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Preface to the EAP Series

Essential Advanced Physics

Essential Advanced Physics (EAP) is a series of lecture notes and problems with
solutions, consisting of the following four parts1:

• Part CM: Classical Mechanics (a one-semester course),
• Part EM: Classical Electrodynamics (two semesters),
• Part QM: Quantum Mechanics (two semesters), and
• Part SM: Statistical Mechanics (one semester).

Each part includes two volumes: Lecture Notes and Problems with Solutions, and
an additional file Test Problems with Solutions.

Distinguishing features of this series—in brief

• condensed lecture notes (∼250 pp per semester)—much shorter than most
textbooks

• emphasis on simple explanations of the main notions and phenomena of
physics

• a focus on problem solution; extensive sets of problems with detailed model
solutions

• additional files with test problems, freely available to qualified university
instructors

• extensive cross-referencing between all parts of the series, which share style
and notation

Level and prerequisites

The goal of this series is to bring the reader to a general physics knowledge level
necessary for professional work in the field, regardless on whether the work is
theoretical or experimental, fundamental or applied. From the formal point of view,
this level (augmented by a few special topic courses in a particular field of
concentration, and of course by an extensive thesis research experience) satisfies
the typical PhD degree requirements. Selected parts of the series may be also
valuable for graduate students and researchers of other disciplines, including
astronomy, chemistry, mechanical engineering, electrical, computer and electronic
engineering, and material science.

The entry level is a notch lower than that expected from a physics graduate from
an average US college. In addition to physics, the series assumes the reader’s
familiarity with basic calculus and vector algebra, to such an extent that the meaning
of the formulas listed in appendix A, ‘Selected mathematical formulas’ (reproduced
at the end of each volume), is absolutely clear.

1Note that the (very ambiguous) term mechanics is used in these titles in its broadest sense. The acronym EM
stems from another popular name for classical electrodynamics courses: Electricity and Magnetism.
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Origins and motivation

The series is a by-product of the so-called ‘core physics courses’ I taught at Stony
Brook University from 1991 to 2013. My main effort was to assist the development
of students’ problem-solving skills, rather than their idle memorization of formulas.
(With a certain exaggeration, my lectures were not much more than introductions to
problem solution.) The focus on this main objective, under the rigid time restrictions
imposed by the SBU curriculum, had some negatives. First, the list of covered
theoretical methods had to be limited to those necessary for the solution of the
problems I had time to discuss. Second, I had no time to cover some core fields of
physics—most painfully general relativity2 and quantum field theory, beyond a few
quantum electrodynamics elements at the end of Part QM.

The main motivation for putting my lecture notes and problems on paper, and
their distribution to students, was my desperation to find textbooks and problem
collections I could use, with a clear conscience, for my purposes. The available
graduate textbooks, including the famous Theoretical Physics series by Landau and
Lifshitz, did not match the minimalistic goal of my courses, mostly because they are
far too long, and using them would mean hopping from one topic to another,
picking up a chapter here and a section there, at a high risk of losing the necessary
background material and logical connections between the course components—and
the students’ interest with them. In addition, many textbooks lack even brief
discussions of several traditional and modern topics that I believe are necessary
parts of every professional physicist’s education3.

On the problem side, most available collections are not based on particular
textbooks, and the problem solutions in them either do not refer to any background
material at all, or refer to the included short sets of formulas, which can hardly be
used for systematic learning. Also, the solutions are frequently too short to be useful,
and lack discussions of the results’ physics.

Style

In an effort to comply with the Occam’s Razor principle4, and beat Malek’s law5, I
have made every effort to make the discussion of each topic as clear as the time/
space (and my ability :-) permitted, and as simple as the subject allowed. This effort
has resulted in rather succinct lecture notes, which may be thoroughly read by a
student during the semester. Despite this briefness, the introduction of every new

2For an introduction to this subject, I can recommend either a brief review by S Carroll, Spacetime and
Geometry (2003, New York: Addison-Wesley) or a longer text by A Zee, Einstein Gravity in a Nutshell (2013,
Princeton University Press).
3 To list just a few: the statics and dynamics of elastic and fluid continua, the basics of physical kinetics,
turbulence and deterministic chaos, the physics of computation, the energy relaxation and dephasing in open
quantum systems, the reduced/RWA equations in classical and quantum mechanics, the physics of electrons
and holes in semiconductors, optical fiber electrodynamics, macroscopic quantum effects in Bose–Einstein
condensates, Bloch oscillations and Landau–Zener tunneling, cavity quantum electrodynamics, and density
functional theory (DFT). All these topics are discussed, if only briefly, in my lecture notes.
4Entia non sunt multiplicanda praeter necessitate—Latin for ‘Do not use more entities than necessary’.
5 ‘Any simple idea will be worded in the most complicated way’.
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physical notion/effect and of every novel theoretical approach is always accom-
panied by an application example or two.

The additional exercises/problems listed at the end of each chapter were carefully
selected6, so that their solutions could better illustrate and enhance the lecture
material. In formal classes, these problems may be used for homework, while
individual learners are strongly encouraged to solve as many of them as practically
possible. The few problems that require either longer calculations, or more creative
approaches (or both), are marked by asterisks.

In contrast with the lecture notes, the model solutions of the problems (published
in a separate volume for each part of the series) are more detailed than in most
collections. In some instances they describe several alternative approaches to the
problem, and frequently include discussions of the results’ physics, thus augmenting
the lecture notes. Additional files with sets of shorter problems (also with model
solutions) more suitable for tests/exams, are available for qualified university
instructors from the publisher, free of charge.

Disclaimer and encouragement

The prospective reader/instructor has to recognize the limited scope of this series
(hence the qualifier Essential in its title), and in particular the lack of discussion of
several techniques used in current theoretical physics research. On the other hand, I
believe that the series gives a reasonable introduction to the hard core of physics—
which many other sciences lack. With this hard core knowledge, today’s student will
always feel at home in physics, even in the often-unavoidable situations when
research topics have to be changed at a career midpoint (when learning from scratch
is terribly difficult—believe me :-). In addition, I have made every attempt to reveal
the remarkable logic with which the basic notions and ideas of physics subfields
merge into a wonderful single construct.

Most students I taught liked using my materials, so I fancy they may be useful to
others as well—hence this publication, for which all texts have been carefully
reviewed.

6Many of the problems are original, but it would be silly to avoid some old good problem ideas, with long-lost
authorship, which wander from one textbook/collection to another one without references. The assignments
and model solutions of all such problems have been re-worked carefully to fit my lecture material and style.
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Preface to Quantum Mechanics:
Lecture notes

The structure of this course is more or less traditional, with most attention paid to
the non-relativistic quantum mechanics, and only chapter 9 reviewing the relativistic
effects–first in electrodynamics, and then for particles with a non-zero rest mass.

One deviation from the tradition is that, due to the counter-intuitive character of
quantum mechanics, I have found it necessary to start the course from a short
discussion, in the beginning of chapter 1, of the experimental facts that, by the 1920s,
has necessitated its development.

However, the feature that distinguishes this course most strongly from many
modern textbooks on quantum mechanics is that the discussion of Dirac’s bra-ket
formalism is postponed until chapter 4, i.e. until after the discussion of numerous
wave-mechanical effects in one- and multi-dimensional systems, respectively, in
chapters 2 and 3. One reason for that decision was the author’s serious adherence
(declared in the general Preface to the EAP Series) to the Occam Razor principle, in
particular to using only the simplest theoretical tools possible for discussions of
particular physical phenomena. Another motivation was to discuss the most
important quantum effects, including the energy band theory, without the heavy
artillery of the bra-ket formalism, to make the discussion more accessible to the
potential readership from the electrical engineering and material science commun-
ities. Finally, I believe that it is useful for the reader to see how the inconveniences
and pitfalls of the wave mechanics approach gradually accumulate, thus justifying
the eventual introduction of a more general formalism.

Another distinguishing feature of the course is its large attention to the notions of
dephasing (alternatively called ‘decoherence’) and energy relaxation–the effects
whose description needs to go beyond the usual idealization of a closed
(Hamiltonian) quantum system. A clear understanding of these effects is necessary
for any educated discussion of the conceptual issues of quantum measurements, and
also of the recent numerous experiments with macroscopic-scale quantum systems
(such as mechanical and electromagnetic resonators, superconductor qubits, etc),
because of a substantial coupling of such systems to their environment. As a result, I
felt compelled to give, in chapter 7, a discussion of open quantum systems, which is
more typically reserved for statistical mechanics courses.

One more not-very-traditional topic, quantum computation and cryptography, is
discussed at the end of chapter 8. Since this is a hot research field, with many aspects
still actively debated, the style of its discussion is closer to that of a (brief) research
review than to a textbook.

Finally, two related, still-controversial topics, quantum measurements and
interpretations of quantum mechanics, are also so special that I have found it
natural to place their discussion into a separate, albeit short, chapter 10 at the very
end of the course.
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Notation

Abbreviations Fonts Symbols

c.c. complex conjugate F, F scalar variables8 . time differentiation operator (d/dt)
h.c. Hermitian conjugate F, FF vector variables ∇ spatial differentiation vector (del)

ˆ ˆF , F scalar operators ≈ approximately equal to
ˆ ˆF, FF vector operators ∼ of the same order as
F matrix ∝ proportional to
Fjj′ matrix element ≡ equal to by definition (or evidently)

⋅ scalar (‘dot-’) product
× vector (‘cross-’) product
__ time averaging
〈 〉 statistical averaging
[ , ] commutator
{ , } anticommutator

Prime signs

The prime signs (′, ″, etc) are used to distinguish similar variables or indices (such as j
and j′ in the matrix element above), rather than to denote derivatives.

Parts of the series

Part CM: Classical Mechanics Part EM: Classical Electrodynamics
Part QM: Quantum Mechanics Part SM: Statistical Mechanics

Appendices

Appendix A: Selected mathematical formulas
Appendix B: Selected physical constants

Formulas

The abbreviation Eq. may mean any displayed formula: either the equality, or
inequality, or equation, etc.

8 The same letter, typeset in different fonts, typically denotes different variables.
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Chapter 1

Introduction

This introductory chapter briefly reviews the major experimental motivations for
quantum mechanics, and then discusses its simplest formalism—the Schrödinger’s
wave mechanics. Much of this material (perhaps besides the last section) may be found
in undergraduate textbooks1, so that the discussion is rather brief, and focused on the
most important conceptual issues.

