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Quantum Mechanics
Lecture notes

Konstantin K Likharev

Appendix A

Selected mathematical formulas

This appendix lists selected mathematical formulas that are used in this lecture course
series, but not always remembered by students (and some instructors :-).

A.1 Constants
• Euclidean circle’s length-to-diameter ratio:

π π= … ≈3.141 592 653 ; 1.77. (A.1)1/2

• Natural logarithm base:

≡ + = …→∞
⎛
⎝⎜

⎞
⎠⎟e

n
alim 1

1
2.718 281 828 ; (A.2 )n

n

from that value, the logarithm base conversion factors are as follows (ξ > 0):

ξ
ξ

ξ
ξ

= ≈ = ≈ b
ln

log
ln 10 2.303,

log

ln
1

ln 10
0.434. (A.2 )

10

10

• The Euler (or ‘Euler–Mascheroni’) constant:

γ ≡ + + + … − = …

≈γ

→∞
⎛
⎝⎜

⎞
⎠⎟n

n

e

lim 1
1
2

1
3

1
ln 0.577 156 649 0 ;

1.781.

(A.3)n

A.2 Combinatorics, sums, and series
(i) Combinatorics
• The number of different permutations, i.e. ordered sequences of k elements
selected from a set of n distinct elements (n ⩾ k), is

≡ ⋅ − ⋯ − + = !
− !

P n n n k
n

n k
a( 1) ( 1)

( )
; (A.4 )k

n
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in particular, the number of different permutations of all elements of the set
(n = k) is

= ⋅ − ⋯ ⋅ = !P k k k b( 1) 2 1 . (A.4 )k
k

• The number of different combinations, i.e. unordered sequences of k
elements from a set of n ⩾ k distinct elements, is equal to the binomial
coefficient

≡ ≡ = !
! − !( )C

n
k

P

P

n
k n k( )

. (A.5)k
n k

n

k
k

In an alternative, very popular ‘ball/box language’, nCk is the number of
different ways to put in a box, in an arbitrary order, k balls selected from n
distinct balls.

• A generalization of the binomial coefficient notion is the multinomial
coefficient,

∑≡ !
! !… !

=
=

…C
n

k k k
n k, with , (A.6)n

j

l

j

1

k k k
l

, ,
1 2

l1 2

which, in the standard mathematical language, is a number of different
permutations in a multiset of l distinct element types from an n-element set
which contains kj ( j = 1, 2,…l ) elements of each type. In the ‘ball/box
language’, the coefficient (A.6) is the number of different ways to distribute
n distinct balls between l distinct boxes, each time keeping the number (kj) of
balls in the jth box fixed, but ignoring their order inside the box. The
binomial coefficient nCk (A.5) is a particular case of the multinomial
coefficient (A.6) for l = 2 - counting the explicit box for the first one, and
the remaining space for the second box, so that if k1 ≡ k, then k2 = n − k.

• One more important combinatorial quantity is the number Mn
(k) of ways to

place n indistinguishable balls into k distinct boxes. It may be readily
calculated from Eq. (A.5) as the number of different ways to select (k − 1)
partitions between the boxes in an imagined linear row of (k − 1 + n)
‘objects’ (balls in the boxes and partitions between them):

= ≡ − + !
− ! !−

− +M C
k n
k n

( 1 )
( 1)

. (A.7)k
n k

1
1

n
k( )

(ii) Sums and series
• Arithmetic progression:

∑+ + ⋯ + ≡ = +

=

r r nr kr
n r nr

a2
( )

2
; (A.8 )

k

n

1

in particular, at r = 1 it is reduced to the sum of n first natural numbers:
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∑+ + ⋯ + ≡ = +

=

n k
n n

b1 2
( 1)

2
. (A.8 )

k

n

1

• Sums of squares and cubes of n first natural numbers:

∑+ + ⋯ + ≡ = + +

=

n k
n n n

a1 2
( 1)(2 1)

6
; (A.9 )

k

n

1

2 2 2 2

∑+ + ⋯ + ≡ = +

=

n k
n n

b1 2
( 1)

4
. (A.9 )

k

n

1

3 3 3 3
2 2

• The Riemann zeta function:

∑ζ ≡ + + + ⋯ ≡
=

∞

s
k

a( ) 1
1
2

1
3

1
; (A.10 )

k 1
s s s

the particular values frequently met in applications are

ζ ζ π ζ

ζ ζ π ζ

≈ = ≈

≈ = ≈

⎜ ⎟⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

b

3
2

2.612, (2)
6

,
5
2

1.341,

(3) 1.202, (4)
90

, (5) 1.037.

(A.10 )

2

4

• Finite geometric progression (for real λ ≠ 1):

∑λ λ λ λ λ
λ

+ + + ⋯ + ≡ = −
−=

−
− a1

1
1

; (A.11 )
k

n

0

1
n k

n
2 1

in particular, if λ 2 < 1, the progression has a finite limit at n→∞ (called the
geometric series):

∑ ∑λ λ
λ

= =
−=

−

=

∞

→∞ blim
1

1
. (A.11 )

k

n

k0

1

0

n
k k

• Binomial sum (or the ‘binomial theorem’):

∑+ =
=

a C a(1 ) , (A.12)
k

n

k
n

0

n k

where nCk are the binomial coefficients defined by Eq. (A.5).

