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Preface

Animal biotechnology covers several applications of animal biotechnology, espe-
cially biopharmaceuticals for animal or human use. This is the third volume of
animal biotechnology which includes exhaustive information of animal tissue
culture and biopharmaceuticals. This volume has been written with a view to
providing background knowledge of the state of the art on the subject to date, and a
practical review of the developments to date in animal tissue culture. The book
covers several different facts of evolutional progress and achievements. Attention is
focused on how animal cells respond against in vitro conditions. Emphasis is given
more on cellular processes than molecular. With phenomenal progress in the
application of animal tissue culture, various in vitro methods have been developed
to define the correct requirements of successful culture. Some of the advancements in
animal cell characterization include comparative genomic hybridization, epigenetic
profiling, fluorescence in situ hybridization, karyotyping, single nucleotide poly-
morphism, pluripotency markers (proteins), stem cell arrays, flow cytometry etc.
Other highlights pertaining to biopharmaceuticals are discussed in the final chapter,
which gives an overview of the types, development and delivery of biopharmaceut-
icals, along with roles and responsibilities of pharmacists for biopharmaceuticals. It
is hoped that graduate students, research workers and good commercial laboratories
would find this book a useful adjunct in the understanding of intricacies associated
with the culture.
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Chapter 1

Introduction to animal tissue culture science

1.1 Introduction
Animal tissue culture technology is now becoming a significant model for many
scientists in various fields of biology and medicine. Despite the various develop-
ments in animal cell and tissue culture since the late 1800s, until the early 1950s
progress in animal tissue culture was stalled due to the non-availability of a suitable
cell line. In the early 1950s, for the first time, successful growth of cells derived from
the cervical cancer of Mrs Henrietta Lacks was demonstrated. This breakthrough
using Mrs Henrietta Lacks’s cells in culture successfully transformed medical and
biological research, allowing numerous cellular, molecular and therapeutic discov-
eries, including the breakthrough of the first effective polio vaccine [1, 2]. This
culture is now called HeLa, on which there were more than 60 000 publications by
2017, and which has been involved in numerous Nobel prize-winning innovations
[2–4].

Animal cell culture is a significant tool for biological research. The importance of
cell culture technology in biological science was realized a long time ago. Earlier
dedifferentiation based experiments of cells due to selective overgrowth of fibro-
blasts resulted in the enhancement of culture techniques. Animal cell culture involves
isolation of cells from a tissue before establishing a culture in a suitable artificial
environment. Initial isolation of the cells from the tissues can be achieved by
disaggregation using enzymatic or mechanical methods. The source of the isolated
cells is usually an in vivo environment, but sometimes cells are also derived from an
existing cell line or cell strain. Animal cell culture offers suitable model systems for
investigating the following factors:

• Drug screening and development.
• Mutagenesis and carcinogenesis.
• Normal physiology and biochemistry of cells.
• Potential effects of drugs and toxic compounds on the cells.
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In addition, it also permits reliable and reproducible results, and is thus considered
as a significant model system in cellular and molecular biology. Mammalian cell
culture requires an optimal environment for growth. Environmental conditions are
divided into nutritional requirements and physicochemical requirements. Nutritional
requirements include a substrate or medium that provides support and essential
nutrients such as amino acids, carbohydrates, vitamins, minerals, growth factors,
hormones and gases (O2, CO2). All these factors control physical and chemical factors
such as pH, osmotic pressure and temperature. In animal tissue culture themajority of
cells are anchorage-dependent and therefore require a solid or semi-solid support in
the form of a substrate (adherent or monolayer culture), whereas others can be
cultured in the culture medium, called a suspension culture. Cell culture technologies
have emerged as a tool to assess the efficacy and toxicity of new drugs, vaccines and
biopharmaceuticals, and also play a major role in assisted reproductive technology.
Animal cell culture is one of the more important and diverse techniques in current
research streams. Animal, plant and microbial cells are always cultured in predeter-
mined culture medium under controlled laboratory conditions. Animal cells are more
complex than micro-organisms. Due to their genetic complexity it is difficult to
determine the optimum nutrient requirements of animal cells cultured under in vitro
conditions. Animal cells require additional nutrients compared to micro-organisms,
and they usually grow only when attached to specially coated surfaces. Despite these
challenges, different types of animal cells, including both undifferentiated and differ-
entiated ones, can be cultured successfully.