1.1 Experimental motivations
By the beginning of the 1900s, physics (which by that time included what we now
call non-relativistic classical mechanics, classical statistics and thermodynamics, and
classical electrodynamics including the geometric and wave optics) looked an almost
completed discipline, with most human-scale phenomena reasonably explained, and
just a couple of mysterious ‘dark clouds’2 on the horizon. However, rapid
technological progress and the resulting development of more refined scientific
instruments have led to a fast multiplication of observed phenomena that could not
be explained on the classical basis. Let me list the most consequential of those
experimental findings.

(i) The blackbody radiation measurements, pioneered by G Kirchhoff in 1859, have
shown that in the thermal equilibrium, the power of electromagnetic radiation by a
fully absorbing (‘black’) surface, per unit frequency interval, drops exponentially at
high frequencies. This is not what could be expected from the combination of the
classical electrodynamics and statistics, which predicted an infinite growth of the
radiation density with frequency. Indeed, the classical electrodynamics shows3 that

1 See, for example, [1].
2 This famous expression was used in a 1900 talk by Lord Kelvin (born W Thomson) in reference to the
blackbody radiation measurements and the results of the Michelson-Morley experiments, i.e. the precursors of
the quantum mechanics and the relativity theory.
3 See, e.g. Part EM section 7.8, in particular Eq. (7.211).
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electromagnetic field modes evolve in time as harmonic oscillators, and that the
number dN of these modes in a large free-space volume V≫ λ3, in a small frequency
interval dω ≪ ω near some frequency ω, is

π
π

π
ω

π
ω= = =dN V

d k
V

k dk
V

c
d2

(2 )
2

4
(2 )

, (1.1)
3

3

2

3

2

2 3

where c ≈ 3 × 108 m s−1 is the free-space speed of light, k = ω/c the free-space wave
number, and λ = 2π/k is the radiation wavelength. On the other hand, the classical
statistics4 predicts that in the thermal equilibrium at temperature T, the average
energy E of each 1D harmonic oscillator should be equal to kBT, where kB is the
Boltzmann constant5.

Combining these two results, we readily get the so-called Rayleigh–Jeans formula
for the average electromagnetic wave energy per unit volume:

ω ω
ω

π
≡ = =u

V
dE
d

k T
V

dN
d c

k T
1

, (1.2)B
2

2 3 B

that diverges at ω → ∞. On the other hand, the blackbody radiation measurements,
improved by O Lummer and E Pringsheim, and also by H Rubens and F Kurlbaum
to reach a 1% scale accuracy, were compatible with the phenomenological law
suggested in 1900 by Max Planck:

ω
π

ω
ω

= ℏ
ℏ −

u
c k T

a
exp{ / } 1

. (1.3 )
2

2 3
B

This law may be reconciled with the fundamental equation (1.1) if the following
replacement is made for the average energy of each field oscillator:

ω
ω

→ ℏ
ℏ −

k T
k T

b
exp( / ) 1

, (1.3 )B
B

with a constant factor

ℏ ≈ × −1.055 10 J s, (1.4)34

now called the Planck’s constant6. At low frequencies (ℏω ≪ kBT), the denominator
in Eq. (1.3) may be approximated as ℏω/kBT, so that the average energy (1.3b) tends
to its classical value kBT, and the Planck law (1.3a) reduces to the Rayleigh–Jeans
formula (1.2). However, at higher frequencies (ℏω ≫ kBT), Eq. (1.3) describes the
experimentally observed rapid decrease of the radiation density—see figure 1.1.

4 See, e.g. Part SM section 2.2.
5 In the SI units, used through this series, kB ≈ 1.38 × 10−23 J K−1—see appendix B for more exact value.
6Max Planck himself wrote ℏω as hν, where ν = ω/2π is the ‘cyclic’ frequency (the number of periods per
second), so that in early texts on quantum mechanics the term ‘Planck’s constant’ referred to h ≡ 2πℏ, while ℏ
was called ‘the Dirac constant’ for a while. I will use the contemporary terminology, and abstain from using
the ‘old Planck’s constant’ h at all, in order to avoid confusion.
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(ii) The photoelectric effect, discovered in 1887 by H Hertz, shows a sharp lower
bound on the frequency of the incident light that may kick electrons out from
metallic surfaces, regardless of the light intensity. Albert Einstein, in one of his three
famous 1905 papers, noticed that this threshold ωmin could be readily explained
assuming that light consisted of certain particles (now called photons) with energy

ω= ℏE , (1.5)

with the same Planck’s constant that participates in Eq. (1.3).7 Indeed, with this
assumption, at the photon absorption by the surface, its energy E = ℏω is divided
between a fixed energy U0 (nowadays called the workfunction) of electron binding
inside the metal, and the excess kinetic energy >m /2 0e

2v of the freed electron—see
figure 1.2. In this picture, the frequency threshold finds a natural explanation as
ωmin = U0/ℏ.

8 Moreover, as was shown by S Bose in 1924, Eq. (1.5) readily explains9

the Planck’s law (1.3).

(iii) The discrete frequency spectra of the electromagnetic radiation by excited
atomic gases, known since the 1600s, could not be explained by classical physics.
(Applied to the planetary model of atoms, proposed by E Rutherford, classical
electrodynamics predicts the collapse of electrons on nuclei in ∼10−10 s, due to
electric dipole radiation of electromagnetic waves10.) Especially challenging was the
observation by J Balmer (in 1885) that the radiation frequencies of simple atoms
may be well described by simple formulas. For example, for the lightest atom, the

Figure 1.1. The blackbody radiation density u, expressed in units of u0 ≡ (kBT)
3/π2ℏ2c3, as a function of

frequency, according to: the Rayleigh–Jeans formula (blue line) and the Planck’s law (red line).

7As a reminder, A Einstein received his only Nobel Prize (in 1922) for exactly this work, which essentially
jump-started quantum mechanics, rather than for his relativity theory.
8 For most metals,U0 is between 4 and 5 electron volts (eV), so that the threshold corresponds to λmax = 2πc/ωmin

= 2πc/(U0/ℏ) ≈ 300 nm—approximately at the border between the visible light and the ultraviolet radiation.
9 See, e.g. Part SM section 2.5.
10 See, e.g. Part EM section 8.2.
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hydrogen, all radiation frequencies may be numbered with just two positive integers
n and n′:

ω ω= −
′′

n n
1 1

, (1.6)n n, 0 2 2

⎛
⎝⎜

⎞
⎠⎟

with ω0 ≡ ω1,∞ ≈ 2.07 × 1016 s−1. This observation, and the experimental value of ω0,
have found their first explanation in the famous 1913 theory by Niels Bohr, which
was a phenomenological precursor for quantum mechanics. In this theory, ωn,n′ was
interpreted as the frequency of a photon that obeys the Einstein’s formula (1.5), with
its energy En,n′ = ℏωn.n′ being the difference between two quantized (discrete) energy
levels of the atom (figure 1.3):

= − >′ ′E E E 0. (1.7)n n n n,

Bohr showed that Eq. (1.6) may be obtained from Eq. (1.7) and the non-
relativistic11 classical mechanics, augmented with just one additional postulate,
equivalent to the assumption that the angular momentum =L m rev of the electron
moving on a circular trajectory of radius r about the hydrogen’s nuclei (i.e. the
proton, assumed to stay at rest because of its much higher mass), is quantized as

= ℏL n, (1.8)

where ℏ is again the same Planck’s constant (1.4), and n is an integer. (In Bohr’s
theory, n could not be equal to zero, though in the genuine quantum mechanics, it
can.)

Indeed, it is sufficient to solve Eq. (1.8), = ℏm r nev , together with the equation

πε
=m

r
e

r4
, (1.9)e

2 2

0
2

v

which expresses Newton’s 2nd law for the electron rotating in the Coulomb field of
the nucleus, for the electron’s velocity v and the radius r. (Here e ≈ 1.6 × 10−19 C is
the fundamental electric charge, and me ≈ 0.91 × 10−30 kg is the electron’s rest
mass.) The result for r is

Figure 1.2. The Einstein’s explanation of the photoelectric effect’s frequency threshold.

11 The non-relativistic approach to the problem is justified a posteriori by the fact the resulting energy scale EH,
given by Eq. (1.13), is much smaller than electron’s rest energy, mec

2 ≈ 0.5 MeV.
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πε
= ≡ ℏ ≈r n r r

m
e

, where
/

/4
0.0529 nm. (1.10)2

B B

2
e

2
0

The constant rB, called the Bohr radius, is the most important spatial scale of
phenomena in atomic, molecular and condensed matter physics—as well as in all
chemistry and biochemistry.

Now plugging these results into the non-relativistic expression for the full
electron’s energy (with the free electron’s rest energy taken for reference),

πε
= −E

m e
r2 4

, (1.11)e
2 2

0

v

we get the following simple expression for the energy levels (which, together with
Eqs. (1.5) and (1.7), immediately gives Eq. (1.6) for the radiation frequencies):

= − <E
E
n2

0, (1.12)n
H
2

where EH is called the so-called Hartree energy constant (or just the ‘Hartree
energy’)12

πε≡
ℏ

≈ × ≈−E
e

m
a( /4 )

/
4.360 10 J 27.21eV. (1.13 )H

2
0

2

2
e

18

(Note the useful relations, which follow from Eqs. (1.10) and (1.13a):

πε
πε= = ℏ = = ℏ

E
e

r m r
r

e
E

m
E

b
4

, i.e.
/4 /

; (1.13 )H

2

0 B

2

e B
2 B

2
0

H

2
e

H

1/2⎛
⎝⎜

⎞
⎠⎟

the first of them shows, in particular, that rB is the distance at which the coefficient-
free scales of the electron’s potential and kinetic energies are equal.)

Note also that Eq. (1.8), in the form pr = ℏn, where =p mev is the electron
momentum’s magnitude, may be rewritten as the condition than an integer number
(n) of wavelengths λ of certain (then hypothetic) waves13 fits the circular orbit’s

n',n

Figure 1.3. The electromagnetic radiation of a system at a result of transition between its quantized energy
levels.

12Unfortunately, another name, the ‘Rydberg constant’, is sometimes used for either this energy unit or its
half, EH/2 ≈ 13.6 eV. To add to the confusion, the same term ‘Rydberg constant’ is used in some sub-fields of
physics for the reciprocal free-space wavelength (1/λ0 = ω0/2πc) corresponding to the frequency ω0 = EH/2ℏ.
13 This fact was first noticed and discussed in 1924 by L de Broglie (in his PhD thesis!), so that instead of
wavefunctions, especially of free particles, we are still frequently speaking of the de Broglie waves.
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perimeter: 2πr ≡ 2πℏn/p = nλ. Dividing both parts of the last relation by n, we see
that for this statement to be true, the wave number k ≡ 2π/λ of the de Broglie waves
should be proportional to the electron’s momentum =p mv:

= ℏp k, (1.14)

again with the same Planck’s constant as in Eq. (1.5).

