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IOP Publishing

Classical Mechanics
Problems with solutions

Konstantin K Likharev

Chapter 1

Review of fundamentals

Problem 1.1. A bicycle, ridden with velocity v on a wet pavement, has no
mudguards on its wheels. How far behind should the following biker ride to avoid
being splashed over? Neglect the effects of air resistance.

Solution: The easiest way to solve this problem is to use a reference frame
moving with the cyclists. Assuming that their speed is constant, in this reference
frame the bike frames are at rest, but the ground moves back with speed v (see the
arrow in the figure above), and hence the rim of each wheel moves around its axis
with that speed. Because of this, the speed of each water drop immediately after
detachment from the tire is the same: ∣v0∣ = v. Since this moving reference frame is
inertial, we may write Newton’s laws in it and hence use all their corollaries. In
particular, this means that after its detachment, each drop follows the well-known
parabolic trajectory and before returning to the initial height travels the distance1

φ= *l
v
g

sin 2 , ( )
2

1 I hope that the reader knows how to derive this formula, but just in case… Since the drop’s acceleration
during its flight equals g = const, and is directed downward, placing the reference frame origin at the point of
the drop’s detachment from the tire, we may spell out Eq. (1.18) of the lecture notes as follows:

φ φ= − = − +x t v t y t gt v t( ) cos , ( ) /2 sin .2

Now, requiring the drop to return to the initial height, y(t) = 0, for the time of flight we obtain: t = 2v sin φ/g.
Plugging this expression into the above formula for x(t), we obtain x(t) = −l, where l is given by Eq. (*).
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where φ is the take-off angle—see the figure above. The distance is largest for drops
with φ = π/4:2

=l
v
g

.max

2

As the figure above shows, this is the smallest distance to be absolutely safe from
splashing, although this expression may be corrected for bike shape details (for
example, for a different radius R of the wheel), and for what exactly is meant by the
distance between the bikes. For realistic bike velocities, v≫ (gR)1/2∼ 2m s−1∼ 5mph,
these corrections are minor, because lmax ≫ R.

Problem 1.2. Two round disks of radius R are firmly connected with a coaxial
cylinder of a smaller radius r, and a thread is wound on the resulting spool. The
spool is placed on a horizontal surface, and thread’s end is being pooled out at angle
φ—see the figure below. Assuming that the spool does not slip on the surface, what
direction would it roll?

Solution: The no-slip roll of the spool may be considered as its rotation
about the instantaneous axis which coincides with the spool–surface contact
line. (In the figure above, it is perpendicular to the plane of drawing and passes
through point A.) Thus the direction of rotation depends on whether the line of the
applied force T passes above or below the axis, i.e. whether point B (where that line
crosses the vertical line OA) is located above or below point A. From the right
triangle OBC we readily obtain OB = OC/cos φ ≡ r/cos φ, while OA ≡ R. So, if

φ
φ< >r

R
r
Rcos

, i.e. if cos ,

the spool will roll in the direction of the applied force (in the figure above, to the
right), but otherwise it will roll back. In particular, if the thread is being pulled
horizontally (φ = 0, cos φ = 1), the spool will roll to the right, while if it us pulled up
(φ = π/2, cos φ = 0) it will roll to the left, for any r < R.

2Note that, curiously enough, in the reference frame of the ground, these ‘most splash-dangerous’ drops have
the horizontal velocity − ≈ + >v v(1 1/ 2 ) 0.293 0, i.e. move in the same direction as the bikes.
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Problem 1.3.* Calculate the equilibrium shape of a flexible, heavy rope of length l,
with a constant mass μ per unit length, if it is hung in a uniform gravity field between
two points separated by a horizontal distance d—see the figure below.

Solution: Let us introduce the Cartesian coordinates as shown in the figure above,
with the origin at the lowest point of the rope. In equilibrium, the vector sum of the
forces acting on each small rope fragment, of length dl, should vanish, so that for the
vector TT of the rope tension force as a function of coordinate x we may write

μ+ − − + = *
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟x

dx
x

dx
dlg

2 2
0. ( )TT TT

Here dx = dl cos α (where α is the rope’s slope at this particular point, see the figure
above) is the horizontal axis fragment corresponding to dl, so that

α
α= ≡ + = + ′dl

dx
dx y dx

cos
(1 tan ) (1 ) ,2 1/2 2 1/2

α′ ≡ =y
dy
dx

where tan .