• The Stirling formula:

π! = − + + − + …→∞ n n n n
n n

lim ln ( ) (ln 1)
1
2

ln(2 )
1

12
1

360
; (A.13)n 3
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for most applications in physics, the first term1 is sufficient.
• The Taylor (or ‘Taylor–Maclaurin’) series: for any infinitely differentiable
function f (ξ):

∑

ξ ξ ξ
ξ

ξ ξ
ξ

ξ ξ

ξ
ξ ξ

+ ˜ = + ˜ +
!

˜ + ⋯

=
!

˜

ξ̃ →

=

∞

f f
df
d

d f

d

k
d f

d

a

lim ( ) ( ) ( )
1
2

( )

1
( ) ;

(A.14 )

k

k

k
k

0

2

2
2

0

note that for many functions this series converges only within a limited,
sometimes small range of deviations ξ̃ . For a function of several arguments,
f(ξ1,ξ2,…,ξN), the first terms of the Taylor series are

∑

∑

ξ ξ ξ ξ ξ ξ

ξ
ξ ξ ξ

ξ ξ
ξ ξ

+ ˜ + ˜ ⋯ = ⋯

+ ∂
∂

⋯ ˜

+
!

∂
∂ ∂

˜ ˜ + ⋯

ξ̃ →

=

′= ′
′

f f

f

f

b

lim ( , , ) ( , , )

( , , )

1
2

(A.14 )k

N

k
k

k k

N

k k
k k

0 1 1 2 2 1 2

1
1 2

, 1

2

k

• The Euler–Maclaurin formula, valid for any infinitely differentiable function
f(ξ):

∫∑ ξ ξ
ξ ξ

ξ ξ

ξ ξ

= + − + ⋅
!

−

− ⋅
!

−

+ ⋅
!

− + ⋯

=

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

f k f d f n f
df
d

n
df
d

d f
d

n
d f
d

d f
d

n
d f
d

a

( ) ( )
1
2

[ ( ) (0)]
1
6

1
2

( ) (0)

1
30

1
4

( ) (0)

1
42

1
6

( ) (0) ;

(A.15 )

k

n

1

n

0

3

3

3

3

5

5

5

5

the coefficients participating in this formula are the so-called Bernoulli
numbers2:

= = = = =

= = = ⋯

B B B B B

B B B
b

1
2

,
1
6

, 0,
1
30

, 0,

1
42

, 0,
1
30

,
(A.15 )

1 2 3 4 5

6 7 8

1Actually, this leading term was derived by A de Moivre in 1733, before J Stirling’s work.
2Note that definitions of Bk (or rather their signs and indices) vary even among the most popular handbooks.
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A.3 Basic trigonometric functions
• Trigonometric functions of the sum and the difference of two arguments3:

± = ∓a b a b a b acos ( ) cos cos sin sin , (A.16 )

± = ±a b a b a b bsin ( ) sin cos cos sin . (A.16 )

• Sums of two functions of arbitrary arguments:

+ = + −
a b

a b b a
acos cos 2 cos

2
cos

2
, (A.17 )

− = + −
a b

a b b a
bcos cos 2 sin

2
sin

2
, (A.17 )

± = ± ± −
a b

a b b a
csin sin 2 sin

2
cos

2
. (A.17 )

• Trigonometric function products:

= + + −a b a b a b a2 cos cos cos( ) cos( ), (A.18 )

= + + −a b a b a b b2 sin cos sin( ) sin( ), (A.18 )

= − − +a b a b a b c2 sin sin cos( ) cos( ); (A.18 )

For the particular case of equal arguments, b = a, these three formulas yield
the following expressions for the squares of trigonometric functions, and their
product:

= + =

= −

a a a a a

a a

d

cos
1
2

(1 cos 2 ), sin cos
1
2

sin 2 ,

sin
1
2

(1 cos 2 ).

(A.18 )

2

2

• Cubes of trigonometric functions:

= + = −a a a a a acos
3
4

cos
1
4

cos 3 , sin
3
4

sin
1
4

sin 3 . (A.19)3 3

• Trigonometric functions of a complex argument:

+ = +
+ = −

a ib a b i a b
a ib a b i a b

sin( ) sin cosh cos sinh ,
cos ( ) cos cosh sin sinh .

(A.20)

3 I am confident that the reader is quite capable of deriving the relations (A.16) by representing the exponent in
the elementary relation ei(a ± b) = eiae±ib as a sum of its real and imaginary parts, Eqs. (A.18) directly from
Eqs. (A.16), and Eqs. (A.17) from Eqs. (A.18) by variable replacement; however, I am still providing these
formulas to save his or her time. (Quite a few formulas below are included because of the same reason.)
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• Sums of trigonometric functions of n equidistant arguments:

∑ ξ ξ ξ ξ= +

=

⎜ ⎟⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠{ } { }k

n nsin
cos

sin
cos

1
2

sin
2

sin
2

. (A.21)
k

n

1

A.4 General differentiation
• Full differential of a product of two functions:

= +d fg df g f dg( ) ( ) ( ). (A.22)

• Full differential of a function of several independent arguments, f(ξ1, ξ2,…, ξn):

∑
ξ

ξ= ∂
∂=

df
f

d . (A.23)
k

n

1 k
k

• Curvature of the Cartesian plot of a 1D function f(ξ):

κ ξ
ξ

≡ =
+R

d f d

df d

1 /

[1 ( / ) ]
. (A.24)

2 2

2 3/2

A.5 General integration
• Integration by parts - immediately follows from Eq. (A.22):

∫ ∫= −f dg fg g df . (A.25)
g A

g B B

A f A

f B

( )

( )

( )

( )

• Numerical (approximate) integration of 1D functions: the simplest trapezoi-
dal rule,

∫

∑

ξ ξ ≈ + + + + ⋯ + −

= − + ≡ −

=

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

f d h f a
h

f a
h

f b
h

h f a
h

nh h
b a

N

( )
2

3
2 2

2
, .