(iv) The Compton effect14 is the reduction of frequency of x-rays at their scattering
on free (or nearly-free) electrons—see figure 1.4. The effect may be explained
assuming that the x-ray photon also has a momentum that obeys the vector-
generalized version of Eq. (1.14):

ω= ℏ = ℏ
c

p k n, (1.15)photon

where k is the wavevector (whose magnitude is equal to the wave number k, and
direction coincides with the unit vector, n, directed along the wave propagation15),
and that the momenta magnitudes of both the photon and the electron are related to
their energies E by the classical relativistic formula16

= +E cp mc( ) ( ) . (1.16)2 2 2 2

(For a photon, the rest energy is zero, and this relation is reduced to Eq. (1.5): E =
cp = ℏk = ℏω.) Indeed, a straightforward solution of the following system of three
equations,

ω ωℏ + = ℏ ′ + +m c cp m c[( ) ( ) ] , (1.17)e
2 2

e
2 2 1/2

ω ω θ φℏ = ℏ ′ +
c c

pcos cos , (1.18)

ω θ φ= ℏ ′ −
c

p0 sin sin , (1.19)

Figure 1.4. The Compton effect.

14 This effect was observed (in 1922) and explained a year later by A Compton.
15 See, e.g. Part EM section 7.1.
16 See, e.g. Part EM section 9.3, in particular Eq. (9.78).
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(which describe, respectively, the conservation of the full energy of the system, and
of the two relevant Cartesian components of its full momentum, at the scattering—
see figure 1.4), yields the following result,

ω ω
θ

ℏ ′
=

ℏ
+ −

m c
a

1 1 1
(1 cos ), (1.20 )

e
2

which is traditionally represented as the relation between the initial and final values
of the photon’s wavelength λ = 2π/k = 2π/(ω/c):

λ λ π θ λ λ θ λ π′ = + ℏ − ≡ + − ≡ ℏ
m c m c

b
2

(1 cos ) (1 cos ), with
2

, (1.20 )
e

C C
e

and is in agreement with experiment17.

(v) De Broglie wave diffraction. In 1927, following the suggestion by W Elassger
(who was excited by the de Broglie’s conjecture of ‘matter waves’), C Davisson and
L Germer, and independently G Thomson succeeded in observing the diffraction of
electrons on solid crystals (figure 1.5). Specifically, they have found that the intensity
of the elastic reflection of electrons from a crystal increases sharply when the angle α
between the incident beam of electrons and the crystal’s atomic planes, separated by
distance d, satisfies the following relation:

α λ=d n2 sin , (1.21)

where λ = 2π/k = 2πℏ/p is the de Broglie wavelength of the electrons, and n is an
integer. As figure 1.5 shows, this is just the well-known condition18 that the path

Figure 1.5. The De Broglie wave interference at electron scattering from a crystal lattice.

17 The constant λC, which participates in this relation, is close to 2.46 × 10−12 m, and is called the Compton
wavelength of the electron. This term is somewhat misleading: as the reader can see from Eqs. (1.17)–(1.19), no
wave in the Compton problem has such a wavelength—either before or after the scattering.
18 See, e.g. Part EM section 8.4, in particular figure 8.9 and Eq. (8.82). Frequently, Eq. (1.21) is called the
Bragg condition, due to the pioneering experiments by W Bragg with x-ray scattering from crystals (that started
in 1912).
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difference Δl = 2d sin α between the de Broglie waves reflected from two adjacent
crystal planes coincides with an integer number of λ, i.e. of the constructive
interference of the waves19.

To summarize, all the listed effects may be explained starting from two very simple
(and similarly looking) formulas: Eq. (1.5) (at that stage, for photons only), and
Eq. (1.15) for both photons and electrons—both relations involving the same Planck’s
constant. This might give an impression of sufficient experimental evidence to declare
the light consisting of discrete particles (photons), and, conversely, electrons being
some ‘matter waves’ rather than particles. However, by that time (the mid-1920s),
physics had accumulated overwhelming evidence of wave properties of light, such as
interference and diffraction20. In addition, there was also strong evidence for lumped-
particle (‘corpuscular’) behavior of electrons. It is sufficient to mention the famous oil-
drop experiments by R Millikan and H Fletcher (1909–13) in which only single (and
whole!) electrons could be added to an oil drop, changing its total electric charge by
multiples of electron’s charge (−e)—and never its fraction. It was apparently
impossible to reconcile these observations with a purely wave picture, in which an
electron and hence its charge need to be spread over the wave’s extension, so that its
arbitrary part could be cut out using an appropriate experimental setup.

Thus the founding fathers of quantum mechanics faced a formidable task of
reconciling the wave and corpuscular properties of electrons and photons—and
other particles. The decisive breakthrough in that task has been achieved in 1926 by
Ervin Schrödinger and Max Born, who formulated what is now known either
formally as the Schrödinger picture of non-relativistic quantum mechanics of the
orbital motion21 in the coordinate representation (this term will be explained later in
the course), or informally just as the wave mechanics. I will now formulate the main
postulates of this theory.

1.2 Wave mechanics postulates
Let us consider a spinless22, non-relativistic point-like particle, whose classical
dynamics may be described by a certain Hamiltonian functionH(r, p, t),23 where r is
the particle’s radius-vector and p is its momentum24. Wave mechanics of such

19 Later, spectacular experiments with diffraction and interference of heavier particles (with much smaller de
Broglie wavelength), e.g. neutrons and even C60 molecules, have also been performed—see, e.g. a review [2] and a
later publication [3]. Nowadays, such interference of heavy particles is used, for example, for ultrasensitive
measurements of gravity—see, e.g. a popular review [4], and recent advanced experiments [5].
20 See, e.g. Part EM section 8.4.
21 The orbital motion is the historic (and very unfortunate) term used for any motion of the particle as a whole.
22Actually, in wave mechanics, the spin of the described particle has not to be equal zero. Rather, it is assumed
that the spin’s effects on the orbital motion of the particle are negligible.
23As a reminder, for many systems (including those whose kinetic energy is a quadratic-homogeneous function
of generalized velocities, like m /22v ), H coincides with the total energy E—see, e.g. Part CM section 2.3.
24Note that this restriction is very important. In particular, it excludes from our current discussion the particles
whose interaction with their environment is irreversible, for example it provides a friction leading to particle
energy’s decay. Such ‘open’ systems need a more general description, which will be discussed in chapter 7.
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Hamiltonian particles may be based on the following set of postulates25 that are
comfortingly elegant—though their final justification is given only by the agreement
of all their corollaries with experiment.

(i) Wavefunction and probability. Such variables as r or p cannot always be
measured exactly, even at ‘perfect conditions’ when all external uncertainties,
including measurement instrument imperfection, macroscopic uncertainties of the
initial state preparation, and unintended particle interactions with its environment,
have been removed26. Moreover, r and p of the same particle can never be measured
exactly simultaneously. Instead, even the most detailed description of the particle’s
state, allowed by Nature27, is given by a certain complex function Ψ(r, t), called the
wavefunction (or ‘wave function’), which generally enables only probabilistic
predictions of the measured values of r, p, and other directly measurable variables
—in quantum mechanics, usually called observables.

Specifically, the probability dW of finding a particle inside an elementary volume
dV ≡ d3r is proportional to this volume, and hence may be characterized by a
volume-independent probability density w ≡ dW/d3r, which in turn is related to the
wavefunction as

= Ψ ≡ Ψ Ψ*w t t t ar r r( , ) ( , ) ( , ), (1.22 )2

where the sign * denotes the usual complex conjugation. As a result, the total
probability of finding the particle somewhere inside a volume Vmay be calculated as

∫ ∫= = Ψ Ψ*W wd r d r b. (1.22 )
V V

3 3

In particular, if the volume V contains the particle definitely (i.e. with the 100%
probability, W = 1), Eq. (1.22b) is reduced to the so-called normalization condition

∫ Ψ Ψ =* d r c1. (1.22 )
V

3

(ii) Observables and operators. With each observable A, quantum mechanics
associates a certain linear operatorÂ, such that, in the perfect conditions mentioned
above, the average measured value (also called the expectation value) of A is
expressed as28

25Generally, quantum mechanics, as any theory, may be built on different sets of postulates (‘axioms’) leading to
the same conclusions. In this text, I will not try to beat down the number of postulates to the absolute possible
minimum, not only because this would require longer argumentation, but chiefly because such attempts typically
result in making certain implicit assumptions hidden from the reader—a practice as common as it is regrettable.
26 I will imply such perfect conditions further on, until the discussion of particle’s interaction with environment
in chapter 7 and beyond.
27 This is one more important caveat. As will be discussed in detail in chapter 7, in many cases even
Hamiltonian systems cannot be described by certain wavefunctions, and allow only a more general (and less
precise) description, e.g. by the density matrix.
28 This key measurement postulate is sometimes called the Born rule, though sometimes this term is used for the
(less general) Eqs. (1.22).
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∫= Ψ ˆΨ*A A d r, (1.23)
V

3

where 〈…〉means the statistical average, i.e. the result of averaging the measurement
results over a large ensemble (set) of macroscopically similar experiments, and Ψ is
the normalized wavefunction, which obeys Eq. (1.22c). Note immediately that for
Eqs. (1.22) and (1.23) to be compatible, the identity (‘unit’) operator defined by the
relation

ˆΨ = ΨI , (1.24)

has to be associated with a particular type of measurement, namely with the
particle’s detection.

(iii) The Hamiltonian and the Schrödinger equation. Another particular operator,
the Hamiltonian Ĥ , whose observable is the particle’s energy E, also plays in wave
mechanics a very special role, because it participates in the Schrödinger equation,

ℏ∂Ψ
∂

= ˆ Ψi
t

H , (1.25)

that determines the wavefunction’s dynamics, i.e. its time evolution.