Due to the smallness of dx, we may expand the functionTT (x) in the Taylor series in dx,
and keep only the first (linear) term of the tension difference participating in Eq. (*):

μ+ + ′ =d
dx

dx y dxg(1 ) 0.2 1/2TT

After the cancellation of dx ≠ 0, two Cartesian components of this vector equation
yield two scalar equations for two unknown scalar functions: y(x), describing the
shape of the rope, and T (x), the magnitude of its tension:

α≡ ≡
+ ′

=
⎛
⎝⎜

⎞
⎠⎟

d
dx

d
dx

d
dx y

( cos )
(1 )

0,x

2 1/2

T
T

T

α μ≡ ≡ ′
+ ′

= + ′
⎛
⎝⎜

⎞
⎠⎟

d

dx
d
dx

d
dx

y

y
g y( sin )

(1 )
(1 ) .y

2 1/2
2 1/2T

T
T

The first of these equations yieldsT /(1 + yʹ2)1/2 = const ≡T 0, whereT 0 has the sense
of the rope’s tension at its lowest point (where yʹ = 0). Plugging this relation into the
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second equation, we obtain the following second-order differential equation for the
function we are interested in, y(x):

μ″ = + ′ ″ ≡y g y y
d y
dx

(1 ) , where .0
2 1/2

2

2
T

It is straightforward to integrate this equation. First, we may represent the second
derivative as3

″ ≡ ′ = ′ = ′ ′ = ′
y

dy
dx

dy
dy

dy
dx

y
dy
dy

d y
dy

1
2

( ) ,
2

so that our equation becomes

μ μ′ = + ′ + ′
+ ′

=d y
dy

g y
d y

y
gdy

2
( )

(1 ) , or equivalently:
2

(1 )

(1 )
.0

2
2 1/2 0

2

2 1/2

T T

Now we may integrate both parts, obtaining

μ+ ′ = +y gy(1 ) const.0
2 1/2T

Since we have selected the origin of y at the lowest point of the rope, where yʹ = 0,
this constant also equals T 0, so that

μ+ ′ = +y gy(1 ) .0
2 1/2

0T T

Solving this equation for yʹ ≡ dy/dx, and then separating variables x and y, we get

μ
μ

′ = ± + −
+ −

= ±y g y
dy

g y
dx[(1 ( / ) ) 1] , giving

[(1 ( / ) ) 1]
.0

2 1/2

0
2 1/2

T
T

It is convenient to integrate both parts of this equation from the lowest point,
where x = 0 and y = 0, to some point x > 0, because at this interval dy/dx > 0 (see the
figure above), and me may select positive sign on the right-hand side of the equation.
Introducing dimensionless variable ξ ≡ 1 + (μg/T0)y, so that dy = (T 0/μg) dξ, we
may bring the integral of the left-hand side to a simpler form:

∫ ξ
ξ

μ
−

=
=

d g
x

( 1)
.

y

y 0 2 1/2
0T

This integral may be readily worked out using one more substitution: ξ ≡ cosh β, so
that the nominator, dξ = sinh β dβ, and denominator, (ξ2−1)1/2 = (cosh2 β−1)1/2 =
sinh β, are proportional to the same function, sinh β, which cancels. As a result, this
integral is just ∫dβ = β, by the definition of β equal to cosh−1ξ ≡ cosh−1 [1 + (μg/T 0)y],
and we obtain

μ μ
μ

μ+ = = − **−
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

gy gx
y

g
gx

cosh 1 , i.e. cosh 1 . ( )1

0 0

0

0T T

T

T

3 This is a very popular transformation, which was already used (for other variables) for the derivation of
Eq. (1.20) of the lecture notes, and will be repeatedly used later in the course.
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So, the free-hanging, uniform ropes or chains have the form of the plot of the
hyperbolic cosine function4. Due to this fact, this curve is sometimes called the
chainette. (A more popular term for this curve is ‘catenary’, but the terms ‘alysoid’
and ‘funicular’ may be also encountered.) What remains now is to find the constant
T0. This may be done by the requirement that the sum of all elementary lengths dl =
(1 + yʹ2)1/2dx equals its actual length l:

∫ ∫ ∫≡ = + ′ = + ′ ***
−

+
l dl y dx y dx(1 ) 2 (1 ) . ( )

l d

d d

/2

/2
2 1/2

0

/2
2 1/2

From Eq. (**), we obtain

μ μ′ = + ′ =y
gx

y
gx

sinh , so that (1 ) cosh ;
0

2 1/2

0T T

due to the last equality, the integration in Eq. (***) is elementary, giving

μ
μ μ μ= =l

g
gd gl gd2

sinh
2

, i.e.
2

sinh
2

,0

0 0 0

T

T T T

or in a convenient dimensionless form:

ζ ζ ζ μ= ≡l
d

gd
sinh , where

2
.

0T

This is a transcendental equation for ζ (and hence for T0); from the plot of its
both sides as functions of this variable (see the figure above) it is evident that the
equation has a single positive root for any l/d > 1. Using the well-known asymptotic

4Additional question: is this solution a good approximation for suspension bridge cables? If not, why?
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behaviors of the sine hyperbolic for small and large values of its argument, it is
straightforward to show that

μ→ × −
→ ∞ →

→ → ∞

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

gl

l
l d

l d

d l
l d

l d

1

2 6
, at / 1,

/
2 ln (2 / )

0, at / .
0

1/2

T

In the former limit,T0 is much larger than the weight μgl of the whole rope, while in
the latter limit, is much less than the weight.

In conclusion, let me note that this problem may be also solved (or rather the
differential equation for the function y(x) derived) by the calculus of variations, from
the condition that the total potential energy of the rope,

∫ ∫μ μ= = + ′
−

+
U gydl g y y dx(1 ) ,

l d

d

/2

/2
2 1/2

has to be minimal at equilibrium, upon the condition of constancy of rope’s length l,
i.e. of the integral (***). Although such solution is lengthier, it is highly recom-
mended to the reader, in particular because we would need the calculus of variations
several times in this course, starting from the derivation of the Lagrange equations in
the next chapter.

Problem 1.4. A uniform, long, thin bar is placed horizontally on two similar round
cylinders rotating toward each other with the same angular velocity ω and displaced
by distance d—see the figure below. Calculate the laws of relatively slow horizontal
motions of the bar within the plane of drawing for both possible directions of cylinder
rotation, assuming that the friction force between the slipping surfaces of the bar and
each cylinder obeys the simple Coulomb approximation5 ∣F ∣ = μN, where N is the
normal pressure force between them, and μ is a constant (velocity-independent)
coefficient. Formulate the condition of validity of your result.

5 It was suggested in 1785 by the same C-A de Coulomb who discovered the famous Coulomb law of
electrostatics, and hence pioneered the whole qualitative science of electricity.
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Solution: Let the current horizontal displacement of the bar’s center-of-mass
(point O) from the symmetry plane of the system equal x—see the figure above.
Then we may write the following two equations for the normal pressure forces N±,

+ =

+ − − =

− +

− +
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

N N Mg

N
d

x N
d

x

,

2 2
0,

where M is bar’s mass. These equations express, correspondingly, the balances of
vertical forces and their torques, necessary to avoid the vertical and angular
accelerations of the bar. (Note that contributions of friction forces F± into the
torque balance may be ignored only because of small thickness of the bar.) Solving
this simple system of two linear equations, we obtain

= ±
±N Mg

d x
d

/2
.

If the bar motion is relatively slow, ∣v∣ < ωR, its surface slips relatively to those of
both cylinders, so it is legitimate to use the kinetic-friction approximation ∣F±∣ = μN±

for each of the friction forces, and for the total horizontal force we may write

μ= − =+ −F F F Mg
x
d

2 .

What follows depends on the direction of the cylinders’ rotation. If their top points,
on which the bar rests, move toward each other (as shown in the figure above), then
the force F+ is always directed to the left, so that taking the shown direction of
displacement x for the positive one, we may write F+ = −2μMg(d/2 − x)/d < 0, while
the counterpart force is positive: F− = 2μMg(d/2 + x)/d. As a result,

μ= − = −+ −F F F Mg
x
d

2 .