1.2 Historical background
Tissue culture involves the in vitro maintenance and propagation of cells in optimal
conditions. Culturing animal cells, tissue or organs in a controlled artificial environ-
ment is called animal tissue culture. The importance of animal tissue culture was
initially realized during the development of the polio vaccine using primary monkey
kidney cells (the polio vaccine was the first commercial product generated using
mammalian cell cultures). These primary monkey kidney cells were associated with
many disadvantages [5–8] such as:

• Chances of contamination with adventitious agents (risk of contamination by
various monkey viruses is high).

• Most of the cells are anchorage-dependent and can be cultured efficiently only
when they are attached to a solid or semi-solid substrate (obligatorily
adherent cell growth).

• The cells are not well characterized for virus production.
• A scarcity of donor animals as they are on the verge of extinction.

The foundation of animal tissue culture can be considered to have occurred
in 1880, when Arnold showed that leukocytes can divide outside the body [9]. Then,
in the beginning of the 19th century, Jolly investigated the behavior of animal cells in
serum lymph [9]. The development of animal tissue culture commenced after the
breakthrough frog tissue culture technique, which was discovered by Harrison in
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1907. Due to this effort Harrison is considered as the father of tissue culture. In his
experiment he introduced tissue from frog embryos into frog lymph clots and
showed that not only did the tissue survive, but nerve fibers grew out from the cells.
During the mid-20th century, human diploid fibroblast cells were established by
Hayflick and Moorhead [10]. They named this cell line MRC-5 (a cell line of
fibroblasts derived from lung tissue). Later, Wiktor et al (1964) explored the
utilization of this cell line in the production of rabies virus for vaccine production
[11]. After a couple of years they suggested a large-scale production protocol along
with a method for the assessment of purified rabies vaccine immunogenicity. During
the same time, BHK-21 (C13) cells (baby hamster kidney cells) were established.
These cells are susceptible to human adenovirus D, reovirus 3 and vesicular
stomatitis virus. The commercial production of inactivated foot and mouth disease
(a viral disease that causes sores in the mouth and a rash on the hands and feet of
children) vaccine began using a suspension process [12]. Back in 1914, Losee and
Ebeling [13] cultured the first cancer cells and after a few decades the first continuous
rodent cell line was established by Earle (1943) [14]. In 1951, Gay established that
human tumor cells can give rise to continuous cell lines. The cell line considered as
the first human continuous cell line was derived from a cancer patient, Henrietta
Lacks, as mentioned above, and HeLa cells are still used very widely. Continuous
cell lines derived from human cancers are the most extensively used resource in
the modern laboratory. The HeLa discovery was followed by FDA approval for the
production of interferon from HeLa cell lines [15]. In addition to the progress in the
field of cell culture, different media have been explored, which are typically based on
specific cell nutritional requirements, such as serum-free media, starting with Ham’s
fully defined medium in 1965. In the 1970s, serum-free media were optimized by the
addition of hormones and growth factors. Currently, thousands of cell lines are
available and for the establishment and maintenance of these cell lines many media
are available.

1.3 Types of cell cultures
Broadly, animal tissue culture can be divided into two categories:

• Cultures that allow cell–cell interactions and encourage communication or
signaling between cells.

• Cultures in which cell–cell communication or interactions are lost or the
signaling between them is missing.

The first category includes three different types of culture systems: organ cultures,
histotypic cultures and organotypic cultures. The second category includes cultures
in monolayers or as suspensions. Organ culture is a culture of native tissue that
retains most of the in vivo histological characteristics, whereas culturing cells for
their re-aggregation to yield tissue-like structure is known as histotypic culture. In
histotypic cultures, individual cell lineages are initially derived from an organ and
then cultured separately to high density in a 3D matrix to study interactions and
signaling between homologous cells. In organ cultures, whole embryonic organs or
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small tissue fragments are cultured in vitro in such a manner that they retain their
tissue architecture, i.e. the characteristic distribution of various cell types in the given
organ.

In an organotypic culture, cells from different origins are mixed together in
specific proportions and spatial relationships so as to re-form a component of an
organ, i.e. the recombination of different cell types to yield a more defined tissue or
organ. Some terms frequently used in animal tissue culture are as follows.

Cell culture. Cell culture is the process of removing cells from an animal or plant and
their subsequent growth in an artificially controlled environment.