(iv) The radius-vector and momentum operators. In the wave mechanics, i.e. in the
coordinate representation, the (vector-) operator of particle’s radius-vector r just
multiples the wavefunction by this vector, while the operator of particle’s momen-
tum29 is proportional to the spatial derivative:

ˆ ˆ ∇= = − ℏi ar r p, , (1.26 )

where ∇ is the del (or ‘nabla’) vector operator30. Thus in the Cartesian coordinates,

ˆ ˆ= = = − ℏ ∂
∂

∂
∂

∂
∂

x y z i
x y z

br r p{ , , }, , , . (1.26 )
⎧⎨⎩

⎫⎬⎭
(v) The correspondence principle. In the limit when quantum effects are insignificant,
e.g. when the characteristic scale of action31 (i.e. the product of the relevant energy
and time scales of the problem) is much larger than Planck’s constant ℏ, all wave
mechanics results have to tend to those given by classical mechanics.
Mathematically, this correspondence is achieved by duplicating the classical
relations between various observables by similar relations between the correspond-
ing operators. For example, for a free particle, the Hamiltonian (which in this
particular case corresponds to the kinetic energy T = p2/2m alone) has the form

29For an electrically charged particle in magnetic field, this relation is valid for its canonical momentum—see
section 3.1 below.
30 See, e.g. sections 8–10 of the Selected Mathematical Formulas appendix (appendix A). Note that according
to these formulas, the del operator follows all the geometric rules of the usual vectors. This is, by definition,
true for other vector operators of quantum mechanics—to be discussed below.
31 See, e.g. Part CM section 10.3.
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ˆ = ˆ =
ˆ

= − ℏ ∇H T
p
m m2 2

. (1.27)
2 2

2

Now, even before a deeper discussion of the postulates’ physics (offered in the
next section), we may immediately see that they indeed provide a formal way toward
the resolution of the apparent contradiction between the wave and corpuscular
properties of particles. For a free particle, the Schrödinger equation (1.25), with the
substitution of Eq. (1.27), takes the form

ℏ∂Ψ
∂

= − ℏ ∇ Ψi
t m2

, (1.28)
2

2

whose particular, but most important solution is a plane, single-frequency (‘mono-
chromatic’) traveling wave32,

Ψ = ω⋅ −t aer( , ) , (1.29)i tk r( )

where a, k and ω are constants. Indeed, plugging Eq. (1.29) into Eq. (1.28), we
immediately see that the plane wave, with an arbitrary amplitude a, is indeed a
solution of this Schrödinger equation, provided a specific dispersion relation between
the wavevector k and the frequency ω:

ωℏ = ℏk
m

( )
2

. (1.30)
2

The constant a may be calculated, for example, assuming that the wave (1.29) is
extended over a certain volume V, while beyond it, Ψ = 0. Then from the
normalization condition (1.22c) and Eq. (1.29), we get33

=a V 1. (1.31)2

Now we can use Eqs. (1.23), (1.26) and (1.27) to calculate the expectation values
of the particle’s momentum p and energy E (which, for a free particle, coincides with
its Hamiltonian function H). The result is

= ℏ = = ℏ
E H

k
m

p k,
( )
2

; (1.32)
2

according to Eq. (1.30), the last equality may be rewritten as 〈E〉 = ℏω.
Next, Eq. (1.23) enables us to calculate not only the average (in the math speak,

the first moment) of an observable, but also its higher moments, notably the second
moment (in physics, usually called either the variance or dispersion):

˜ ≡ − = −A A A A A( ) , (1.33)2 2 2 2

and hence its root mean square (rms) fluctuation,

32 See, e.g. Part CM section 6.4 and/or Part EM section 7.1.
33 For infinite space (V → ∞), Eq. (1.31) yields a → 0, i.e. wavefunction (1.29) vanishes. This formal problem
may be readily resolved considering sufficiently long wave packets—see section 2.2 below.
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δ ≡ ˜A A , (1.34)2 1/2

that characterizes the scale of deviations ˜ ≡ −A A A of measurement results from
the average, i.e. the uncertainty of the observable A. In the particular case when the
uncertainty δA equals zero, every measurement of the observable A will give the
value 〈A〉; such a state is said to have a definite value of the variable. For example, in
application to the wavefunction (1.29), these relations yield δE = 0, δp = 0. This
means that in the plane-wave, monochromatic state (1.29), the energy and momen-
tum of the particle have definite values, so that the statistical average signs in
Eqs. (1.32) might be removed. Thus, these relations are reduced to the experimen-
tally-inferred Eqs. (1.5) and (1.15)—though the relation of k and ω to experimental
observations still has to be clarified.

Hence the wave mechanics postulates may indeed explain the observed wave
properties of non-relativistic particles. (For photons, we would need a relativistic
formalism—see chapter 9 below.) On the other hand, due to the linearity of the
Schrödinger equation (1.25), any sum of its solutions is also a solution—the so-called
linear superposition principle. For a free particle, this means that any set of plane waves
(1.29) is also a solution of this equation. Such sets, with close values of k and hence p =
ℏk (and, according to Eq. (1.30), of ω as well), may be used to describe spatially
localized ‘pulses’, called wave packets––see figure 1.6. In section 2.1, I will prove (or
rather reproduce HWeyl’s proof) that the wave packet’s extension δx in any direction
(say, x) is related to the width δkx of the distribution of the corresponding component
of its wave vector as δxδkx ⩾½, and hence, according to Eq. (1.15), to the width δpx of
the momentum component distribution as

δ δ⋅ ⩾ ℏ
x p

2
. (1.35)x

This is the famous Heisenberg’s uncertainty principle, which quantifies the first
postulate’s point that the coordinate and the momentum cannot be defined exactly
simultaneously. However, since Planck’s constant, ℏ ∼ 10−34 J s, is extremely small
on the human scale of things, it still allows for a particle’s localization in a very small
volume even if the momentum spread in the wave packet is also small on that scale.

Figure 1.6. (a) A snapshot of a typical wave packet propagating along axis x, and (b) the corresponding
distribution of the wave numbers kx, i.e. the momenta px.
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For example, according to Eq. (1.35), a 0.1% spread of momentum of a 1 keV
electron ( p ∼ 1.7 × 10−24 kg m s−1) allows its wave packet to be as small as ∼3 ×
10−10 m. (For a heavier particle such as a proton, the packet would be even tighter.)
As a result, wave packets may be used to describe the particles that are quite point-
like from the macroscopic point of view.

In a nutshell, this is the main idea of the wave mechanics, and the first part of this
course (chapters 1–3) will be essentially a discussion of various effects described by
this approach. During this discussion, however, we will not only evidence wave
mechanics’ many triumphs within its applicability domain, but also gradually
accumulate evidence for its handicaps, which will force an eventual transfer to a
more general formalism—to be discussed in chapter 4 and beyond.

1.3 Postulates’ discussion
The wave mechanics’ postulates listed in the previous section (hopefully, familiar to
reader from his or her undergraduate studies) may look very simple. However, the
physics of these axioms is very deep, leading to some counter-intuitive conclusions,
and their in-depth discussion requires solutions of several key problems of wave
mechanics. This is why in this section I will give only an initial, admittedly
superficial discussion of the postulates, and will be repeatedly returning to the
conceptual foundations of quantum mechanics throughout the course, especially in
chapter 10.

First of all, the fundamental uncertainty of observables, which is in the core of the
first postulate, is very foreign to the basic ideas of classical mechanics, and historically
has made the quantummechanics so hard to swallow for many star physicists, notably
including A Einstein—despite his 1905 work, which essentially launched the whole
field! However, this fact has been confirmed by numerous experiments, and (more
importantly) there has not been a single confirmed experiment which would contradict
this postulate, so that quantum mechanics was long ago promoted from a theoretical
hypothesis to the rank of a reliable scientific theory.

One more remark in this context is that Eq. (1.25) itself is deterministic, i.e.
conceptually enables an exact calculation of the wavefunction’s distribution in space
at any instant t, provided that its initial distribution, and the particle’s Hamiltonian,
are known exactly. Note that in the classical statistical mechanics, the probability
density distribution w(r, t) may be also calculated from deterministic differential
equations, for example the Liouville equation34. The quantum-mechanical descrip-
tion differs from that situation in two important aspects. First, in the perfect
conditions outlined above (the exact initial state preparation and the best possible
measurements), the Liouville equation reduces to the 2nd Newton law of classical
mechanics, i.e. the statistical uncertainty disappears. In quantum mechanics this is
not true: the quantum uncertainly, such as described by Eq. (1.35), persists even in
this limit. Second, the wavefunction Ψ(r, t) gives more information than just w(r, t),
because besides the modulus of Ψ, involved in Eq. (1.22), this complex function also

34 See, e.g. Part SM section 6.1.
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has the phase φ ≡ arg Ψ, which may affect some observables, describing, in
particular, the interference of the de Broglie waves.

Next, it is very important to understand that the relation between the quantum
mechanics and experiment, given by the second postulate, necessarily involves another
key notion: that of the corresponding statistical ensemble. This ensemble may be
defined as a set of many experiments carried out at apparently (macroscopically)
similar conditions, including the initial conditions, which nevertheless may lead to
different measurement results (outcomes). Indeed, the probability of a certain (nth)
outcome of an experiment may be only defined for a certain ensemble, as the limit

∑≡ ≡
=

→∞W
M
M

M Mlim , with , (1.36)
n

N

1

n M
n

n

where M is the total number of experiments, Mn is the number of outcomes of the
nth type, and N is the number of different outcomes.

Note that a particular choice of an ensemble may affect probabilities Wn very
significantly. For example, if we pull out playing cards at random from a standard
pack of 52 different cards of 4 suits, the probability Wn of getting a certain card (e.g.
the queen of spades) is 1/52. However, if the cards of a certain suit (say, hearts) had
been taken out from the pack in advance, the probability of getting the queen of
spades is higher, 1/39. It is important that we would also get the last number for the
probability even if we had used the full 52 card pack, but by some reason discarded
results of all experiments giving us any rank of hearts. Hence, the ensemble definition
(or its re-definition in the middle of the game) may change outcome probabilities.

In quantum wave mechanics, with its fundamental relation (1.22) between w and
Ψ, this means not only the outcome probabilities, but the wavefunction itself also
may depend on the statistical ensemble we are using, i.e. not only on the preparation
of the system and the experimental setup, but also on the subset of outcomes taken
into account. The sometimes accounted attribution of the wavefunction to a single
experiment, both before and after the measurement, may lead to very unphysical
interpretations of the results, including a wavefunction’s evolution not described by
the Schrödinger equation (the so-called wave packet reduction), subluminal action
on distance, etc. Later in the course we will see that minding the fundamentally
statistical nature of quantum mechanics, and in particular the dependence of
wavefunctions on the statistical ensembles’ definition (or re-definition), readily
resolves some, though not all, paradoxes of quantum measurements.

Note, however, that the standard quantum mechanics, as discussed in chapters 1–6
of this course, is limited to statistical ensembles with the least uncertainty of
the considered systems, i.e. with best possible knowledge about their state35. This
condition requires, first, the least uncertain initial preparation of the system, and

35The reader should not be surprised by the use of the notion of ‘knowledge’ (or ‘information’) in this context.
Indeed, due to the statistical character of experiment outcomes, quantum mechanics (or at least its relation to
experiment) is intimately related to the information theory. In contrast to much of classical physics, which may
be discussed without any reference to information, in quantum mechanics, as in classical statistical physics,
such abstraction is possible only in some very special (and not the most interesting) cases.
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second, its total isolation from the rest of the world, or at least from its disordered part
(the ‘environment’), in the course of its evolution in time. Only such ensembles may be
described by certain wavefunctions. A detailed discussion of more general ensembles,
which are necessary if these conditions are not satisfied, will be given in chapters 7, 8,
and 10.