In this case, the horizontal component of Newton’s second law for the bar reads

μ¨ = − *Mx Mg
x
d

2 . ( )

This is the well-known equation of 1D motion of a body on an elastic spring with
spring constant κ = 2μMg/d, and its solutions are sinusoidal oscillations of frequency

ω κ μ= =⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟M

g
d

2
.0

1/2 1/2

Note that this sinusoidal solution is only valid if the displacement amplitude A ≡
xmax is lower than ωR/ω0, so that the velocity amplitude, ω0A, is below the cylinder’s
top speed, ωR. What happens at larger amplitudes depends on the static friction
coefficient μs or, more exactly, its relation with the kinetic friction coefficient μ. The
reader is encouraged to carry out a semi-quantitative analysis of the various cases.
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In the second case, when the cylinders rotate in the direction opposite to that
shown in the figure above (with their top parts moving away from each other), both
friction forces have opposite directions, and we need to change the sign in the
expression for the total horizontal force F. This gives, instead of Eq. (*), the
following equation:

μ⃛ = **Mx Mg
x
d

2 . ( )

Its general solution is a sum of either two exponents, or two hyperbolic functions of
time6:

λ λ λ μ= + ≡ + = ***λ λ
+ −

− ⎛
⎝⎜

⎞
⎠⎟x t C e C e C t C t

g
d

( ) cosh sinh , with
2

, ( )t t
c s

1/2

where constants C± (or alternatively, Cc,s) are determined by the initial conditions—
the initial position and velocity of the bar. Note that whatever the conditions are,
according to Eq. (***), the displacement x and velocity v = dx/dt of the bar will grow
exponentially at t ≫ 1/λ. So, at this direction of cylinder rotation, our solution (***)
will eventually run out of its validity range ∣v∣ < ωR.

Problem 1.5. A small block slides, without friction, down a smooth slide that ends
with a round loop of radius R—see the figure to the right. What smallest initial
height h allows the block to make its way around the loop without dropping from
the slide, if it is launched with negligible initial velocity?

Solution: The most critical point of the motion is evidently the highest point of the
round loop, where the block’s velocity v is smallest, and the block’s weight force,mg,
is directed exactly along the possible direction of the detachment from the slide’s
surface. This velocity value may be readily calculated from the mechanical energy
conservation law written for the initial and the critical points:

= + = − *mgh
mv

mgR v g h R
2

2 , giving 2 ( 2 ), ( )
2

2

6 This fact may either be verified by its substitution to Eq. (**), or obtained in the regular fashion by looking
for the solution in the form C exp{λt}, as is discussed in detail in the lecture notes, section 3.2.
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where m is the mass of the block. In order to avoid the detachment from the slide,
this velocity should be so high that the block weight mg could not, alone (without
slide’s reaction), provide the necessary centripetal acceleration a = v2/R:

<mg m
v
R

.
2

Plugging the last form of Eq. (*) into this condition, we may reduce it to a very
simple form:

> =h h R
5
2

.min

Note that the result is independent not only of the block’s mass m (which is, due
to the weak equivalence principle, common for all problems where the only
substantial force is that of gravity), but also of the gravity acceleration g.

Problem 1.6. A satellite of mass m is being launched from height H over the surface
of a spherical planet with radius R and massM≫ m—see the figure below. Find the
range of initial velocities v0 (normal to the radius) providing closed orbits above the
planet’s surface.

Solution: The simplest way to solve this problem is to write the laws of conservation
of the angular momentum and the energy, for two opposite points of the elliptical
orbit (see the figure above):

+ = + −
+

= −
+

mv H R mv h R
m

v G
mM

H R
m

v G
mM

h R
( ) ( ),

2 2
.h h0 0

2 2

Solving this system of equations for v0 and vh, we obtain, in particular:

= +
+ + +

v GM
h R

H R h H R
2

( )( 2 )
.0

2

For the two boundaries of the velocity interval of our interest (h = 0 and h→∞), we
obtain, respectively:

=
+ +

=
+

v GM
R

H R H R
v GM

H R
( ) 2

( )( 2 )
, ( ) 2

1
.0

2
min 0

2
max
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For the particular case of satellite launch from planet’s surface (H = 0), these
formulas are reduced to the well-known expressions for the so-called first and second
space velocities7.