Primary cell culture. This is the first culture (a freshly isolated cell culture) or a
culture which is directly obtained from animal or human tissue by enzymatic or
mechanical methods. These cells are typically slow growing, heterogeneous and
carry all the features of the tissue of their origin. The primary objective of this
culture is to maintain the growth of cells on an appropriate substrate, available in
the form of glass or plastic containers, under controlled environmental conditions.
Since they are directly obtained from original tissue they have the same karyotype
(number and appearance of chromosomes in the nucleus of a eukaryotic cell) as the
original tissue. Once subcultured, primary cell cultures can gives rise to cell lines,
which may either die after several subcultures (such cell lines are known as finite cell
lines) or may continue to grow indefinitely (these are called continuous cell lines).
Usually, normal tissues give rise to finite cell lines, whereas cancerous cells/tissue
(typically aneuploid) give rise to continuous cell lines. Nevertheless, there are some
exceptional examples of continuous cell lines which are derived from normal tissues
and are themselves non-tumorigenic, e.g. MDCK dog kidney, fibroblast 3T3, etc.
The evolution of continuous cell lines from primary cultures is assumed to involve
mutation, which alters their properties compared to those of finite lines. Serial
subculturing of cell lines over time can increase the chances of genotypic and
phenotypic variation. Bioinformatic studies based on proteomic phenotypes dis-
covered that the Hepa1–6 cell lines lacked mitochondria, reflecting a rearrangement
of metabolic pathways in contrast to primary hepatocytes. With the emergence of
newer technologies such as 3D culture, the use of primary cells is becoming
increasingly prevalent and achieving improved results. Primary cells which are
directly obtained from human or animal tissue using enzymatic or mechanical
procedures can be classified into two types:

• Anchorage-dependent or adherent cells. Adherent cells are those cells which
require attachment for growth and are also called anchorage-dependent cells.
In other words, these cells are capable of attaching on the surface of the
culture vessel. These types of cells are often derived from the tissues of organs,
for example from the kidney, where the cells are immobile and embedded in
connective tissue.

• Anchorage-independent or suspension cells. Suspension cells do not require
attachment or any support for their growth and are also called anchorage-
independent cells. All suspension cells are isolated from the blood system, for
example white blood cell lymphocytes, and are suspended in plasma.
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For several reasons cells obtained from primary cultures have a limited life span,
i.e. the cells cannot be maintained indefinitely. An increase in cell numbers in a
primary culture results in exhaustion of the substrate and nutrients, which can
influence cellular activity and lead to the accumulation of high levels of toxic
metabolites in the culture. This may ultimately result in the inhibition of cell growth.
This stage is called the confluence stage (contact inhibition), when a secondary
culture or a subculture needs to be established to ensure continuous cell growth.

Secondary cell culture. This simply refers to the first passaging of cells, a switch to a
different kind of culture system, or the first culture obtained from a primary culture.
This is usually carried out when cells in adherent cultures occupy all the available
substrate or when cells in suspension cultures surpass the capacity of the medium to
support further growth, and cell proliferation begins to decrease or ceases com-
pletely. So as to maintain optimal cell density for continued growth and to
encourage further proliferation, the primary culture has to be subcultured. This
process is known as secondary cell culture. Major differences between primary and
secondary cell cultures are highlighted in table 1.1.

Table 1.1. Differences between primary and secondary cell cultures.

Primary cell culture Secondary cell culture

Directly obtained from animal or plant tissue. Originates from a primary cell culture.
Closely resembles the parental tissue. Does not closely resemble the parental tissue.
The biological response of the cell may be closer

to that in an in vivo environment.
The biological response of the cell differs from

that an in vivo environment.
The first culture derived from original cells/

tissue (from an in vivo environment).
Derived from an existing culture.

Cannot be transformed. Can be transformed.
Less chance of mutation. Can increase the chance of mutation or

genetic alteration of primary cells.
Acquired through steps of rinsing, dissection,

and mechanical or enzymatic disaggregation.
If the primary culture is an adherent culture,

the first step is to detach cells from the
attachment (the surface of the culture
vessel) by mechanical or enzymatic means.
Then, the cells have to be detached from
each other to form a single-cell suspension.

Finite life span. Prolongs the life span of cells. Periodic
subculturing may produce immortal cells
through transformation or genetic
alteration of primary cells.

The risk of contamination is high. More
difficult to maintain.

The risk of contamination is lower.
Comparatively easy to maintain.
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Cell line. Once a primary culture is subcultured or passaged it represents a cell line.
A cell line that experiences indefinite growth of cells during subsequent subculturing
is called a continuous cell line, whereas finite cell lines experience the death of cells
after several subcultures.

Cell strain. A cell line is a permanently established cell culture which will proliferate
forever if a suitable fresh medium is provided continuously, whereas cell strains have
been adapted to culture but, unlike cell lines, have a finite division potential. A cell
strain is obtained either from a primary culture or a cell line. This is done by
selection or cloning of those particular cells having specific properties or character-
istics (e.g. specific function or karyotype) which must be defined.