Finally, regarding Eq. (1.23), a better feeling of this definition may be obtained by
its comparison with the general definition of the expectation value (i.e. the statistical
average) in the probability theory. Namely, let each of N possible outcomes in a set
of M experiments give a certain value An of observable A; then

∑ ∑≡ =
= =

→∞A
M

A M A Wlim
1

. (1.37)
n

N

n

N

1 1

M n n n n

Taking into account Eq. (1.22), which relates W and Ψ, the structures of Eq. (1.23)
and the final form of Eq. (1.37) are similar. Their exact relation will be further
discussed in section 4.1.

1.4 Continuity equation
The wave mechanics postulates survive one more sanity check: they satisfy the
natural requirement that the particle does not appear or vanish in the course of the
quantum evolution36. Indeed, let us use Eq. (1.22) to calculate the rate of change of
the probability W to find a particle within a certain volume V:

∫= ΨΨ*dW
dt

d
dt

d r. (1.38)
V

3

Assuming for simplicity that the boundaries of the volume V do not move, it is
sufficient to carry out the partial differentiation of the product ΨΨ* inside the
integral. Using the Schrödinger equation (1.25), together with its complex conjugate,

− ℏ∂Ψ
∂

= ˆ Ψ
*

*i
t

H( ) , (1.39)

we readily get

∫ ∫

∫

= ∂
∂

ΨΨ ≡ Ψ ∂Ψ
∂

+ Ψ ∂Ψ
∂

=
ℏ

Ψ ˆ Ψ − Ψ ˆ Ψ

* *
*

* *

dW
dt t

d r
t t

d r

i
H H d r

( )

1
[ ( ) ( ) ] .

(1.40)V V

V

3 3

3

⎛
⎝⎜

⎞
⎠⎟

Let the particle move in a field of external forces (not necessarily constant in
time), so that its classical Hamiltonian function H is the sum of the particle’s kinetic

36Note that this requirement may be violated in the relativistic quantum theory—see chapter 9.
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energy T = p2/2m and its potential energy U(r, t).37 According to the correspondence
principle, and Eq. (1.27), the Hamiltonian operator may be represented as the sum38,

ˆ = ˆ + ˆ =
ˆ

+ = − ℏ ∇ +H T U
p
m

U t
m

U tr r
2

( , )
2

( , ). (1.41)
2 2

2

At this stage we should notice that this operator, when acting on a real function,
returns a real function39. Hence, the result of its action on an arbitrary complex
function Ψ = a + ib (where a and b are real) is

ˆ Ψ = ˆ + = ˆ + ˆH H a ib Ha iHb( ) , (1.42)

where Ĥa and Ĥb are also real, while

ˆ Ψ = ˆ + ˆ = ˆ − ˆ = ˆ − = ˆ Ψ* * *H Ha iHb Ha iHb H a ib H( ) ( ) ( ) . (1.43)

This means that Eq. (1.40) may be rewritten as

∫

∫

=
ℏ

Ψ ˆ Ψ − Ψ ˆ Ψ

= − ℏ
ℏ

Ψ ∇ Ψ − Ψ∇ Ψ

* *

* *

dW
dt i

H H d r

m i
d r

1
[ ]

2
1

[ ]
(1.44)V

V

3

2
2 2 3

Now, let us use general rules of vector calculus40 to write the following identity:

∇ ∇ ∇⋅ Ψ Ψ − Ψ Ψ = Ψ ∇ Ψ − Ψ∇ Ψ* * * *( ) , (1.45)2 2

A comparison of Eqs. (1.44) and (1.45) shows that we may write

∫ ∇= − ⋅dW
dt

d rj( ) , (1.46)
V

3

where the vector j is defined as

∇ ∇≡ ℏ Ψ Ψ − ≡ ℏ Ψ Ψ* *i
m m

j
2

( c.c.) Im( ), (1.47)

where c.c. means the complex conjugate of the previous expression—in this case,
∇ ∇Ψ Ψ Ψ Ψ* * *( ) , i.e. . Now using the well-known divergence theorem41, Eq. (1.46)

may be rewritten as the continuity equation

37As a reminder, such description is valid not only for conservative forces (in that case U has to be time-
independent), but also for any force F(r, t) that may be expressed via the gradient of U(r, t)—see, e.g. Part CM
chapters 2 and 10. (A good example when such a description is impossible is given by the magnetic component
of the Lorentz force—see, e.g. Part EM section 9.7, and also section 3.1 below.)
38Historically, this was the main step made (in 1926) by E Schrödinger on the background of L de Broglie’s
idea. The probabilistic interpretation of the wavefunction was put forward, almost simultaneously, by M Born.
39 In chapter 4, we will discuss a more general family of Hermitian operators, which have this property.
40 See, e.g. Eq. (A.11.4a), combined with the del operator’s definition ∇2 ≡ ∇ · ∇.
41 See, e.g. Eq. (A.12.2).
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∫+ = ≡dW
dt

I I j d r0, with , (1.48)
S

n
2

where jn is the component of the vector j along the outwardly directed normal to the
closed surface S that limits volume V, i.e. the scalar product j · n, where n is the unit
vector along this normal.

Eqs (1.47) and (1.48) show that if the wavefunction on the surface vanishes, the
total probability W of finding the particle within the volume does not change,
providing the required sanity check. In the general case, Eq. (1.48) says that dW/dt
equals the flux I of the vector j through the surface, with the minus sign. It is clear
that this vector may be interpreted as the probability current density—and I, as the
total probability current through the surface S. This interpretation may be further
supported by rewriting Eq. (1.47) for the wavefunction represented in the polar form
Ψ = aeiφ, with real a and φ:

ϕ∇= ℏ
a

m
j . (1.49)2

Note that for a real wavefunction, or even for a wavefunction with an arbitrary but
space-constant phase φ, the probability current density vanishes. In contrast, for the
traveling wave (1.29), with a constant probability density w = a2, Eq. (1.49) yields a
non-zero (and physically very transparent) result:

= ℏ = =w
m

w
m

wj k
p

v, (1.50)

where v = p/m is particle’s velocity. If multiplied by the particle’s mass m, the
probability density w turns into the (average) mass density ρ, and the probability
current density—into the mass flux density ρv. Similarly, if multiplied by the total
electric charge q of the particle, with w turning into the charge density σ, j becomes
the electric current density. As the reader (hopefully :-) knows, both currents satisfy
classical continuity equations similar to Eq. (1.48)42.

Finally, let us recast the continuity equation, rewriting Eq. (1.46) as

∫ ∇∂
∂

+ ⋅ =w
t

d rj 0. (1.51)
V

3⎜ ⎟⎛
⎝

⎞
⎠

Now we may argue that this equality may be true for any choice of volume V only if
the expression under the integral vanishes everywhere, i.e. if

∇∂
∂

+ ⋅ =w
t

j 0. (1.52)

This differential form of the continuity equation may be more convenient than its
integral form (1.48).

42 See, e.g. respectively, Part CM section 8.3 and Part EM section 4.1.

Quantum Mechanics: Lecture notes

1-17



1.5 Eigenstates and eigenvalues
Now let us discuss the most important corollaries of wave mechanics’ linearity. First
of all, it uses only linear operators. This term means that the operators must obey the
following two rules43:

ˆ + ˆ Ψ = ˆ Ψ + ˆ ΨA A A A( ) , (1.53)1 2 1 2

ˆ Ψ + Ψ = ˆ Ψ + ˆ Ψ = ˆΨ + ˆΨA c c A c A c c A c A( ) ( ) ( ) , (1.54)1 1 2 2 1 1 2 2 1 1 2 2

where Ψn are arbitrary wavefunctions, while cn are arbitrary constants (in quantum
mechanics, frequently called c-numbers, to distinguish them from operators and
wavefunctions). The most important examples of linear operators are given by:

(i) the multiplication by a function, such as for the operator r̂ given by Eq. (1.26),
and

(ii) the spatial or temporal differentiation of the wavefunction, such as in Eqs.
(1.25)–(1.27).

Next, it is of key importance that the Schrödinger equation (1.25) is also linear.
(We have already used this fact when we discussed wave packets in the last section.)
This means that if each of several functions Ψn are (particular) solutions of Eq. (1.25)
with a certain Hamiltonian, then their arbitrary linear combination

∑Ψ = Ψc (1.55)
n

n n

is also a solution of the same equation44.
Let us use this linearity to accomplish an apparently impossible feat: immediately

find the general solution of the Schrödinger equation for the most important case
when system’s Hamiltonian does not depend on time explicitly—for example, like in
Eq. (1.41) with time-independent potential energy U = U(r), when the Schrödinger
equation has the form

ℏ∂Ψ
∂

= − ℏ ∇ Ψ + Ψi
t m

U r
2

( ) . (1.56)
2

2

First of all, let us prove that the following product,

ψΨ = a t r( ) ( ), (1.57)n n n

43 By the way, if any equality involving operators is valid for an arbitrary wavefunction, the latter is frequently
dropped from notation, resulting in an operator equality. In particular, Eq. (1.53) may be readily used to prove
that the operators are commutative: ˆ + ˆ = ˆ + ˆA A A A2 1 1 2, and associative: ˆ + ˆ + ˆ = ˆ + ˆ + ˆA A A A A A( ) ( )1 2 3 1 2 3 .
44At first glance, it may seem strange that the linear Schrödinger equation correctly describes quantumproperties
of systems whose classical dynamics is described by nonlinear equations of motion (e.g. an anharmonic oscillator
—see, e.g.Part CM section 5.2). Note, however, that statistical equations of classical dynamics (see, e.g.Part SM
chapters 5 and 6) also have this property, so it is not specific to quantum mechanics.
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qualifies as a (particular) solution of such an equation. Indeed, plugging Eq. (1.56)
into Eq. (1.25) with any time-independent Hamiltonian, using the fact that in this
case

ψ ψˆ = ˆHa t a t Hr r( ) ( ) ( ) ( ), (1.58)n n n n

and dividing both parts of the equation by anψn, we get

ψ
ψ

ℏ =
ˆi

a
da
dt

H
. (1.59)

n

n n

n

The left-hand side of this equation may depend only on time, while the right hand
one depends only on coordinates. These facts may be only reconciled if we assume
that each of these parts is equal to (the same) constant of the dimension of energy,
which I will denote as En.