= = = ≈
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟v

GM
R

v
GM
R

v v,
2

2 1.41 .1

1/2

2

1/2

1 1

For our Earth (M = ME ≈ 6.0 × 1024 kg, R = RE ≈ 6.4 × 106 m), these velocities are
close, respectively, to 7.9 and 11.2 km s−1.

Problem 1.7. Prove that the thin-uniform-disk model of a galaxy describes small
harmonic oscillations of stars inside it along the direction normal to the disk, and
calculate the frequency of these oscillations in terms of the Newton’s gravitational
constant G and the average density ρ of the star/dust matter of the Galaxy.

Solution: Let us calculate the net gravitational force F exerted on the star, of mass m,
by the whole galactic disk. This may be done by the direct summation of Newton’s
law of gravity (see, e.g. Eq. (1.15) of the lecture notes) for two point-massesm andmʹ,

= − ′ ≡ − ′ *G
mm
R

F R R r r, where , ( )point 3

over all elementary masses dmʹ = ρ(rʹ)d3rʹ of the disk:

∫ ρ= − ′
− ′

− ′ ′Gm d rF r
r

r r
r r( )

( )
( ) .

3
3

However, even in our simple case of constant density ρ, such integration is a bit
cumbersome, because of the vector nature of the integral. It is helpful here (and in
many other problems) to use the analogy of the Newton law (*) with the Coulomb
law of the electrostatic interaction of two point charges q and qʹ,8

πε
= ′q q

R
F R

4
.point

0
3

Now we may use the well-known Gauss law of electrostatics (which follows from the
Coulomb law)9,

∮ ∫ε
ρ= ′ ′F d r

q
d rr( ) ,

S
n

V

2

0

3

to write its gravitational analog (with q ↔ m, and 1/4πε0 ↔ −G, i.e. 1/ε0 ↔ −4πG):

∮ ∫π ρ= − ′ ′ **F d r Gm d rr4 ( ) . ( )
S

n
V

2 3

7Alternatively, v2 is called the ‘escape velocity’.
8 See, e.g. Part EM Eq. (1.1).
9 See, e.g. Part EM Eq. (1.16), with both sides multiplied by q, so that E → qE = F.
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Here V is an arbitrary ‘Gaussian’ volume, S is the closed surface limiting the
volume, and Fn is the component of force F along the outer normal n to the surface:
Fn = F·n.

For our current problem, it is beneficial to consider the Gaussian volume V in the
form of a flat ‘pillbox’, with a thickness 2z smaller than that of the galactic disk, and
planar ‘lids’ of area A parallel to the disk’s plane—see the figure below, where the
dashed line indicates the plane of disk’s symmetry (from which the perpendicular
coordinate z will be measured). Taking the pillbox lid area A to be much smaller that
the galactic disk area, we may use problem’s symmetry to argue that the force F
should be:
(i) directed perpendicular to the galactic disk plane, and hence to the pillbox lids:
F = Fznz;
(ii) independent of the ‘horizontal’ (in our figure) position: Fz = Fz(z); and
(iii) symmetric relative to the symmetry plane: Fz(−z) = −Fz(z).

With these assumptions, the gravity force flux through the lateral sides of the
pillbox vanishes (because on these sides F⊥n, so that F·n = 0), while the flux ∫Fnd

2r
through each of the two lids is just Fz(z)A, so that Eq. (**) yields

π ρ= −F z A Gm zA2 ( ) 4 (2 ),

giving, finally,

κ κ π ρ= − ≡F z z Gm( ) , with 4 .

Such an attractive force, trying to return the star to the disk’s symmetry plane and
proportional to its deviation from the plane, is similar to that provided by the usual
elastic spring, and hence causes harmonic oscillations of the star about the symmetry
plane, with frequency

ω κ π ρ= =⎜ ⎟⎛
⎝

⎞
⎠m

G(4 ) ,
1/2

1/2

independent of the star’s mass.
For our galaxy (the Milky Way) in the vicinity of our Sun, ρ ≈ 1.4 × 10−20 kg m−3,

and the above formula yields ω ≈ 3.3 × 10−15 s−1, corresponding to the oscillation
periodT = 2π/ω ≈ 60 million years10. The amplitude of our Sun’s oscillations (which
cannot be calculated from the problem’s data, but may be deduced from the

10 Just for the reader’s reference, this oscillation period is much shorter that the period, ∼ 240 million years, of
the Sun’s rotation about the galactic center.
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experimentally measured Sun’s velocity relative to the neighboring stars) is about
2 × 1018 m, i.e. an order of magnitude smaller than the Milky Way disk’s thickness
(∼2 × 1019 m). On the other hand, the amplitude is much larger than the average
distance between the stars in our vicinity, ∼1016 m. These two strong relations make
this simple model valid for an approximate but very reasonable description of the
Sun’s motion.