In summary, the first culture that is established from the in vivo environment is
called the primary culture. This primary culture can be subcultured many times to
develop cell lines. Cell lines are generally immortalized or transformed cells, i.e. cells
that have lost control over division, because of mutations or genetic alterations, or
because a primary cell was transfected with some genes that immortalized the cells.
Most cell lines are tumorigenic as they originated from tumors. Cells derived from a
primary cell line do not have this concern, however, it is challenging to maintain
these cells. In usual practice, primary cell cultures require a nutrient medium
containing a high amount of different amino acids, micronutrients and, occasion-
ally, some types of hormones or growth factors. Primary cell cultures can be
efficiently utilized up to a few passages, about two to four, afterwards their risk of
contamination is higher than for cell lines. However, primary cell cultures have their
own advantages. The biological response received from a primary culture will be
closer to that in an in vivo environment than the response obtained from cell lines.
From many years, several cell lines have been established and tested under different
environmental conditions. This vast research has resulted in a good amount of data
supporting the use of specific cell lines as models of primary cells. It has been
suggested that cell lines that have been well tested under different conditions should
be used instead of primary cultures, in the case that the latter are expensive.

1.4 Primary cell culture
As discussed above, the primary cell culture is the first culture of cells, tissues or
organs derived directly from an organism; in other words it is the culture before the
first subculture, whereas the cell line is for maintenance or propagation of a culture
after subculture. There are certain techniques available for the development of
primary cell cultures, such as:

• Mechanical disaggregation.
• Enzymatic disaggregation.
• Primary explant techniques.

1.4.1 Mechanical disaggregation

It is necessary to disaggregate soft tissues such as soft tumors. The mechanical
approach involves slicing or harvesting tissue and subsequent harvesting of spill out
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cells. This can be achieved by sieving, syringing and pipetting. This procedure is
inexpensive, rapid and simple, however, all these approaches involve the risk of cell
damage, thus mechanical disaggregation is only used when the viability of the cells
in the final yield is not very important.

1.4.2 Enzymatic disaggregation

This approach involves efficient disaggregation of cells with high yield by using
enzymes such as trypsin, collagenase and others. Enzyme based disaggregation
allows hydrolysis of fibrous connective tissue and the extracellular matrix.
Currently, the enzymatic method is extensively used as it offers high recovery of
cells without affecting the viability of cells.

1.4.2.1 Trypsin based disaggregation or trypsinization
This allows disaggregation of tissue using trypsin, usually crude trypsin because this
trypsin contains other proteases. In addition, cells can tolerate crude trypsin well and
the ultimate effect of crude trypsin can easily be neutralized by serum or trypsin
inhibitor (supplementation of trypsin inhibitor is required in the case of serum-free
media). Pure trypsin can also be utilized for disaggregation of cells, provided that it
is less toxic and very specific in its action. An overview of primary cell culture
development is shown in figure 1.1. Two common approaches, namely warm and
cold trypsinization, are described in the following.

Figure 1.1. Alternative approaches for the preparation of primary cell cultures.
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Warm trypsinization
This approach is extensively utilized for the disaggregation of cells. During the initial
step, sliced tissue is washed with dissection basal salt solution and is subsequently
transferred to a container of warm trypsin (37 °C). At regular intervals of 30 min the
contents are stirred properly. Then, the supernatant having dissociated, the cells are
separated to disperse in a suitable medium. Efficient dispersion of cells can be
achieved by placing the container over ice.

Cold trypsinization
This method is also called trypsinization with cold pre-exposure. In this process the
chance of cellular damage due to constant exposure to trypsin is reduced, which
results in a high yield of viable cells with an improved survival rate for the cells (after
24 h of incubation). Since this method does not involve frequent stirring or
centrifugation, it can be conveniently adopted in the research laboratory. During
this process, after washing and chopping, tissue pieces are kept over ice in a vial and
then subjected to treatment with cold trypsin for 6–24 h. Then, after the cold trypsin
treatment the trypsin is removed and discarded. However, the tissue fragments still
contain residual trypsin. These fragments are incubated at 37 °C (for 20–30min)
followed by repeated pipetting. This will encourage the dispersion of cells. The fully
dispersed cells can be counted using a cell counter and properly diluted, and then
further utilized.