45 As a result, we are getting two separate equations for the
temporal and spatial parts of the wavefunction:

ψ ψˆ =H E , (1.60)n n n

ℏ =i
da
dt

E a a. (1.61 )n
n n

The latter of these equations, rewritten in the form

= −
ℏ

da
a

i
E

dt b, (1.61 )n

n

n

is readily integrable, giving

ω ω

ω

= − + = × −

≡
ℏ

a i t a i t
E

ln const, so that const exp{ },

with .
(1.62)

n n n n

n
n

Now plugging Eqs. (1.57) and (1.62) into Eq. (1.22), we see that in the quantum state
described by Eqs. (1.57)–(1.62), the probability w of finding the particle at a certain
location does not depend on time:

ψ ψ≡ =*w wr r r( ) ( ) ( ). (1.63)n n

With the same substitution, Eq. (1.23) shows that the expectation value of any
operator that does not depend on time explicitly is also time-independent:

∫ ψ ψ≡ ˆ =*A A d rr r( ) ( ) const. (1.64)n n
3

45 This argumentation, leading to variable separation, is very common in mathematical physics—see, e.g. its
discussion in Part CM section 6.5 and Part EM section 2.5 and beyond.
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Due to this property, the states described by Eqs. (1.57)–(1.62), are called stationary;
they are fully defined by the possible solutions (called eigenfunctions46) of the
stationary (or ‘time-independent’) Schrödinger equation (1.60).47

Note that for the time-independent Hamiltonian (1.41), the stationary
Schrödinger equation (1.60),

ψ ψ ψ− ℏ ∇ + =
m

U Er
2

( ) , (1.65)n n n n

2
2

is a linear, homogeneous differential equation for the function ψn, with a priory
unknown parameter En. Such equations fall into the mathematical category of
eigenproblems, in which the eigenfunctions ψn and eigenvalues En should be found
simultaneously, i.e. self-consistently48. Mathematics tells us that for the such
equations with space-confined eigenfunctions ψn, tending to zero at r → ∞, the
spectrum of eigenvalues is discrete. It also proves that the eigenfunctions corre-
sponding to different eigenvalues are orthogonal, i.e. that space integrals of the
products ψ ψ ′

*
n n vanish for all pairs with n ≠ n′. Due to the Schrödinger equation’s

linearity, each of these functions may be multiplied by a proper constant coefficient
to make their set orthonormal:

∫ ψ ψ δ= ≡ = ′
≠ ′

*
′ ′d r

n n
n n

1, if ,
0, if .

(1.66)n n n n
3

,

⎧⎨⎩
Moreover, the eigenfunctions ψn(r) form a full set, meaning that an arbitrary
function ψ(r), in particular the actual wavefunction Ψ of the system in the initial
moment of its evolution (which I will take for t = 0, with a few exceptions), may be
represented as a unique expansion over the eigenfunction set49:

∑ ψΨ = cr r( , 0) ( ). (1.67)
n

n n

The expansion coefficients cn may be readily found by multiplying both parts of
Eq. (1.67) by ψ ′

*
n , integrating the result over the space, and using Eq. (1.66). The result is

∫ ψ= Ψ*c d rr r( ) ( , 0) . (1.68)n n
3

Now let us consider the following wavefunction

∑ ∑ψ ψΨ = = −
ℏ{ }t c a t c i
E

tr r r( , ) ( ) ( ) exp ( ). (1.69)
n n

n k k n
n

n

46 From the German root eigen, meaning ‘particular’ or ‘characteristic’.
47 For contrast, the full Schrödinger equation (1.25) is frequently called time-dependent or non-stationary.
48 Eigenvalues of energy are frequently called eigenenergies, and it is often said that eigenfunction ψn and
eigenenergy En together characterize the nth stationary eigenstate of the system.
49 If the reader has any doubt in these properties of linear, homogeneous differential equations, I may recommend
reviewing section 9.3 of the wonderful handbook by G Korn and T Korn, listed in section A.16 (ii).
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Since each term of the sum has the form (1.57) and satisfies the Schrödinger
equation, so does the sum as the whole. Moreover, if the coefficients cn are derived in
accordance with Eq. (1.68), then the solution (1.69) satisfies the initial conditions as
well. At this moment we can use one more bit of help from mathematicians, who tell
us that the linear, partial differential equation of type (1.65), with fixed initial
conditions, may have only one (unique) solution. This means that in our case of
motion in a time-independent potential Hamiltonian, Eq. (1.69) gives the general
solution of the Schrödinger equation (1.65).

So, we have succeeded in our apparently over-ambitious goal. Now let us stop this
mad mathematical dash for a minute, and discuss this key result.

1.6 Time evolution
For the time-dependent factor, an(t), of each component state (1.57) of the general
solution (1.69), our procedure gave a very simple and universal result (1.62),
describing a linear change of the phase φn ≡ arg(an) of this complex function in
time, with the constant rate

φ
ω= − = −

ℏ
d

dt
E

, (1.70)n
n

n

so that the real and imaginary parts of an oscillate sinusoidally with this frequency.
The relation (1.70) coincides with the Einstein’s conjecture (1.5) for photons, but
could these oscillations of the wavefunctions represent a physical reality? Indeed, for
photons, described by Eq. (1.5), E may be (and as we will see in chapter 9, is) the
actual, well-defined energy of one photon, and ω is the frequency of the radiation so
quantized. However, for non-relativistic particles, described by wave mechanics, the
potential energy U, and hence the full energy E, are defined to an arbitrary constant,
because we may measure them from an arbitrary reference level. How can such a
change of the energy reference level (which may be made just in our mind) alter the
frequency of oscillations of a variable?

According to Eqs. (1.22) and (1.23), this time evolution of a wavefunction does
not affect the particle’s probability distribution, or even any observable (including
the energy E, provided that it is always referred to the same origin as U), in any
stationary state. However, as will be proved later in the course using the
combination of Einstein’s formula (1.5) with Bohr’s assumption (1.7),

ωℏ = −′ ′E E , (1.71)nn n n

the difference of the eigenfrequencies ωn (evidently, independent on the energy
reference) of two eigenstates is absolutely physical, because it determines the
measurable frequency of the electromagnetic radiation (or possibly a wave of a
different physical nature) emitted or absorbed at the quantum transition between the
states.

As one more example, consider two similar, independent particles 1 and 2, each in
the same (say, the lowest, ground) eigenstate, but with the potential energies (and
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hence the ground state energies E1,2) different by a constant ΔU ≡ U1 − U2. Then,
according to Eq. (1.70), the difference φ ≡ φ1 − φ2 of their wavefunction phases
evolves in time with a reference-independent rate

φ = −Δ
ℏ

d
dt

U
. (1.72)

Certain measurement instruments, weakly coupled to each particle, may allow an
observation of this evolution, while keeping the particle’s quantum dynamics
virtually unperturbed, i.e. Eq. (1.70) intact. Perhaps the most dramatic measurement
of this type is possible using the Josephson effect in weak links between two
superconductors—see figure 1.7.

As a brief reminder50, superconductivity may be explained by a specific coupling
between conduction electrons in solids, that leads, at low temperatures, to the
formation of the so-called Cooper pairs. Such pairs, each consisting of two electrons
with opposite spins and momenta, behave as Bose particles, and form a coherent
Bose–Einstein condensate51. Most properties of such a condensate may be described
by a single, common wavefunction Ψ, evolving in time just as that of a free particle,
with the effective potential energy U = qϕ = −2eϕ, where ϕ is the electrochemical
potential52, and q = −2e is the electric charge of a Cooper pair. As a result, for the
system shown in figure 1.7, in which an externally applied voltage V fixes the
difference ϕ1 − ϕ2 between the electrochemical potentials of two bulk super-
conductors, Eq. (1.72) takes the form

φ =
ℏ

d
dt

e
V

2
, (1.73)

where V = ϕ1 − ϕ2 is the applied voltage. If the link between the superconductors is
weak enough, the electric current I of the Cooper pairs (called the supercurrent)
through the link may be approximately described by the following simple relation53,

Figure 1.7. The Josephson effect in a weak link between two bulk superconductor electrodes.

50 For a more detailed discussion, including the derivation of Eq. (1.74), see, e.g. Part EM section 6.5.
51A detailed discussion of the Bose–Einstein condensation may be found, e.g. in Part SM section 3.4.
52 For more on this notion see, e.g. Part SM section 6.3.
53 In some cases, the function I(φ) may somewhat deviate from Eq. (1.74), but these deviations do not affect its
fundamental 2π-periodicity. As a result, no corrections to the fundamental relations (1.75)–(1.76) have ever
been found (yet :-).
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φ=I I sin , (1.74)c

where Ic is some constant, dependent on the weak link’s strength. Now combining
Eqs. (1.73) and (1.74), we see that if the applied voltage V is constant in time, the
current oscillates sinusoidally, with the so-called Josephson frequency

ω ≡
ℏ
e

V
2

, (1.75)J

as high as ∼484 MHz per each microvolt of applied dc voltage. This effect may be
readily observed experimentally: though its direct detection is a bit tricky, it is easy
to observe the phase locking (synchronization)54 of the Josephson oscillations by an
external microwave signal of frequency ω. Such phase locking results in the relation
ωJ = nω fulfilled within certain current intervals, and hence in the formation, on the
weak-link’s dc I–V curve, of virtually vertical current steps at dc voltages

ω= ℏ
V n

e2
, (1.76)n

where n is an integer55. Since frequencies may be stabilized and measured with very
high precision, this effect is being used in highly accurate standards of dc voltage.

1.7 Spatial dependence
In contrast to the simple and universal time dependence (1.62) of the stationary
states, the spatial distributions of their wavefunction ψn(r) need to be calculated from
the problem-specific stationary Schrödinger equation (1.65). The solution of this
equation for various particular cases is a major focus of the next two chapters. For
now, let us consider just the simplest example, which nevertheless will be the basis
for our discussion of more complex problems, namely a particle confined inside a
rectangular hard-wall box. Such confinement may be described by the following
potential energy56:

=
< < < < < <

+ ∞
U

x a y a z a
r( )

0, for 0 , 0 , and 0 ,

, otherwise.
(1.77)x y z⎧⎨⎩

The only way to keep the product U(r)ψn in Eq. (1.65) finite outside the box, is to
have ψ = 0 in these regions. Also, the function have to be continuous everywhere, to
avoid the divergence of its Laplace operator—which would give an unphysical

54 For the discussion of this general effect, see, e.g. Part CM section 5.4.
55 If ω is not too high, the size of these current steps may be calculated from Eqs. (1.73) and (1.74). Let me leave
this task for the reader’s exercise.
56Another common name for such potentials, especially of lower dimensionality, is the potential well, in our
current case with a flat ‘bottom’, and infinitely high ‘walls’. Note that sometimes, very unfortunately, such
potential profiles are called ‘quantum wells’. (This term seems to imply that the particle’s confinement in such a
well is a phenomenon specific for quantum mechanics. However, as we will repeatedly see in this course, the
opposite is true: quantum effects do as much as they can to overcome the particle’s confinement in a potential
well, letting it partly penetrate the ‘classically forbidden’ regions beyond the well’s walls.)
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divergence of its kinetic energy (1.27). Hence, we may solve the stationary
Schrödinger equation (1.60) just inside the box, i.e. with U = 0, so that it takes a
simple form57

ψ ψ− ℏ ∇ =
m

E a
2

, (1.78 )n n n

2
2

with zero boundary conditions on all the walls. For our particular geometry, it is
natural to express the Laplace operator in the Cartesian coordinates {x, y, z} aligned
with the box sides, with the origin at one of the corners of its rectangular ax × ay × az
volume, so that we get the following boundary problem:

ψ ψ

ψ

− ℏ ∂
∂

+ ∂
∂

+ ∂
∂

=

< < < < < <
= = = =

m x y z
E

x a y a z a

x a y a z a

b
2

,

for 0 , 0 , and 0 ,

with 0 for: 0 and ; 0 and ; 0 and .