(A.26)

n

N

1

a

b

has relatively low accuracy (error of the order of (h3/12)d2f/dξ2 per step), so
that the following Simpson formula,

∫ ξ ξ ≈ + + + + + ⋯ + − +

≡ −

f d
h

f a f a h f a h f b h f b

h
b a

N

( )
3

[ ( ) 4 ( ) 2 ( 2 ) 4 ( ) ( )],

2
,

(A.27)
a

b
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whose error per step scales as (h5/180)d4f/dξ4, is used much more frequently4.

A.6 A few 1D integrals5

(i) Indefinite integrals:
• Integrals with (1 + ξ2)1/2:

∫ ξ ξ ξ ξ ξ ξ+ = + + ∣ + + ∣d(1 )
2

(1 )
1
2

ln (1 ) , (A.28)2 1/2 2 1/2 2 1/2

∫ ξ
ξ

ξ ξ
+

= ∣ + + ∣d
a

(1 )
ln (1 ) , (A.29 )

2 1/2
2 1/2

∫ ξ
ξ

ξ
ξ+

=
+

d
b

(1 ) (1 )
. (A.29 )

2 3/2 2 1/2

• Miscellaneous indefinite integrals:

∫ ξ
ξ ξ ξ

ξ
ξ+ −

= −
+

d
a

a
a

a
( 2 1)

arccos
1

( 1)
, (A.30 )2 1/2 2 1/2

∫ ξ ξ ξ
ξ

ξ ξ ξ ξ ξ
ξ

− = + − −
d b

(sin cos ) 2 sin 2 cos 2 2 1
8

, (A.30 )
2

5

2

4

∫ ξ
ξ

ξ
+

=
−

−
−

>

−
⎡
⎣⎢

⎤
⎦⎥

d
a b a b

a b
a b

a b

ccos
2

( )
tan

( )
( )

tan
2

,

for .

(A.30 )2 2 1/2
1

2 2 1/2

2 2

∫ ξ
ξ

ξ
+

= −d
d

1
tan . (A.30 )

2
1

(ii) Semi-definite integrals:
• Integrals with 1/(eξ ±1):

∫ ξ
+

= +ξ

∞
−d

e
e a

1
ln (1 ), (A.31 )

a

a

4Higher-order formulas (e.g. the Bode rule), and other guidance including ready-for-use codes for computer
calculations may be found, for example, in the popular reference texts by W H Press et al [1]. In addition, some
advanced codes are used as subroutines in the software packages listed in the same section. In some cases, the
Euler–Maclaurin formula (A.15) may also be useful for numerical integration.
5A powerful (and free) interactive online tool for working out indefinite 1D integrals is available at http://
integrals.wolfram.com/index.jsp.
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∫ ξ
−

=
−ξ>

∞

−
d

e e
b

1
ln

1
1

. (A.31 )
a a0

(iii) Definite integrals:
• Integrals with 1/(1 + ξ2):6

∫ ξ
ξ

π
+

=
∞ d

a
1 2

, (A.32 )
0 2

∫ ξ
ξ+

=
∞ d

b
(1 )

1; (A.32 )
0 2 3/2

more generally,

∫ ξ
ξ

π π
+

= − !!
− !!

≡ ⋅ ⋅ … −
⋅ ⋅ … −

= …

∞ d n
n

n
n

n

c(1 ) 2
(2 3)
(2 2) 2

1 3 5 (2 3)
2 4 6 (2 2)

,

for 2, 3,

(A.32 )n
0 2

• Integrals with (1 − ξ2n)1/2:

∫ ξ
ξ

π
−

= Γ Γ +⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

d
n n

n
n

a
(1 ) 2

1
2

1
2

, (A.33 )
n0

1

2 1/2

1/2

∫ ξ ξ π− = Γ Γ +⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟d

n n
n

n
b(1 )

4
1
2

3 1
2

, (A.33 )n

0

1
2 1/2

1/2

where Γ(s) is the gamma-function, which is most often defined (for Re s > 0)
by the following integral:

∫ ξ ξ = Γξ
∞

− −e d s a( ). (A.34 )s

0

1

The key property of this function is the recurrence relation, valid for any
s ≠ 0, −1, −2,…:

Γ + = Γs s s b( 1) ( ). (A.34 )

Since, according to Eq. (A.34a), Γ(1) = 1, Eq. (A.34b) for non-negative
integers takes the form

Γ + = ! = ⋯n n n c( 1) , for 0, 1, 2, (A.34 )

6 Eq. (A.32a) follows immediately from Eq. (A.30d), and Eq. (A.32b) from Eq. (A.29b)—a couple more
examples of the (intentional) redundancy in this list.
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(where 0! ≡ 1). Because of this, for integer s = n + 1 ⩾ 1, Eq. (A.34a) is
reduced to

∫ ξ ξ = !ξ
∞

−e d n d. (A.34 )n

0

Other frequently met values of the gamma-function are those for positive
semi-integer arguments:

π π π

π

Γ = Γ = Γ = ⋅

Γ = ⋅ ⋅ …

⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

e

1
2

,
3
2

1
2

,
5
2

1
2

3
2

,

7
2

1
2

3
2

5
2

, .