Problem 1.8. Derive the differential equations of motion for small oscillations of
two similar pendula coupled with a spring (see the figure below), within the vertical
plane. Assume that at the vertical position of both pendula, the spring is not
stretched (ΔL = 0).

Solution: If the deviations of the pendula from their vertical positions are small, ∣φ ∣,
∣φʹ ∣ ≪ 1 (see the figure above), in the linear approximation in φ and φʹ the
magnitude of the supporting rod tensionT equals mg, and its horizontal component
equals (−mgφ). In the same approximation, the linear displacements of the pendula
from the equilibrium (vertical) positions are, respectively, lφ and lφʹ, and the spring
extension ΔL is l(φʹ−φ), so that the force acting on each pendulum equals ±κl(φʹ−φ),
where κ is the spring constant. As a result, in the linear approximation, the
horizontal components of Newton’s second law for the two pendula are:

φ κ φ φ φ

φ κ φ φ φ

̈ = ′ − −

̈′ = − ′ − − ′

m l l mg

m l l mg

( ) ( ) ,

( ) ( ) .

The solution of this system of equations will be the subject of problem 6.1.

Problem 1.9. One popular futuristic concept of travel is digging a straight railway
tunnel through the Earth and letting a train go through it, without initial velocity—
driven only by gravity. Calculate the train’s travel time through such a tunnel,
assuming that the Earth’s density ρ is constant, and neglecting the effects of friction
and planetary rotation.

Solution: Let us apply the gravitational analog of the Gauss law, given by Eq. (**) in
the solution of problem 1.7,

∮ ∫π ρ= − ′ ′F d r Gm d rr4 ( ) ,
S

n
V

2 3
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to a sphere of radius r ⩽ RE, taking into account that due to the system’s symmetry,
F = nrF(r) and Fn = F. The result shows that the net gravity force felt by the train at
distance r from the Earth’s center is determined only by the planet’s mass inside a
sphere of this radius,

ρ π= − =G
M r m

r
M r rF r

( )
, with ( )

4
3

,
3

3

where m is the train’s mass. With the notation used in the figure below, the force’s
component directed along the tunnel is

θ θ π ρ θ= − = = −F F G
M r m

r
Gm rsin

( )
sin

4
3

sin .x 2

But the product r sin θ is nothing more than the linear displacement x of the train
from the middle of the tunnel, so that Fx depends on x linearly, similarly to the force
of the usual elastic spring with the equilibrium point at x = 0:

κ κ π ρ= − =F x Gm, with
4
3

.x

The spring constant κ looks simpler if expressed via the gravity acceleration g on the
Earth’s surface and its radius RE. Indeed, by the definition of g,

ρ π π ρ κ= = = =g G
M R

R
G

R
R G R m

g
R

( ) 4
3

4
3

, so that .E

E
2

E
2 E

2
E

E

As a result of this analogy, the equation of train’s motion along the tunnel,
κ̈ = −mx x, is similar to that of the mass on a spring; it describes periodic, sinusoidal

oscillations of x in time, with period

π
ω

ω κ= = =⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟m

g
R

2
, where .

0
0

1/2

E

1/2

T

Evidently the time Δt of a one-way journey of the train through the tunnel, with no
initial velocity, is just a half of this period:

π
ω

πΔ = = =
⎛
⎝⎜

⎞
⎠⎟t

R
g2

.
0

E
1/2T
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Perhaps the most curious feature of this result is that it is independent of the
tunnel’s length. The reason is that, the longer the tunnel, the steeper is its
average incline toward the Earth’s center, and hence the larger is the train’s
acceleration. So, if our Earth were uniform, the travel time from any point of its
surface to any other point would be the same (about 42 min and 13 s). In reality, ρ
grows toward the Earth’s center, so that the above result is accurate only for
relatively short tunnels, with length l ≪ R, while for longer tunnels the travel
would be even faster.