(1.78 )
n n n

x y z

n x y z

2 2

2

2

2

2

2

⎛
⎝⎜

⎞
⎠⎟

This problem may be readily solved using the same variable separation method as
in section 1.5, now to separate the Cartesian spatial variables from each other, by
looking for a partial solution of Eq. (1.78) in the form

ψ = X x Y y Z zr( ) ( ) ( ) ( ). (1.79)

(It is convenient to postpone taking care of the proper indices for a minute.)
Plugging this expression into Eq. (1.78b) and dividing all terms by the product XYZ,
we get

− ℏ − ℏ − ℏ =
m X

d X
dx m Y

d Y
dy m Z

d Z
dz

E
2

1
2

1
2

1
. (1.80)

2 2

2

2 2

2

2 2

2

Now let us repeat the standard argumentation of the variable separation method:
since each term on the left-hand side of this equation may be only a function of the
corresponding argument, the equality is possible only if each of them is a constant—
in our case, with the dimensionality of energy. Calling these constants Ex, etc, we get
three similar 1D equations

− ℏ = − ℏ = − ℏ =
m X

d X
dx

E
m Y

d Y
dy

E
m Z

d Z
dx

E
2

1
,

2
1

,
2

1
, (1.81)x y z

2 2

2

2 2

2

2 2

2

with Eq. (1.80) turning into the following energy-matching condition:

+ + =E E E E. (1.82)x y z

57Rewritten as ∇2f + k2f = 0, this is just the Helmholtz equation, which describes waves of any nature (with the
wave vector k) in a uniform, isotropic, linear medium—see, e.g. Part EM sections 7.5–7.9 and 8.5.
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All three ordinary differential equation (1.81), and their solutions, are similar.
For example, for X(x), we have a 1D Helmholtz equation

+ = ≡
ℏ

d X
dx

k X k
mE

0, with
2

, (1.83)x x
x

2

2
2 2

2

and simple boundary conditions: X(0) = X(ax) = 0. Let me hope that the reader
knows how to solve this well-known 1D boundary problem—describing, for
example, the usual mechanical waves on a guitar string. The problem allows an
infinite number of sinusoidal standing-wave eigenfunctions58,

π

π

∝ =

= = …

X k x k
n
a

X
a

nx
a

n

sin , with ,

so that
2

sin , with 1, 2, ,
(1.84)

x x
x

x

x

x

x
x

1/2⎛
⎝⎜

⎞
⎠⎟

corresponding to the eigenvalues kx = πnx/ax, and hence the following eigenenergies:

π= ℏ = ℏ ≡E
m

k
ma

n E n
2 2

. (1.85)x x
x

x x x

2
2

2 2

2
2

1
2

Figure 1.8 shows these simple results, using a somewhat odd but very graphic and
hence common way, where the eigenenergy values (frequently called the energy
levels) are used as horizontal axes for plotting the eigenfunctions, despite their
completely different dimensionality.

Due to the similarity of all Eqs. (1.81), Y(y) and Z(z) are absolutely similar
functions of their arguments, and may also be numbered by integers (say, ny and nz)
independent of nx, so that the spectrum of values of the total energy (1.82) is

π= ℏ + +E
m

n

a

n

a

n

a2
. (1.86)n n n

x

x

y

y

z

z
, ,

2 2 2

2

2

2

2

2x y z

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

Figure 1.8. The lowest eigenfunctions (solid lines) and eigenvalues (dashed lines) of Eq. (1.83) for a potential
well of length ax. Solid black lines show the effective potential energy profile for the 1D eigenproblem (1.83).

58 The front coefficient in the last expression for X ensures the (ortho)normality condition (1.66).
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Thus, in this 3D problem, the role of index n in the general Eq. (1.69) is played by
a set of 3 independent integers {nx, ny, nz}. In quantum mechanics, such integers play
a key role, and thus have a special name, the quantum numbers. Using them, the
general solution of our simple problem may be represented as the sum

∑ π π πΨ = −
ℏ=

∞

t c
n x
a

n y

a
n z
a

i
E

tr( , ) sin sin sin exp , (1.87)
n n n, , 1

n n n
x

x

y

y

z

z

n n n
, ,

, ,

x y z

x y z

x y z
⎧⎨⎩

⎫⎬⎭

with the front coefficients that may be readily calculated from the initial wave-
function Ψ(r, 0), using Eq. (1.68)—again with the replacement n → {nx, ny, nz}. This
simplest problem is a good illustration of typical results the wave mechanics gives for
spatially-confined motion, including the discrete energy spectrum, and (in this case,
evidently) orthogonal eigenfunctions. Perhaps most importantly, its solution shows
that the lowest value of the particle’s kinetic energy, reached in the so-called ground
state (in our case, the state with nx = ny = nz = 1) is above zero.

An example of the opposite case of a continuous spectrum for unconfined motion of
a free particle is given by the plane waves (1.29). With the account of relations
E = ℏω and p = ℏk, this wavefunction may be viewed as the product of the time-
dependent factor (1.62) by the eigenfunction,

ψ = ⋅a ik rexp{ }, (1.88)k k

which is the solution of the stationary Schrödinger equation (1.78a) if it is valid in
the whole space59. The reader should not be worried too much by the fact that the
fundamental solution (1.86) in free space is a traveling wave (having, in
particular, a nonvanishing value of the probability current j), while those inside
a quantum box are standing waves, with j = 0, even though the free space may be
legitimately considered as the ultimate limit of a quantum box with volume V =
ax × ay × az → ∞. Indeed, due to the linearity of wave mechanics, two traveling-
wave solutions (1.88) with equal and opposite values of the momentum (and
hence with the same energy) may be readily combined to give a standing-wave
solution, for example, exp{ik · r} + exp{−ik · r} = 2cos (k·r), with the net current
j = 0.60 Thus, depending on convenience for solution of a particular problem, we
can represent the general solution as a sum of either traveling-wave or standing-
wave eigenfunctions.

Since in the unlimited free space there are no boundary conditions to satisfy, the
Cartesian components of the wave vector k in Eq. (1.88) can take any real values.
(This is why it is more convenient to label these wavefunctions, and the correspond-
ing eigenenergies,

59 In some systems (e.g. a particle interacting with a potential well of a finite depth), a discrete energy spectrum
within a certain interval of energies may coexist with a continuous spectrum in a complementary interval.
However, the conceptual philosophy of eigenfunctions and eigenvalues remains the same in this case as well.
60 This is, of course, the general property of waves of any physical nature, propagating in a linear medium—

see, e.g. Part CM section 6.5 and/or Part EM section 7.3.
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= ℏ ⩾E
k
m2

0, (1.89)k

2 2

with their wave vector k rather than an integer index.) However, one aspect of
continuous-spectrum systems requires a bit more math caution: the summation
(1.69) should be replaced by the integration over a continuous index or indices—in
our current case, three Cartesian components of the vector k. The main rule of such
replacement may be readily extracted from Eq. (1.84): according to this relation, for
standing-wave solutions, the eigenvalues of kx are equidistant, i.e. separated by equal
intervals Δkx = π/ax (with the similar relations for other two Cartesian components
of vector k). Hence the number of different eigenvalues of the standing wave vector k
(with kx, ky, kz ⩾ 0), within a volume d3k ≫ 1/V of the k space is dN = d3k/
(ΔkxΔkxΔkx) = (V/π3)d3k. Since in the continuum it is more convenient to work with
traveling waves (1.88), we should take into account that, as was just discussed, there
are two different traveling wave numbers (say, +kx and −kx) corresponding to each
standing wave vector’s kx > 0. Hence the same number of physically different states
corresponds to a 23 = 8 fold larger k space (which now is infinite in all directions) or,
equivalently, to an 8-fold smaller number of states per unit volume d3k:

π
=dN

V
d k

(2 )
. (1.90)3

3

For dN ≫ 1, this expression is independent on the boundary conditions, and is
frequently represented as the following summation rule

∫ ∫∑
π

= =→∞ f f dN
V

f d kk k klim ( ) ( )
(2 )

( ) , (1.91)
k

k V 3
33

where f(k) is an arbitrary function of k. Note that if the same wave vector k
corresponds to several internal quantum states (such as spin—see chapter 4), the
right-hand side of Eq. (1.91) requires its multiplication by the corresponding
degeneracy factor.

1.8 Dimensionality reduction
To conclude this introductory chapter, let me discuss the conditions when the spatial
dimensionality of a wave mechanics problemmay be reduced61. Naively, one may think
that if the particle’s potential energy depends on just one spatial coordinate, say
U = U(x, t), then its wavefunction has to be one-dimensional as well: ψ = ψ(x, t). Our
discussion of the particular case U = const in the previous section shows that this
assumption is wrong. Indeed, though this potential is just a special case of the potential
U(x, t), most of its eigenfunctions, given by Eqs. (1.87) or (1.88), do depend on other
two coordinates. This is why the solutions ψ(x, t) of the 1D Schrödinger equation

61Many textbooks on quantum mechanics jump to the formal solution of 1D problems without such
discussion, and most of my beginning graduate students did not understand that in realistic physical systems,
such dimensionality restriction is adequate only under very specific conditions.

Quantum Mechanics: Lecture notes

1-27



ℏ∂Ψ
∂

= − ℏ ∂
∂

Ψ + Ψi
t m x

U x t
2

( , ) , (1.92)
2 2

2

which follows from Eq. (1.65) by assuming ∂Ψ/∂y = ∂Ψ/∂z = 0, are insufficient to
form the general solution of Eq. (1.65) for this case.