(A.34 )

1/2 1/2 1/2

1/2

• Integrals with 1/(eξ ±1):

∫ ξ ξ ζ
+

= − Γ >ξ

∞ −
−d

e
s s s a

1
(1 2 ) ( ) ( ), for 0, (A.35 )

s
s

0

1
1

∫ ξ ξ ζ
−

= Γ >ξ

∞ − d
e

s s s b
1

( ) ( ), for 1, (A.35 )
s

0

1

where ζ(s) is the Riemann zeta-function—see Eq. (A.10). Particular cases:
for s = 2n,

∫ ξ ξ π
+

= −
ξ

∞ − −d
e n

B c
1

2 1
2

, (A.35 )
n n

n
n

0

2 1 2 1
2

2

∫ ξ ξ π
−

=ξ

∞ − d
e n

B d
1

(2 )
4

. (A.35 )
n n

n
0

2 1 2

2

where Bn are the Bernoulli numbers—see Eq. (A.15). For the particular case
s = 1 (when Eq. (A.35a) yields uncertainty),

∫ ξ
+

=ξ

∞ d
e

e
1

ln 2. (A.35 )
0

• Integrals with exp{−ξ 2}:

∫ ξ ξ = Γ + > −ξ
∞

− ⎛
⎝⎜

⎞
⎠⎟e d

s
s a

1
2

1
2

, for 1; (A.36 )s

0

2

for applications the most important particular values of s are 0 and 2:

∫ ξ π= Γ =ξ
∞

− ⎛
⎝⎜

⎞
⎠⎟e d b

1
2

1
2 2

, (A.36 )
0

1/2
2
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∫ ξ ξ π= Γ =ξ
∞

− ⎛
⎝⎜

⎞
⎠⎟e d c

1
2

3
2 4

, (A.36 )
0

2
1/2

2

although we will also run into the cases s = 4 and s = 6:

∫

∫

ξ ξ π

ξ ξ π

= Γ =

= Γ =

ξ

ξ

∞
−

∞
−

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

e d

e d

d

1
2

5
2

3
8

,

1
2

7
2

15
16

;

(A.36 )
0

4
1/2

0

6
1/2

2

2

for odd integer values s = 2n + 1 (with n = 0, 1, 2,…), Eq. (A.36a) takes a
simpler form:

∫ ξ ξ = Γ + = !ξ
∞

+ −e d n
n

e
1
2

( 1)
2

. (A.36 )n

0

2 1 2

• Integrals with cosine and sine functions:

∫ ∫ξ ξ ξ ξ π= =
∞ ∞

⎜ ⎟⎛
⎝

⎞
⎠d dcos ( ) sin ( )

8
. (A.37)

0

2

0

2
1/2

∫ ξ
ξ

ξ π
+

=
∞

−

a
d

a
e

cos
2

. (A.38)a

0 2 2

∫ ξ
ξ

ξ π=
∞ ⎛

⎝⎜
⎞
⎠⎟ d

sin
2

. (A.39)
0

2

• Integrals with logarithms:

∫ ξ
ξ

ξ π+ −
− −

= − − ⩾a

a
d a a aln (1 )

(1 )
[ ( 1) ] , for 1. (A.40)

0

1 2 1/2

2 1/2
2 1/2

∫ ξ
ξ

ξ+ − =dln
1 (1 )

1. (A.41)
0

1 1/2

1/2

• Integral representations of the Bessel functions of integer order:

∫

∑

α
π

ξ

α

=

=

π

π

−

+

=−∞

∞

α ξ ξ

α ξ ξ

−J e d

e J e
a

( )
1

2
,

so that ( ) ;
(A.42 )

k

n
i n

i
k

ik

( sin )

sin

∫α
π

ξ ξ=
π

α ξI e n d b( )
1

cos . (A.42 )n
0

cos
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A.7 3D vector products
(i) Definitions:
• Scalar (‘dot-’) product:

∑⋅ =
=

a ba b , (A.43)
j 1

3

j j

where aj and bj are vector components in any orthogonal coordinate
system. In particular, the vector squared (the same as the norm squared):

∑≡ ⋅ = ≡
=

a aa a a . (A.44)
j 1

3

j
2 2 2

• Vector (‘cross-’) product:

× ≡ − + − + −

=

a b a b a b a b a b a b

a a a
b b b

a b n n n
n n n

( ) ( ) ( )

,
(A.45)

1 2 3 3 2 2 3 1 1 3 3 1 2 2 1

1 2 3

1 2 3

1 2 3

where {nj} is the set of mutually perpendicular unit vectors7 along the
corresponding coordinate system axes8. In particular, Eq. (A.45) yields

× =a a 0. (A.46)

(ii) Corollaries (readily verified by Cartesian components):
• Double vector product (the so-called bac minus cab rule):

× × = ⋅ − ⋅a b c b a c c a b( ) ( ) ( ). (A.47)