Drawbacks of trypsin disaggregation
Trypsinization of cells can damage some cells, such as epithelial cells, and sometimes
it is not effective for certain tissues, such as fibrous connective tissue, thus other
enzymes are also recommended for dissociation of cells.

1.4.2.2 Collagenase based disaggregation
Collagenase is an enzyme which is responsible for the cleavage of peptide bonds in
collagen. Collagen is a structural protein which is abundantly found in higher
animals, mainly in the extracellular matrix of connective tissue and muscle.
Collagenase, mainly crude collagenase, can be successfully used for the disaggrega-
tion of several tissues that may or may not be sensitive to trypsin. Purified
collagenase has also been experimented with, but has shown poor results in
comparison to crude collagenase. So far collagenase disaggregation has be carried
out on several human tumors, epithelial tissues, the brain, lungs and other
mammalian tissue. The combination of collagenase with hyaluronidase offers better
results in disaggregating rat or rabbit liver, which can be achieved by perfusing the
whole organ in situ. Several researchers have also utilized trypsin and collagenase in
combination to dissociate cells to develop chick serum.

This process involves an initial transfer of the desired tissue into a basal salt
solution which contains antibiotics. This is followed by washing with settling and
then transfer into a medium containing collagenase. The solution is incubated for
1–5 days, followed by repeated pipetting for uniform dispersal of cells. Separation of
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these dispersed cells is encouraged by keeping the solution in a stationary phase to
further encourage the settling of cells, as shown in figure 1.2.

1.4.2.3 Other enzymes
In addition to the above mentioned enzymes, certain other enzymes such as bacterial
proteases (e.g. dispase, pronase) have been tested, but unfortunately have not shown
significant results. However, enzymes such as hyaluronidase and neuraminidase
have received attention due to their significant results, and thus can potentially be
utilized in conjugation with the enzymes discussed above.

1.4.3 Primary explant technique

In 1907 Harrison provided the first demonstration of the primary explant technique,
which subsequently underwent many modifications. A simple protocol for the
primary explant technique is represented in figure 1.1. As in the above procedures,
in this process tissue is initially suspended in basal salt solution and then chopped
properly and washed by settling. Tissue fragments are uniformly distributed over the
growth surface. This is followed by the addition of a suitable medium and then
incubation for 3–5 days. Old medium is replaced by fresh medium unless desired

Figure 1.2. Standard growth curve of cells in a culture.
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growth or considerable outgrowth of the cells is not achieved. Once optimum growth
is achieved the explants are separated and transferred to new culture vessels which
contain fresh medium.

This technique is mainly used for disaggregation of small quantities of tissue.
Mechanical and enzymatic disaggregation are not suitable for small amounts of
tissues, as there is a risk of cell damage which can ultimately affect cell viability. A
major drawback of this technique is the poor adhesiveness of certain tissues on the
growth surface (substrate material), which can create problems in the selection of
cells for desirable outgrowth. However, this technique has been utilized frequently
for culturing embryonic cells, in particular glial cells, fibroblasts, myoblasts and
epithelial cells.

1.5 Segregation of non-viable cells from viable cells
After the development of a primary cell culture, it is essential to remove the non-
viable cells from the disaggregated cells, which can be achieved by repeatedly
changing the medium. Only a few will be left after dilution of the medium, and
finally will gradually disappear when viable cells start proliferating. The alternative
approach of centrifugation, mixing cells with ficoll and sodium metrizoate, can also
be utilized to remove non-viable cells from the primary cell culture. Dead cells form
a pellet at the bottom which can easily be removed from the solution.

1.6 Ethical issues in animal tissue culture
Animal tissue culture techniques involve the frequent utilization of animal or human
tissues, which raises the need for safety and ethics guidelines for using animals in
research, also known as medical ethics. Handling animals raises numerous issues
that are typically not faced when using animal tissue. In addition to the consent of
local ethical committees, the consent of the patient or his/her relatives is required to
initiate research or to study a human sample in the form of fetal materials or biopsy
samples. Samples collected from a human donor should be accompanied by a donor
consent form in a prescribed format. When dealing with human tissue, the following
issues should be considered [16]:

• The patient’s or relatives’ consent for using tissue for research purposes.
• Ownership of specimens, in particular cell lines and their derivatives, i.e. the
recipient will not trade or transfer the cell lines and their derivatives.