This fact is easy to understand physically for the simplest case of a stationary 1D
potential: U = U(x). The absence of the y- and z-dependence of the potential energy
U may be interpreted as a potential well which is flat in two directions, y and z.
Replicating the arguments of the previous section for this case, we see that the
eigenfunctions of a particle in such a well have the form

ψ = +{ }( )X x i k y k zr( ) ( )exp , (1.93)y z

where X(x) are the eigenfunction of the following stationary 1D Schrödinger
equation:

− ℏ + =
m

d X
dx

U x X EX
2

( ) , (1.94)
2 2

2 ef

where Uef(x) is not the full potential energy of the particle, as would follow from
Eq. (1.92), but rather its effective value including the kinetic energy of lateral motion:

≡ + + = + ℏ +( )( )U U E E U
m

k k
2

. (1.95)y z y zef

2
2 2

In plain English, the particle’s partial wavefunction X(x), and its full energy,
depends of its transverse momenta, which have continuous spectrum—see the
discussion of Eq. (1.89). This means that Eq. (1.92) is adequate only if the condition
ky = kz = 0 is somehow enforced, and in most physical problems, it is not. For
example, if a de Broglie (or any other) plane wave Ψ(x, t) is incident on a potential
step, it would be reflected exactly back, i.e. with ky = kz = 0, only if the wall’s surface
is a perfect plane and exactly normal to the axis x. Any imperfection (and there are
so many of them in real physical systems -:) may cause excitation of waves with
nonvanishing values of ky and kz, due the continuous character of the functions
Ey(ky) and Ez(kz).

62

There is essentially one, perhaps counter-intuitive way to make the 1D solutions
‘robust’ to small perturbations: that is to provide a rigid lateral confinement63 in
two other directions. As the simplest example, consider a narrow quantum wire
(figure 1.9a), provided by the potential

62 This problem is not specific for quantum mechanics. The classical motion of a particle in a 1D potential may
be also unstable with respect to lateral perturbations, especially is the potential is time-dependent, i.e. capable
of exciting low-energy lateral modes.
63 The term ‘quantum confinement’, sometimes used to describe this phenomenon, is as unfortunate as the
‘quantum well’, because of the same reason: the confinement is a purely classical effect, and as we will
repeatedly see in this course, the quantum mechanical effects reduce, rather than enable it.
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=
< < < <

+ ∞
U

U x y a z a
r( )

( ), for 0 , and 0 ,

, otherwize.
(1.96)y z⎧⎨⎩

Performing the standard variable separation (1.79), we see that the corresponding
stationary Schrödinger equation is satisfied if the partial wavefunction X(x) obeys
Eqs. (1.94)–(1.95), but now with a discrete energy spectrum in the transverse
directions:

π= + ℏ +U U
m

n

a

n

a2
. (1.97)

y

y

z

z
ef

2 2 2

2

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

If the lateral confinement is tight, ay, az → 0, then there is a large energy gap,

πΔ ∼ ℏ
U

ma2
, (1.98)

y z

2 2

,
2

between the ground-state energy of the lateral motion (with ny = nz = 1) and that for
all its excited states. As a result, if the particle is initially placed into the lateral
ground state, and its energy E is much smaller than ΔU, it would stay in this state,
i.e. it may be described by a 1D Schrödinger equation similar to Eq. (1.92)—even in
the time-dependent case, if the characteristic frequency of energy variations is much
smaller than ΔU/ℏ. Absolutely similarly, the strong lateral confinement in just one
dimension (say, z, see figure 1.9b) enables systems with a robust 2D evolution of the
particle’s wavefunction.

The tight lateral confinement may ensure the dimensionality reduction even if the
potential well is not exactly rectangular in the lateral direction(s), as described by
Eq. (1.96), but is described by some x- and t-independent profile, if it still provides a
sufficiently large energy gap ΔU. For example, many 2D quantum phenomena, such
as the quantum Hall effect64, have been studied experimentally using electrons confined
at semiconductor heterojunctions (e.g. epitaxial interfaces GaAs/AlxGa1 − xAs), where
the potential well in the direction perpendicular to the interface has a nearly triangular
shape, and provides the energy gap ΔU of the order of 10−2 eV.65 This splitting
energy corresponds to kBT with T ∼100 K, so that careful experimentation at liquid
helium temperatures (4 K and below) may keep the electrons performing purely 2D
motion in the ‘lowest subband’ (nz = 1).

Figure 1.9. Partial confinement in: (a) two dimensions, and (b) one dimensions.

64 To be discussed in section 3.2.
65 See, e.g. [6].
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Finally, note that in systems with a reduced dimensionality, Eq. (1.90) for the
number of states at large k (i.e. for an essentially free particle motion) should be
replaced accordingly: in a 2D system of area A ≫ 1/k2,

π
=dN

A
d k

(2 )
, (1.99)2

2

while in a 1D system of length l ≫ 1/k,

π
=dN

l
dk

2
, (1.100)

with the corresponding changes of the summation rule (1.91). This change has
important implications for the density of states on the energy scale, dN/dE: it is
straightforward (and hence left for the reader) to use Eqs. (1.90), (1.99), and (1.100)
to show that for free 3D particles the density increases with E (proportionally to
E1/2), for free 2D particles it does not depend on energy at all, while for free 1D
particles it scales as E−1/2, i.e. decreases with energy.

1.9 Problems

Problem 1.1. The actual postulate made by N Bohr in his original 1913 paper was
not directly Eq. (1.8), but an assumption that at quantum leaps between adjacent
large (quasiclassical) orbits with n ≫ 1, the hydrogen atom either emits or absorbs
energy ΔE = ℏω, where ω is its classical radiation frequency—according to classical
electrodynamics, equal to the angular velocity of electron’s rotation66. Prove that
this postulate is indeed compatible with Eqs. (1.7) and (1.8).

Problem 1.2. Use Eq. (1.53) to prove that the linear operators of quantum
mechanics are commutative: ˆ + ˆ = ˆ + ˆA A A A2 1 1 2, and associative: ˆ + ˆ + ˆ =A A A( )1 2 3
ˆ + ˆ + ˆA A A( )1 2 3 .

Problem 1.3. Prove that for any time-independent Hamiltonian operator Ĥ and two
arbitrary complex functions f(r) and g(r),

∫ ∫ˆ = ˆf Hg d r Hf g d rr r r r( ) ( ) ( ) ( ) .3 3

Problem 1.4. Prove that the Schrödinger equation (1.25) with the Hamiltonian
operator given by Eq. (1.41), is Galilean form-invariant, provided that the wave-
function is transformed as

Ψ′ ′ ′ = Ψ − ⋅
ℏ

+
ℏ

t t i
m

i
m t

r r
v r

( , ) ( , ) exp
2

,
2⎧⎨⎩

⎫⎬⎭
v

where the prime sign denotes the variables measured in the reference frame 0′ that
moves, without rotation, with a constant velocity v relatively to the ‘lab’ frame 0.
Give a physical interpretation of this transformation.

66 See, e.g. Part EM section 8.2.
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Problem 1.5.* Prove the so-called Hellmann–Feynman theorem67:

λ λ
∂
∂

= ∂
∂

E H
,n

n

where λ is some c-number parameter, on which the time-independent Hamiltonian
Ĥ , and hence its eigenenergies En, depend.

Problem 1.6.* Use Eqs. (1.73) and (1.74) to analyze the effect of phase locking of
Josephson oscillations on the dc current flowing through a weak link between two
superconductors (frequently called the Josephson junction), assuming that an
external microwave source applies to the junction a sinusoidal ac voltage with
frequency ω and amplitude A.

Problem 1.7. Calculate 〈x〉, 〈px〉, δx, and δpx for the eigenstate {nx, ny, nz} of a
particle in a rectangular, hard-wall box, described by Eq. (1.77), and compare the
product δxδpx with the Heisenberg’s uncertainty relation.

Problem 1.8. Looking at the lower (red) line in figure 1.8, it seems plausible that the
1D ground-state function (1.84) of the simple potential well (1.77) may be well
approximated with an inverted quadratic parabola:

= −X x C x a x( ) ( ),xtrial

where C is a normalization constant. Explore how good this approximation is.

Problem 1.9. A particle, placed in a hard-wall, rectangular box with sides ax, ay, and
az, is in its ground state. Calculate the average force acting on each face of the box.
Can the forces be characterized by a certain pressure?

Problem 1.10. A 1D quantum particle was initially in the ground state of a very
deep, rectangular potential well of width a:

= − < < +
+ ∞

U x
a x a

( )
0, for /2 /2,

, otherwise.

⎧⎨⎩
At some instant, the well’s width is abruptly increased to a new value a′ > a, leaving
the potential symmetric with respect to the point x = 0, and then left constant.
Calculate the probability that after the change, the particle is still in the ground state
of the system.

Problem 1.11. At t = 0, a 1D particle of mass m is placed into a hard-wall, flat-
bottom potential well

= < <
+ ∞

U x
x a

( )
0, for 0 ,

, otherwise,

⎧⎨⎩

67Despite the theorem’s common name, H Hellmann (in 1937) and R Feynman (in 1939) were not the first
ones in the long list of physicists who have (apparently, independently) discovered this fact. Indeed, it may be
traced back at least to a 1922 paper by W Pauli, and was carefully proved by P Güttinger in 1931.
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in a 50/50 linear superposition of the lowest (ground) state and the first excited state.
Calculate:

(i) the normalized wavefunction Ψ(x, t) for arbitrary time t ⩾ 0, and
(ii) the time evolution of the expectation value 〈x〉 of the particle’s coordinate.

Problem 1.12. Calculate the potential profiles U(x) for that the following
wavefunctions,

(i) Ψ = − −c ax ibtexp{ }2 , and
(ii) Ψ = − −c a x ibtexp{ },

(with real coefficients a > 0 and b), satisfy the 1D Schrödinger equation for a particle
with mass m. For each case, calculate 〈x〉, 〈px〉, δx, and δpx, and compare the
product δxδpx with the Heisenberg’s uncertainty relation.

Problem 1.13. A 1D particle of mass m, moving in the field of a stationary potential
U(x), has the following eigenfunction

ψ
κ

=x
C

x
( )

cosh
,

where C is the normalization constant, and κ is a real constant. Calculate the
function U(x) and the state’s eigenenergy E.

Problem 1.14. Calculate the density dN/dE of traveling-wave states in large
rectangular potential wells of various dimensions: d = 1, 2, and 3.

Problem 1.15.* Use the finite-difference method with steps a/2 and a/3 to find as
many eigenenergies as possible for a 1D particle in the infinitely deep, hard-wall 1D
potential well of width a. Compare the results with each other, and with the exact
formula68.
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