• Mixed scalar–vector product (the operand rotation rule):

⋅ × = ⋅ × = ⋅ ×a b c b c a c a b( ) ( ) ( ). (A.48)

• Scalar product of vector products:

× ⋅ × = ⋅ ⋅ − ⋅ ⋅ aa b c d a c b d a d b c( ) ( ) ( )( ) ( )( ); (A.49 )

7Other popular notations for this vector set are {ej} and r̂{ }j .
8 It is easy to use Eq. (A.45) to check that the direction of the product vector corresponds to the well-known
‘right-hand rule’ and to the even more convenient corkscrew rule: if we rotate a corkscrew’s handle from the
first operand toward the second one, its axis moves in the direction of the product.
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in the particular case of two similar operands (say, a = c and b = d), the last
formula is reduced to

× = − ⋅ab ba b a b( ) ( ) ( ) . (A.49 )2 2 2

A.8 Differentiation in 3D Cartesian coordinates
• Definition of the del (or ‘nabla’) vector-operator ∇:9

∑∇ ≡ ∂
∂= r

n , (A.50)
j 1

3

j
j

where rj is a set of linear and orthogonal (Cartesian) coordinates along
directions nj. In accordance with this definition, the operator ∇ acting on a
scalar function of coordinates, f(r),10 gives its gradient, i.e. a new vector:

∑∇ ≡ ∂
∂

≡
=

f
f
r

fn grad . (A.51)
j 1

3

j
j

• The scalar product of del by a vector function of coordinates (a vector field),

∑≡
=

ff r n r( ) ( ), (A.52)
j 1

3

j j

compiled formally following Eq. (A.43), is a scalar function—the divergence
of the initial function:

∑∇ ⋅ ≡
∂
∂

≡
=

f

r
f fdiv , (A.53)

j 1

3
j

j

while the vector product of ∇ and f, formed in a formal accordance with
Eq. (A.45), is a new vector - the curl (in European tradition, called rotor and
denoted rot) of f:

∇ × ≡
∂
∂

∂
∂

∂
∂ =

∂
∂

−
∂
∂

+
∂
∂

−
∂
∂

+
∂
∂

−
∂
∂

≡

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

r r r
f f f

f

r

f

r

f

r

f

r

f

r

f

r

f

n n n

n n

n curl f.

(A.54)

1 2 3

1 2 3

1 2 3

1
3

2

2

3
2

1

3

3

1

3
2

1

1

2

9One can run into the following notation: ∇ ≡ ∂/∂r, which is convenient is some cases, but may be misleading in
quite a few others, so it will be not used in these notes.
10 In this, and four next sections, all scalar and vector functions are assumed to be differentiable.
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• One more frequently met ‘product’ is (f·∇)g, where f and g are two arbitrary
vector functions of r. This product should be also understood in the sense implied
by Eq. (A.43), i.e. as a vector whose jth Cartesian component is

∑∇⋅ =
∂
∂′=

′
′

f
g

r
f g[( ) ] . (A.55)

j 1

3

j j
j

j

A.9 The Laplace operator ∇2 ≡ ∇ · ∇
• Expression in Cartesian coordinates—in the formal accordance with
Eq. (A.44):

∑∇ = ∂
∂= r

. (A.56)
j 1

3

j

2
2

2

• According to its definition, the Laplace operator acting on a scalar function
of coordinates gives a new scalar function:

∑∇ ∇∇ ≡ ⋅ = = ∂
∂=

f f f
f

r
grad( ) div( ) . (A.57)

j 1

3

j

2
2

2

• On the other hand, acting on a vector function (A.52), the operator ∇2 returns
another vector:

∑∇ = ∇
=

ff n . (A.58)
j 1

3

j j
2 2

Note that Eqs. (A.56)–(A.58) are only valid in Cartesian (i.e. orthogonal and
linear) coordinates, but generally not in other (even orthogonal) coordinates—
see, e.g. Eqs. (A.61), (A.64), (A.67) and (A.70) below.

A.10 Operators ∇ and ∇2 in the most important systems of
orthogonal coordinates11

(i) Cylindrical12 coordinates {ρ, φ, z} (see figure below) may be defined by their
relations with the Cartesian coordinates:

ðA:59Þ

11 Some other orthogonal curvilinear coordinate systems are discussed in Part EM, section 2.3.
12 In the 2D geometry with fixed coordinate z, these coordinates are called polar.
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• Gradient of a scalar function:

ρ ρ φ
∇ = ∂

∂
+ ∂

∂
+ ∂

∂ρ φf
f f f

z
n n n

1
. (A.60)z

• The Laplace operator of a scalar function:

ρ ρ
ρ

ρ ρ φ
∇ = ∂

∂
∂
∂

+ ∂
∂

+ ∂
∂

⎛
⎝⎜

⎞
⎠⎟f

f f f
z

1 1
, (A.61)2

2

2

2

2

2

• Divergence of a vector function of coordinates (f = nρ fρ + nφ fφ + nz fz):

ρ

ρ

ρ ρ φ
∇ ⋅ =

∂

∂
+

∂
∂

+
∂
∂

ρ φ( )f f f

z
f

1 1
. (A.62)z

• Curl of a vector function:

ρ φ ρ ρ

ρ

ρ φ
∇ × =

∂
∂

−
∂
∂

+
∂
∂

−
∂
∂

+
∂

∂
−

∂
∂ρ

φ
φ

ρ φ ρ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )f f

z

f

z

f f f
f n n n

1 1
. (A.63)z z

z

• The Laplace operator of a vector function:

ρ ρ φ ρ ρ φ
∇ = ∇ − −

∂
∂

+ ∇ − +
∂
∂

+ ∇ρ ρ ρ
φ

φ φ φ
ρ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟f f

f
f f

f
ff n n n

1 2 1 2
. (A.64)z z

2 2
2 2

2
2 2

2

(ii) Spherical coordinates {r, θ, φ} (see figure below) may be defined as:

ðA:65Þ

• Gradient of a scalar function:

θ θ φ
∇ = ∂

∂
+ ∂

∂
+ ∂

∂θ φf
f
r r

f
r

f
n n n

1 1
sin

. (A.66)r

• The Laplace operator of a scalar function:

θ θ
θ

θ θ φ
∇ = ∂

∂
∂
∂

+ ∂
∂

∂
∂

+ ∂
∂

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟f

r r
r

f
r r

f
r

f1 1
sin

sin
1

( sin )
. (A.67)2

2
2

2 2

2

2
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• Divergence of a vector function f = nrfr + nθ fθ + nφ fφ :

θ
θ

θ θ φ
∇ ⋅ =

∂
∂

+
∂

∂
+

∂
∂

θ φ( ) ( )
r

r f

r r

f

r

f
f

1 1
sin

sin 1
sin

. (A.68)r

2

2

• Curl of a similar vector function:

θ

θ

θ φ θ φ

θ

∇ × =
∂

∂
−

∂
∂

+
∂
∂

−
∂

∂

+
∂

∂
−

∂
∂

φ θ
θ

φ

φ
θ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( ) ( )

( )

r

f f

r

f rf

r

r

rf

r

f

f n n

n

1
sin

sin 1 1
sin

1
.

(A.69)

r
r

r

• The Laplace operator of a vector function:

θ θ
θ

θ φ

θ θ
θ
θ φ

θ θ φ
θ
θ φ

∇ = ∇ − − ∂
∂

−
∂
∂

+ ∇ − +
∂
∂

−
∂
∂

+ ∇ − +
∂
∂

+
∂
∂

θ
φ

θ θ θ
φ

φ φ φ
θ

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )f
r

f
r

f
r

f

f
r

f
r

f

r

f

f
r

f
r

f

r

f

f n

n

n

2 2
sin

sin
2
sin

1
sin

2 2 cos
sin

1
sin

2
sin

2 cos
sin

.

(A.70)

r r r

r

r

2 2
2 2 2

2
2 2 2 2 2

2
2 2 2 2 2

A.11 Products involving ∇
(i) Useful zeros:

• For any scalar function f r( ),

∇ ∇× ≡ =f fcurl grad( ) ( ) 0. (A.71)

• For any vector function f r( ),

∇ ∇⋅ × ≡ =ff curl( ) div( ) 0. (A.72)

(ii) The Laplace operator expressed via the curl of a curl:

∇ ∇ ∇ ∇∇ = ⋅ − × ×f f f( ) ( ). (A.73)2

(iii) Spatial differentiation of a product of a scalar function by a vector
function:x

• The scalar 3D generalization of Eq. (A.22) is

∇ ∇ ∇⋅ = ⋅ + ⋅f f f ag g g( ) ( ) ( ). (A.74 )
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• Its vector generalization is similar:

∇ ∇ ∇× = × + ×f f f bg g g( ) ( ) ( ). (A.74 )

(iv) Spatial differentiation of products of two vector functions:

∇ ∇ ∇ ∇ ∇× × = ⋅ − ⋅ − ⋅ + ⋅f g f g f g f g g f( ) ( ) ( ) ( ) ( ) , (A.75)

∇ ∇ ∇ ∇ ∇⋅ = ⋅ + ⋅ + × × + × ×f g f g g f f g g f( ) ( ) ( ) ( ) ( ), (A.76)

∇ ∇ ∇⋅ × = ⋅ × − ⋅ ×f g g f f g( ) ( ) ( ). (A.77)

A.12 Integro-differential relations
(i) For an arbitrary surface S limited by closed contour C:

• The Stokes theorem, valid for any differentiable vector field f(r):

∫ ∫ ∮ ∮∇ ∇× ⋅ ≡ × = ⋅ ≡ τd d r d f drf r f f r( ) ( ) , (A.78)
S S

n
C C

2 2

where d2r ≡ nd2r is the elementary area vector (normal to the surface), and
dr is the elementary contour length vector (tangential to the contour line).