• Consent for genetic modification, in particular in the case of cell lines.
• Patent or intellectual rights for the commercial use of cell lines.
• Guidelines should be refined to meet the requirements of the latest ongoing
developments in animal tissue culture science. These guidelines are framed to
offer knowledge to those new to the field and others involved in training and
instruction, with the data required to improve their awareness of issues and to
allow them to deal with them more efficiently. The primary areas of focus in
guidelines are:

i. Acquisition of cell line.
ii. Authentication of cell line.
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iii. Characterization of cell line.
iv. Cryopreservation of cell line.
v. Development of cell line.
vi. Instability of cell line.
vii. Legal and ethical requirements when deriving cell lines from human

and animal tissues.
viii. Microbial contamination of cell line.
ix. Misidentification of cell line.
x. Selection and maintenance of equipment.
xi. Transfer of cell lines between laboratories.

Generally, when dealing with human tissue, the donor/relative is asked to sign a
disclaimer statement in a prescribed format before tissue is collected. Doing this can
reduce the chances of legal problems [16].

1.7 Safety considerations in animal tissue culture
Handling human tissue involves a high risk of exposure to various infections, thus it
is essential to handle human material in a biohazard cabinet. Before their use, tissues
must be screened properly for various infections such as hepatitis, tuberculosis and
HIV. In addition, media, apparatus and glass wares should be properly sterilized
(autoclaved) to considerably reduce the chances of spreading any infections.

1.8 Cell lines (first subculture or passage)
A cell line can be defined as a permanently established cell culture which will
propagate forever, provided the continuous supply of suitable fresh medium and the
availability of space for the cells to propagate. Thus, generally, a cell line can be
defined as the propagation of a culture after the first subculture. In other words,
when primary culture is subcultured it results in the development of a cell line. Cell
lines differ from cell strains in that they become immortalized. A cell line contains
several cell lineages, either similar or different in their phenotypical characteristics,
and such cells can be selected by cloning or cell separation or by any other suitable
procedure. The cell line obtained after selection or cloning is called a cell strain,
which does not have a infinite life, since they die after a number of divisions.

1.8.1 Types of cell lines

As discussed above, cell lines that lose their ability to divide after a limited period of
time are finite cell lines, i.e. these cell lines have a limited life span. Usually, finite
cell lines contain cells which can divide 20–100 times (i.e. population doubling by
20–100 times) before losing their capability to divide. The extent of population
doubling is dependent on several factors, such as cell lineage, cell type, origin,
species, culture environment, etc. It has been noted that population doubling
for human cell lines is between 50–100 times, whereas murine cell lines divide
20–30 times before extinction.
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In an independent culture, continuous subculturing of cells or treatment of cells
with carcinogens (chemicals), oncogenic viruses, etc, results in changes in pheno-
typical characteristics, in particular morphology, which can alter cells and lead to
the development of cells that grow faster than normal cells. Cell lines obtained from
these altered cells have infinite life spans. Such types of cell lines are referred to as
continuous cell lines. These cell lines are immortal, transformed and tumorigenic
(unlike the cell strains from which they were derived). Terms frequently used in
animal tissue culture, in particular in the context of cell lines, are defined below:

• Adherent cells. Cells with the potential to adhere to the surface of the culture
vessel using the extracellular matrix.

• Immortalization. Achieving a state of cell culture when cells proliferate
continuously.

• Attachment efficiency. The proportion of cells that actually adhere to the
surface of the culture vessel within a given time after inoculation.

• Passaging. The transfer of cells from one culture vessel to another. A more
specific term is subculturing where the cells are first subdivided before being
transferred into multiple cell culture vessels. A passage number will refer
specifically to how many times a cell line has been subcultured. A number of
adherent cell cultures will stop dividing when they become confluent (i.e. the
stage when they entirely cover the surface of the cell culture vessel), and a
number will die if they are retained in a confluent state for longer periods.
Thus adherent cell cultures require repeated passaging, which means that
when the cells are at the confluent stage, subculturing is required. Regular
passaging is required in the case of suspension cultures, where suspended cells
use their culture medium rapidly, particularly when the cell density becomes
very high. While repeated passaging is essential to maintain cultures, the
process is comparatively traumatic for adherent cells since they need to be
trypsinized. Thus passaging of adherent cell cultures more than once every
48 h is not recommended.

• Split ratio. Divisor of the dilution ratio of a cell culture.
• Generation number. The number of doublings that a cell population has
undergone. It should be observed that passage and generation number are not
the same.

• Population doubling time. The population doubling (PD or pd) number is the
estimated number of doublings that the cell population has undergone since
isolation.

• Passage number. The number of times the culture has been subcultured.

