perturbation theory to calculate the contribution into the so-
called hyperfine splitting of the ground energy of the hydrogen atom103, due to the
interaction between spins of the nucleus (proton) and the electron.

Hint: The proton’s magnetic moment operator is described by the same Eq. (4.115)
as the electron, but with a positive gyromagnetic factor γp = gpe/2mp ≈ 2.675 × 108

s−1 T−1, whose magnitude is much smaller than that of the electron (∣γe∣ ≈ 1.761 ×
1011 s−1 T−1), due to the much higher mass, mp ≈ 1.673 × 10−27 kg ≈ 1,835 me. (The
g-factor of the proton is also different, gp ≈ 5.586.104)

Problem 8.6. In the simple case of just two similar spin-interacting particles,
distinguishable by their spatial location, the famous Heisenberg model of ferromag-
netism105 is reduced to the following Hamiltonian:

BBγˆ ˆ ˆ ˆˆ = − ⋅ − ⋅ +H J s s s s( ),1 2 1 2

where J is the spin interaction constant, γ is the gyromagnetic ratio of each particle,
and BB is the external magnetic field. Find the stationary states and eigenenergies of
this system for spin-½ particles.

Problem 8.7. Two particles, both with spin-½, but different gyromagnetic ratios γ1
and γ2, are placed into external magnetic field BB. In addition, their spins interact as
in the Heisenberg model:

ˆ ˆˆ = − ⋅H J s s .int 1 2

Find the eigenstates and eigenenergies of the system106.

103 This effect was discovered experimentally by A Michelson in 1881, and explained theoretically by W Pauli
in 1924.
104 The anomalously large value of the proton’s g-factor results from the composite quark–gluon structure of
this particle. (An exact calculation of gp remains a challenge for quantum chromodynamics.)
105 It was suggested in 1926, independently by W Heisenberg and P Dirac. A discussion of temperature effects
on this and other similar systems (especially the Ising model of ferromagnetism) may be found in Part SM
chapter 4.
106 For similar particles (in particular, with γ1 = γ2) the problem is evidently reduced to the previous one.
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Problem 8.8. Two similar spin-½ particles, with the gyromagnetic ratio γ, localized
at two points separated by distance a, interact via the field of their magnetic dipole
moments. Calculate the spin eigenstates and eigenvalues of the system.

Problem 8.9. Consider the permutation of two identical particles, each of spin s.
How many different symmetric and antisymmetric spin states can the system have?

Problem 8.10. For a system of two identical particles with s = 1:

(i) List all possible spin states in the uncoupled-representation basis.
(ii) List all possible pairs {S, MS} of the quantum numbers describing the states of

the coupled-representation basis—see Eq. (8.48).
(iii) Which of the {S, MS} pairs describe the states symmetric, and which the states

antisymmetric, with respect to the particle permutation?

Problem 8.11. Represent the operators of the total kinetic energy and the total
orbital angular momentum of a system of two particles, with masses m1 and m2, as
combinations of terms describing the center-of-mass motion and the relative motion.
Use the results to calculate the energy spectrum of the so-called positronium—a
metastable ‘atom’107 consisting of one electron and its positively charged antipar-
ticle, the positron.

Problem 8.12. Two particles with similar masses m and charges q are free to move
along a round, plane ring of radius R. In the limit of strong Coulomb interaction of
the particles, find the lowest eigenenergies of the system, and sketch the system of its
energy levels. Discuss possible effects of particle indistinguishability.

Problem 8.13. Low-energy spectra of many diatomic molecules may be well
described modeling the molecule as a system of two particles connected with a light
and elastic, but very stiff spring. Calculate the energy spectrum of a molecule in this
approximation. Discuss possible effects of nuclear spins on the spectra of so-called
homonuclear molecules, formed by two similar atoms.

Problem 8.14. Two indistinguishable spin-½ particles are attracting each other at
contact:

W Wδ= − − >U x x x x( , ) ( ), with 0,1 2 1 2

but are otherwise free to move along the x-axis. Find the energy and the wave-
function of the ground state of the system.

Problem 8.15. Calculate the energy spectrum of the system of two identical spin-½
particles, moving along the x-axis, which is described by the following Hamiltonian:

107 Its lifetime (either 0.124 ns or 138 ns, depending on the parallel or antiparallel configuration of the
components spins), is limited by the weak interaction of its components, which causes their annihilation with
the emission of several gamma-ray photons.
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and the degeneracy of each energy level.

Problem 8.16.* Two indistinguishable spin-½ particles are confined to move around
a circle of radius R, and interact only at a very short arc distance l = Rφ ≡ R(φ1 − φ2)
between them, so that the interaction potential U may be well approximated with a
delta-function of φ. Find the ground state and its energy, for the following two cases:

(i) the ‘orbital’ (spin-independent) repulsion: W δ φˆ =U ( ),
(ii) the spin–spin interaction: W δ φˆ ˆˆ = − ⋅U s s ( )1 2 ,

both with constantW > 0. Analyze the trends of your results in the limitsW → 0
andW → ∞.