(ii) For an arbitrary volume V limited by closed surface S:

• Divergence (or ‘Gauss’) theorem, valid for any differentiable vector field f(r):

∫ ∮ ∮∇ ⋅ = ⋅ ≡d r d f d rf f r( ) . (A.79)
V S S

n
3 2 2

• Green’s theorem, valid for two differentiable scalar functions f(r) and g(r):

∫ ∮ ∇ ∇∇ − ∇ = −f g g f d r f g g f d r( ) ( ) . (A.80)
V S

n
2 2 3 2

• An identity valid for any two scalar functions f and g, and a vector field j
with ∇·j = 0 (all differentiable):

∫ ∮∇ ∇⋅ + ⋅ =f g g f d r fgj d rj j[ ( ) ( )] . (A.81)
V S

n
3 2

A.13 The Kronecker delta and Levi-Civita permutation symbols
• The Kronecker delta symbol (defined for integer indices):

δ ≡ ′ =
′

⎧⎨⎩
j j1, if ,

0, otherwise.
(A.82)jj
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• The Levi-Civita permutation symbol (most frequently used for 3 integer
indices, each taking one of values 1, 2, or 3):

ε ≡

+

−
→ → → → …

→ → → → …
′ ″

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

1,

1,

0,

if the indices follow in the ‘correct’ (‘even’)
order: 1 2 3 1 2 ,
if the indices follow in the ‘incorrect’ (‘odd’)
order: 1 3 2 1 3 ,
if any two indices coincide.

(A.83)jj j

• Relation between the Levi-Civita and the Kronecker delta products:

∑ε ε
δ δ δ
δ δ δ
δ δ δ

=
′ ″=

′ ″ ′ ″

′ ″

′ ′ ′ ′ ″

″ ″ ′ ″ ″

a; (A.84 )
l l l, , 1

3

jj j kk k

jl jl jl

j l j l j l

j l j l j l

summation of this relation, written for 3 different values of j = k, over these
values yields the so-called contracted epsilon identity:

∑ε ε δ δ δ δ= −
=

′ ″ ′ ″ ′ ′ ″ ″ ′ ″ ″ ′ b. (A.84 )
j 1

3

jj j jk k j k j k j k j k

A.14 Dirac’s delta-function, sign function, and theta-function
• Definition of 1D delta-function (for real a < b):

∫ ξ δ ξ ξ = < <⎧⎨⎩f d
f a b

( ) ( )
(0), if 0 ,

0, otherwise,
(A.85)

a

b

where f(ξ) is any function continuous near ξ = 0. In particular (if f(ξ) = 1 near
ξ = 0), the definition yields

∫ δ ξ ξ = < <⎧⎨⎩d
a b

( )
1, if 0 ,
0, otherwise.

(A.86)
a

b

• Relation to the theta-function θ(ξ) and sign function sgn(ξ)

δ ξ
ξ

θ ζ
ξ

ξ= =d
d

d
d

a( ) ( )
1
2

sgn( ), (A.87 )

where

θ ξ ξ ξ
ξ

ξ ξ
ξ

ξ
ξ

≡ + = <
>

≡ = − <
+ >

⎧⎨⎩
⎧⎨⎩

b

( )
sgn( ) 1

2
0, if 0,
1, if 1,

sgn( )
1, if 0,
1, if 1.

(A.87 )
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• An important integral13:

∫ πδ ξ=ξ

−∞

+∞
e ds 2 ( ). (A.88)is

• 3D generalization of the delta-function of the radius-vector (the 2D general-
ization is similar):

∫ δ = ∈⎧⎨⎩f d r
f V

r r( ) ( )
(0), if 0 ,

0, otherwise;
(A.89)

V

3

it may be represented as a product of 1D delta-functions of Cartesian
coordinates:

δ δ δ δ= r r rr( ) ( ) ( ) ( ). (A.90)1 2 3

A.15 The Cauchy theorem and integral
Let a complex function ( )f z be analytic within a part of the complex plane z , that is
limited by a closed contour C and includes point ′z . Then

∮ =d( ) 0, (A.91)
C

f z z

∮ π
− ′

= ′d
i( ) 2 ( ) (A.92)

C
f z

z

z z
f z

The first of these relations is usually called the Cauchy integral theorem (or the
‘Cauchy–Goursat theorem’), and the second one—the Cauchy integral (or the
‘Cauchy integral formula’).

A.16 Literature
(i) Properties of some special functions are briefly discussed at the relevant

points of the lecture notes; in the alphabetical order:
• Airy functions: Part QM section 2.4;
• Bessel functions: Part EM section 2.7;
• Fresnel integrals: Part EM section 8.6;
• Hermite polynomials: Part QM section 2.9;
• Laguerre polynomials (both simple and associated): Part QM section 3.7;

13 The coefficient in this relation may be readily recalled by considering its left-hand part as the Fourier-
integral representation of function f(s) ≡ 1, and applying Eq. (A.85) to the reciprocal Fourier transform

∫π
πδ ξ ξ≡ = ξ

−∞

+∞
−f s e d( ) 1

1
2

[2 ( )] .is
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• Legendre polynomials, associated Legendre functions: Part EM section
2.8, and Part QM section 3.6;

• Spherical harmonics: Part QM section 3.6;
• Spherical Bessel functions: Part QM sections 3.6 and 3.8.

(ii) For more formulas, and their discussion, I can recommend the following
handbooks14:

• Handbook of Mathematical Formulas [2];
• Tables of Integrals, Series, and Products [3];
• Mathematical Handbook for Scientists and Engineers [4];
• Integrals and Series volumes 1 and 2 [5];
• A popular textbook Mathematical Methods for Physicists [6] may be also
used as a formula manual.

Many formulas are also available from the symbolic calculation modules of
the commercially available software packages listed in section (iv) below.

(iii) Probably the most popular collection of numerical calculation codes are the
twin manuals by W Press et al [1]:

• Numerical Recipes in Fortran 77;
• Numerical Recipes [in C++—KKL].