1.8.2 Standard nomenclature of cell lines

The source and clone number (which represents the number of cell lines derived from
the same donor) help in understanding the nomenclature more easily. The basic
nomenclature is usually followed by assigning codes or designations to cell lines for
their further identification, e.g. HeLa-S3 represents a human cervical tumor cell line,
and similarly NHB 2-1 is a cell line derived from normal human brain (NB),
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followed by cell strain 2 and clone number 1. Another example is the MG-63 cell
line. It is the 63rd sample of a tumor that produces a high amount of interferon beta.
Therefore, its nomenclature is ‘human tumor-63’, or in Dutch, ‘menselijk gezwell-63’
or MG-63. Recently cell lines have transformed scientific study and are used for
several purposes, such as:

• Vaccine production.
• Examining drug metabolism.
• Cytotoxicity.
• Antibody production.
• Investigating gene function.
• Development of artificial tissues (e.g. artificial skin).
• Production of biological compounds (e.g. therapeutic proteins).

Cell line requirements can be assessed through recent publications using specific
cell lines. The American Type Culture Collection (ATCC) cell biology collection
contains information on almost 3600 cell lines derived from 150 species. Although
they are a useful tool, researchers must be careful when using cell lines instead of
primary cells. The simultaneous use of cell lines and primary cells has been
supported recently.

Cell lines should display and maintain functional features as close to the primary
cells as possible. This may be particularly difficult to determine, as often the
functions of the primary cells are not entirely understood. Since cell lines are
genetically manipulated, this may alter their phenotype, native functions and
responsiveness to stimuli. Serial passage of cell lines can further cause genotypic
and phenotypic variation over an extended period of time, and genetic drift can also
cause heterogeneity in cultures. Therefore, cell lines may not adequately represent
primary cells and may provide different results. Additional problems include the
chance of contamination with other cell lines and mycoplasma. In the early 1970s,
cell line (inter- or intraspecies) mediated cross-contamination was explored by
Nelson-Rees. Contamination of one cell line with a new one results in mixed
cultures or occasionally complete overgrowth of the original cells by the contam-
inating line, and is an old problem. Nelson-Rees used chromosome banding (a
procedure in which condensed chromosomes are stained to produce a visible
karyotype) to prove that numerous immortal cell lines, earlier supposed to be
unique, were in fact HeLa cell lines. He also demonstrated the fact that contam-
ination with HeLa cells is responsible for the outgrowth of other cell lines [17–19].
Nelson-Rees demonstrated clearly that most of the of cell lines being investigated
globally and distributed by cell banks [20] were contaminated with HeLa cells. This
is the most considerable challenge for the animal tissue culture industry. During cell
line contamination, contaminants, in particular rapidly proliferating cells, take over
a whole cell line before its own growth takes place [21, 22]. HeLa cells are a frequent
contaminant and, moreover, other contaminants such as mycoplasma can continue
undetected in cell cultures for a long period of time. This prolonged exposure to
contaminants can cause widespread changes in gene expression and cell behavior.
According to certain reports, 15%–35% of cell lines submitted to cell banks were
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likely to be contaminated with mycoplasma [23, 24]. Thus appropriate precautions
must be taken whenever cell lines are investigated.

1.8.3 Cell line selection

Usually the selection of high-producing cell lines is tedious and labor-intensive. High-
producing cells are usually selected after transfection by using limiting dilution cloning
to avoid non- and low-producing cells from outgrowing high-producing cells. This
process usually takes more than three months. During this time, the cells have to be
screened occasionally to ensure stability of the selected clone. High-producing
mammalian cell line selection is one of the considerable challenges in the production
of biopharmaceuticals. Increasing demand for therapeutic proteins requires the urgent
development of methods for the selection of mammalian cell lines stably expressing
recombinant products at high levels in an efficient, cost-effective and high-throughput
manner [25–27]. Numerous approaches for selecting and screening cells have been
explored, including flow cytometry, gel microdrop methods (encapsulating the cells in
gelatin beads) and matrix based secretion assays. Recently, fluorescence-activated
cell sorting has been utilized to estimate the cell-specific productivity (Qp), or the
quantity of product produced per cell per day [25–27]. This parameter is utilized in
biopharmaceutical cell selection in a cell-specific manner, which allows multi-
purpose characterization and isolation of individual cell clones from heteroge-
neous populations. Several factors are considered during the selection of cell lines,
such as [25–27]:

• Origin of the cell line (human or non-human cell line; human cell lines are
more vulnerable to different types of contamination).