Problem 8.17. Two particles of mass M, separated by two much lighter particles of
mass m ≪ M, are placed on a ring of radius R—see figure below. The particles
strongly repulse at contact, but otherwise each of them is free to move along the ring.
Calculate the lower part of the energy spectrum of the system.

Problem 8.18. N indistinguishable spin-½ particles move in a spherically-symmetric
quadratic potential U(r) = mω0

2r2/2. Neglecting the direct interaction of the
particles, find the ground-state energy of the system.

Problem 8.19. Use the Hund rules to find the values of the quantum numbers L, S,
and J in the ground states of the atoms of carbon and nitrogen. Write down the
Russell–Saunders symbols for these states.

Problem 8.20. N ≫ 1 indistinguishable, non-interacting quantum particles are
placed in a hard-wall, rectangular box with sides ax, ay, and az. Calculate the
ground-state energy of the system, and the average forces it exerts on each face of the
box. Can we characterize the forces by certain pressureP ?

Hint: Consider separately the cases of bosons and fermions.

Problem 8.21.* Explore the Thomas–Fermi model108 of a heavy atom, with the
nuclear charge Q = Ze ≫ e, in which the interaction between electrons is limited to
their contribution to the common electrostatic potential ϕ(r). In particular, derive

108 It was suggested in 1927, independently, by L Thomas and E Fermi.
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the ordinary differential equation obeyed by the radial distribution of the potential,
and use it to estimate the effective radius of the atom.

Problem 8.22.* Use the Thomas–Fermi model, explored in the previous problem, to
calculate the total binding energy of a heavy atom. Compare the result with that for
the simpler model, in which the Coulomb electron–electron interaction is completely
ignored.

Problem 8.23. A system of three similar but distinguishable spin-½ particles is
described by the Heisenberg Hamiltonian (cf. problems 8.6 and 8.7):

ˆ ˆ ˆ ˆ ˆ ˆˆ = − ⋅ + ⋅ + ⋅H J s s s s s s( ),1 2 2 3 3 1

where J is the spin interaction constant. Find the stationary states and eigenenergies
of this system, and give an interpretation of your results.

Problem 8.24. For a system of three distinguishable spins-½, find the common
eigenstates and eigenvalues of the operators Ŝz and Ŝ

2, where

ˆ ˆ ˆ ˆ≡ + +S s s s1 2 3

is the vector operator of the total spin of the system. Do the corresponding quantum
numbers S and MS obey Eqs. (8.48)?

Problem 8.25. Explore basic properties of the Heisenberg model (which was the
subject of problems 8.6, 8.7, and 8.23), for a 1D chain of N spins-½:

BB∑ ∑γˆ ˆ ˆˆ = − ⋅ − ⋅ >
′

′H J Js s s , with 0,
j j j{ , }

j j j

where the summation is over allN spins, with the symbol {j, j′} meaning that the first
sum is only over the adjacent spin pairs. In particular, find the ground state of the
system and its lowest excited states in the absence of external magnetic field BB, and
also the dependence of their energies on the field.

Hint: For the sake of simplicity, you may assume that the first sum includes the term
ˆ ˆ⋅s sN 1 as well. (Physically, this means that the chain is bent into a closed loop109.)

Problem 8.26. Compose the simplest model Hamiltonians, in terms of the second
quantization formalism, for systems of indistinguishable particles moving in the
following systems:

(i) two weakly coupled potential wells, with on-site particle-pair interactions
(giving additional energy J per each pair of particles in the same potential
well), and

109Note that for dissipative spin systems, differences between low-energy excitations of open-end and closed-
end 1D chains may be substantial even in the limit N → ∞—see, e.g. Part SM section 4.5. However, for our
Hamiltonian (and hence dissipation-free) system, the differences are relatively small.
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(ii) a periodic 1D potential, with the same particle-pair interactions, in the tight-
binding limit.

Problem 8.27. For each of the Hamiltonians composed in the previous problem,
derive the Heisenberg equations of motion for particle creation operators, for

(i) bosons, and
(ii) fermions.

Problem 8.28. Express the ket-vectors of all possible Dirac states for the system of
three indistinguishable

(i) bosons, and
(ii) fermions,

via those of their single-particle states β, β′, and β″ they occupy.

Problem 8.29. Explain why the general perturbative result (8.126), when applied to
the 4He atom, gives the correct110 expression (8.29) for the ground singlet state, and
correct Eqs. (8.39)–(8.42) (with the minus sign in the first of these relations) for the
excited triplet states, but cannot describe these results, with the plus sign in
Eq. (8.39), for the excited singlet state.

Problem 8.30. For a system of two distinct qubits (i.e. two-level systems), introduce
a reasonable uncoupled-representation z-basis, and find in this basis the 4 × 4 matrix
of the operator that swaps their states.

Problem 8.31. Find a time-independent Hamiltonian that may cause the qubit
evolution described by Eqs. (8.155). Discuss the relation between your result and the
time-dependent Hamiltonian (6.86).
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