My lecture notes include very brief introductions to numerical methods of
differential equation solution:

• ordinary differential equations: Part CM, section 5.7;
• partial differential equations: Part CM section 8.5 and Part EM section
2.11, which include references to literature for further reading.

(iv) The following are the most popular software packages for numerical and
symbolic calculations, all with plotting capabilities (in the alphabetical order):

• Maple (www.maplesoft.com/products/maple/);
• MathCAD (www.ptc.com/engineering-math-software/mathcad/);
• Mathematica (www.wolfram.com/mathematica/);
• MATLAB (www.mathworks.com/products/matlab.html).

References
[1] Press W et al 1992 Numerical Recipes in Fortran 77 2nd edn (Cambridge: Cambridge

University Press)
Press W et al 2007 Numerical Recipes 3rd edn (Cambridge: Cambridge University Press)

[2] Abramowitz M and Stegun I (eds) 1965 Handbook of Mathematical Formulas (New York:
Dover), and numerous later printings. An updated version of this collection is now available
online at http://dlmf.nist.gov/.

14On a personal note, perhaps 90% of all formula needs throughout my research career were satisfied by a tiny,
wonderfully compiled old book [7], used copies of which, rather amazingly, are still available on the Web.
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[3] Gradshteyn I and Ryzhik I 1980 Tables of Integrals, Series, and Products 5th edn (New York:
Academic)

[4] Korn G and Korn T 2000 Mathematical Handbook for Scientists and Engineers 2nd edn
(New York: Academic)

[5] Prudnikov A et al 1986 Integrals and Series vol 1 (Boca Raton, FL: CRC Press)
Prudnikov A et al 1986 Integrals and Series vol 2 (Boca Raton, FL: CRC Press)
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[7] Dwight H 1961 Tables of Integrals and Other Mathematical Formulas 4th edn (London:

Macmillan)
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Appendix B

Selected physical constants

The listed numerical values of the constants are from the most recent (2014)
International CODATA recommendation (see, e.g. http://physics.nist.gov/cuu/
Constants/index.html), besides a newer result for kB—see [1]. Please note the recently
announced (but, by this volume’s press time, not yet official) adjustment of the SI
values - see, e.g. https://www.nist.gov/si-redefinition/meet-constants. In particular, the
Planck constant will also get a definite value (within the interval specified in table
B.1), enabling a new, fundamental standard of the kilogram.

Table B.1.

Symbol Quantity SI value and unit Gaussian value and unit

Relative rms

uncertainty

c speed of light

in free space

2.99 792 458 × 108 m s−1 2.99 792 458 × 1010 cm s−1 0 (defined value)

G gravitation

constant

6.6741 × 10−11 m3 kg−1 s−2 6.6741 × 10−8 cm 3 g−1 s−2 ∼5 × 10−5

ℏ Planck

constant

1.05 457 180 × 10−34 J s 1.05 457 180 × 10−27 erg s ∼2 × 10−8

e elementary

electric charge

1.6 021 762 × 10−19 C 4.803 203 × 10−10 statcoulomb ∼6 × 10−9

me electron’s

rest mass

0.91 093 835 × 10−30 kg 0.91 093 835 × 10−27 g ∼1 × 10−8

mp proton’s

rest mass

1.67 262 190 × 10−27 kg 1.67 262 190 × 10−24 g ∼1 × 10−8

μ0 magnetic

constant

4π × 10−7 N A−2 – 0 (defined value)

ε0 electric

constant

8.854 187 817 × 10−12 F m−1 – 0 (defined value)

kB Boltzmann

constant

1.380 649 × 10−23 J K−1 1.3 806 490 × 10−16 erg K−1 ∼2 × 10−6
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Comments:
1. The fixed value of c was defined by an international convention in 1983, in

order to extend the official definition of the second (as ‘the duration of
9 192 631 770 periods of the radiation corresponding to the transition
between the two hyperfine levels of the ground state of the cesium-133 atom’)
to that of the meter. The values are back-compatible with the legacy
definitions of the meter (initially, as 1/40 000 000th of the Earth’s meridian
length) and the second (for a long time, as 1/(24 × 60 × 60) = 1/86 400th of
the Earth’s rotation period), within the experimental errors of those
measures.

2. ε0 and μ0 are not really the fundamental constants; in the SI system of units
one of them (say, μ0) is selected arbitrarily1, while the other one is defined via
the relation ε0μ0 = 1/c2.

3. The Boltzmann constant kB is also not quite fundamental, because its only
role is to comply with the independent definition of the kelvin (K), as the
temperature unit in which the triple point of water is exactly 273.16 K. If
temperature is expressed in energy units kBT (as is done, for example, in Part
SM of this series), this constant disappears altogether.

4. The dimensionless fine structure (‘Sommerfeld’s’) constant α is numerically
the same in any system of units:

α πε≡ ℏ
ℏ

≈ ×

≈

−e c
e c
/4 in SI units

/ in Gaussian units
7.297 352 566 10

1
137.035 999 14

,

2
0

2
3

⎧⎨⎩
⎫⎬⎭

and is known with a much smaller relative rms uncertainty (currently, ∼3 ×
10−10) than those of the component constants.

References
[1] Gaiser C et al 2017 Metrologia 54 280
[2] Newell D 2014 Phys. Today 67 35–41

1Note that the selected value of μ0 may be changed (a bit) in a few years—see, e.g., [2].
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