Problem 1.10. A small bead of mass m may slide, without friction, along a light
string, stretched with a force T ≫ mg between two points separated by a horizontal
distance 2d—see the figure below. Calculate the frequency of horizontal oscillations
of the bead about its equilibrium position.

Solution: Due to the given condition T ≫ mg, the string remains nearly horizontal
even under the weight of the bead, so that both angles θ± (see the figure above) are
small. As a result, the horizontal motion of the bead is much slower than its
vertical oscillations, and the vertical displacement h may be calculated ignoring its
dynamics. Then from the requirement that the sum of two vertical components, T

sin θ± ≈ T θ±, of the string tension TT counterbalances its weight mg:

θ θ+ =− + mg( ) ,T

plus the geometric relations evident from the figure above:

θ θ=
+

=
−

*− +
h

d x
h

d x
, , ( )

where x is the horizontal displacement of the bead from its equilibrium position at
the center of the string—see the figure above. Solving this simple system of three
equations for h and θ±, we obtain, in particular,

= −h
mg

d
d x

2
( ),2 2

T

so that Eqs. (*) become

θ θ= − = +− +
mg

d
d x

mg
d

d x
2

( ),
2

( ).
T T

Classical Mechanics: Problems with solutions

1-14



Now we may use these results to calculate the net horizontal component of the
tension forces exerted on the bead:

θ θ
θ θ= − ≈ − − −

= − − + = −

+ −
+ −

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

F

mg
d

d x d x
m g

d
x

cos cos 1
2

1
2

2 2
[( ) ( ) ]

2
.

x

2 2

2
2 2

2 2

T T T T

T

T T

This force may be represented as Fx = −κx, with

κ = >m g
d2

0,
2 2

T

i.e. is always directed toward the equilibrium point x = 0, and is similar to the one
provided by the usual elastic spring. Hence the frequency of the bead’s oscillations
may be found from the well-known formula for the frequency of a mass on a spring:

ω κ= = **⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠m

g
m

d2
. ( )

1/2 1/2

T

This result shows, in particular, that ω → 0 at T → ∞. This is natural because in
this limit the string becomes virtually horizontal, and the returning horizontal force,
which results from the string’s slopes, vanishes. Note also that:

• The calculated frequency (**) of the horizontal oscillations of the bead is
much smaller than that, Ω ∼ (2T/md)1/2, of its vertical oscillations11. This
relation confirms the validity of our approach.

• Our result, while being conditioned by the strong inequality T ≫ mg, is valid
for an arbitrary oscillation amplitude A ≡ xmax, while it is less than d.

Problem 1.11. For a rocket accelerating due to a working jet motor (and hence
spending its fuel), calculate the relation between its velocity and the remaining mass.
Hint: For the sake of simplicity, consider 1D motion.

Solution: Let us write the law of conservation of the net momentum P of the rocket
and a small portion dm of its exhaust gases, ejected with the relative velocity u
during a small time interval dt, in the so-called instantaneous rest frame—an
inertial reference frame moving, in the particular instant under consideration, with
the same velocity v as the body under consideration—in our case, the accelerating
rocket:

≡ + = *dP m dv dm u 0. ( )

11 For small, purely vertical oscillations, the formula Ω = (2T /md)1/2 is exact (prove this!). The coexistence of
various oscillations in this system, at arbitrary ratio T /mg, will be discussed in problem 3.1.
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Dividing all terms of this equation by dt, and moving the term proportional to u into
the right-hand side, we obtain the following equation:

= −m
dv
dt

u
dm
dt

.

The equation shows that the magnitude of the effective force (in engineering,
called thrust) of the rocket engine is

μ=F u,ef

where μ ≡ (−dm/dt) > 0 is the fuel mass burn rate. Assuming that the rate, as well as
the exhaust velocity u are constant in time (meaning that m(t) = m(0)−μt), the
resulting equation of motion,

μ μ− =m t
dv
dt

u[ (0) ] ,

may be readily integrated to find the velocity and coordinate of the rocket as
functions of time (a useful exercise, highly recommended to the reader).

However, since we are only interested in the relation between the remaining
rocket mass and the achieved velocity, we may directly integrate Eq. (*),

∫ ∫= −dm
m u

dv
1

,

obtaining

= − +m
v
u

ln const.

Now using the initial conditions to find the integration constant, we obtain the
famous formula12

= +v t v u
m
m t

( ) (0) ln
(0)
( )

.

It shows that, a bit counter-intuitively, a rocket may reach velocities much higher
than the relative velocity u of the exhaust gases. However, for this the initial mass of
the fuel, contributing to m(0), has to be much larger than that of the ship itself,
including the useful payload. This result is the basis for all rocket engineering,
notably including multi-stage designs.

Problem 1.12. Prove the following virial theorem13. For a set of N particles
performing a periodic motion,

∑¯ = − ⋅
=

T F r
1
2

,
k

N

1

k k

12 It was derived, in an implicit form, by W Moore in 1813, and then re-discovered (and used to discuss the
rocket motion and space travel) by K Tsiolkovsky in 1903.
13 It was first stated by R Clausius in 1870. The term virial was derived by him from vis, the Latin for ‘force’.
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where the top bar means time averaging, in this case over the motion period. What
does the virial theorem say about:
(i) the 1D motion of a particle in a confining potential U(x) = ax2s, with a > 0 and
s > 0, and
(ii) the orbital motion of a particle moving in a central potential U(r) = −C/r?

Hint: Explore the time derivative of the following scalar function of time:

∑≡ ⋅
=

G t p r( )
k

N

1
k k.

Solution: Differentiating the function G(t) by parts,

∑ ∑̇ ̇≡ ⋅ + ⋅
= =

dG
dt

p r p r ,
k

N

k

N

1 1
k k k k

and using Eqs. (1.3), (1.9), and (1.13) of the lecture notes, we obtain

∑ ∑ ̇ ̇= ⋅ + ⋅
= =

dG
dt

mF r r r .
k

N

k

N

1 1

k k k k k

The term under the last sum is just twice the kinetic energy (1.19) of the kth particle,
so that the sum of these terms is twice the total kinetic energy T of the system, and
hence

∑= ⋅ + *
=

dG
dt

TF r 2 . ( )
k

N

1

k k

If system’s motion is periodic with some time periodT , so is the function G: G(t +T ) =
G(t), and the time average of its derivative over the period equals zero14:

∫ ∫≡ ′
′

′ = ′ = + − =
+

′=

′= +dG
dt

dG t
dt

dt dG t G t G t
1 ( ) 1

( )
1

[ ( ) ( )] 0,
t

t

t t

t t

T T T
T

T T

so that the averaging of Eq. (*) yields

∑= ⋅ + ¯
=

TF r0 2 ,
k

N

1

k k

thus proving the virial theorem.

(i) For the 1D motion of a particle in a time-independent potential U(x), the
radius-vector r, the velocity v, and the force F have single Cartesian components,
with Fx = −dU/dx, so that the virial theorem is reduced to

14Actually, this statement (and hence the virial theorem) is asymptotically (i.e. in the limitT → ∞) valid even
if the system is not periodic, but is stably bound, meaning that the particles stay together in a limited region of
space, and their velocities remain finite.
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¯ = ≡ ≡ ̇T x
dU
dx

T
m

v
m

x
1
2

, with
2 2

.2 2

For the particular case U(x) = ax2s,

= ≡x
dU
dx

sax sU2 2 ,s2

so that the theorem yields
¯ = ¯T sU ,

for any a and s. (Conditions a > 0 and s > 0 are necessary to ensure that the particle’s
motion is periodic.)

Note that for the most important case of the quadratic confining potential (s = 1),
this result is reduced to the equality of the average values of the kinetic and potential
energies—a fact well-known from the analysis of the sinusoidal motion of such a
harmonic oscillator.

(ii) For a particle moving in a central potential U(r) = −C/r, the force is directed
toward the center:

∇= − = −U
C
r

F r r( ) ,
3

so that the (only) term, F·r, on the right-hand side of the virial theorem may be
expressed as

⋅ = − ⋅ = − =C
r

C
r

UF r r r ,
3

and the theorem is reduced to a very simple (and powerful) equality

¯ = − ¯T U
1
2

.

This equality is valid, in particular, for the elliptical orbits of the planetary motion,
which will be discussed in chapter 3.
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