• Type of cell line (finite or continuous).
• Types of cells (normal or transformed).
• Growth patterns.
• Cloning efficiency.
• Cell number under specified culture conditions (saturation density).
• Population doubling time.
• Availability of cell line.
• Availability of growth factors or media for its maintenance.
• Physical expression of traits, or characteristics.

1.8.3.1 Quarantine
To avoid microbial contamination, new cell lines should be quarantined (kept
entirely separate from existing cell line stocks). Usually, an independent quarantine
laboratory should established for this purpose. A class-II microbiological safety
cabinet (MSC) and an incubator dedicated to quarantine can be considered as an
alternative approach.

1.8.4 Verification of a cell line

To confirm the origin of a cell line and to avoid misidentification, cell line
authentication is carried out using an established DNA based method. With the
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advancements in tissue culture science, it is now possible to equate the cell line DNA
with that of the tissue of origin, however, this is only possible for a few cell lines that
are already available. Short tandem repeat analysis can be used to confirm the origin
of a cell line. A short tandem repeat pattern is derived and compared for the cell line
and the primary culture. The primary culture should be frozen or processed so that it
can clearly be determined that the cell line is obtained from a recognized donor. This
method is recommended for purposes of authentication, so that the unique identity
of the primary culture is available for the international database (NCBI 2013) [28].
Some other methods, such as genotypic methods (karyotype, copy number variation
mapping or even whole-genome sequencing) can also be used to authenticate cell
lines.

1.8.5 Characterization of cell lines

Before characterization, the handler first ensures that the cell line obtained is
appropriate or acceptable for their designed experiment or purpose. Even after
confirmation of the cell line, it is essential to check whether the cell line is still
carrying key characteristics after persistent passaging. To reveal changes in a cell
line, karyotyping is the most recommended approach. It can demonstrate that a cell
line has a normal karyotype, and the cell line can then be used for various research
purposes.

Karyotyping is thus a simple test that can reveal changes in a cell line. Indeed, it is
routine to demonstrate that a line of embryonic stem cells or induced pluripotent
stem cells has a normal karyotype if they are to be used for experiments involving
the production of chimeras and germ line transmission. Molecular assays for copy
number variation or RNA profiling will also be indicative of changes, but are more
costly. Nevertheless, a great deal of time and effort can be saved by confirming the
presence of appropriate characteristics before commencing work. It is also advisable
to capture an image of the cell line in culture at different cell population densities
and perform basic characterization (e.g. calculating the population doubling time
for that cell line) soon after arrival. For a newly developed cell line it is imperative to
authenticate the origin of the cell line and the extent of variation between cells
present in the primary tissue culture.

1.8.6 Misidentification of cell lines

Cross-contamination is considered as the primary cause of misidentification. A high
risk of cross-contamination is usually associated with continuous cell lines as they
may replace other, slow growing cell lines. The following lists a number of factors
that are responsible for misidentification:

• Alterations in cellular behavior or morphological variations.
• Developing two cell lines in an Mesenchymal stem cells simultaneously.
• Failure in maintaining good cell culture practice.
• Liquefying the wrong ampoule.
• Mislabeling a flask or ampoule.
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• Persistence of the mitotic activity of feeder cells such as embryonic stem cells
because of insufficient irradiation or treatment with mitomycin C.

• Poorly controlled manipulation.
• Unintended transfer of cells to a stock bottle of medium.
• Using unsterilized media (used without suitable filtration to remove cells).

1.8.7 Maintenance of a cell line

Current research practice demands the development of good models, as good science
cannot be achieved with bad models. Several cell culture procedures have been
developed in the current century which overcome the drawbacks of traditional culture
procedures and are more scientifically rigorous, such as stem cell derived human cells,
co-cultures of different cell types, scaffolds and extracellular matrices, tissue archi-
tecture, perfusion platforms, organ-on-chip technologies, 3D culture and organ
functionality. The biological relationships between such models can be further
improved by organ-specific approaches, more widespread assessment of cell responses
using high-content methods and by using biomarker compounds. These strategies can
be utilized to make a microphysiological model system. One of the most significant
advantages of this type of model system is that it generates results closer to the in vivo
situation, however, controlling multiple parameters is considered a significant chal-
lenge for animal tissue culture industries. Cell line maintenance has become a very
valuable undertaking, both in academic research and in industrial biotechnology. The
following factors should be considered during maintenance of a cell line in culture.

1.8.7.1 Cellular morphological examination
Cells should be examined routinely to check for the presence of any other
contaminant. Morphological examination is essential to investigate and differentiate
the natural cellular organization and the physiological state of the cells from the
contaminated. Therefore, morphological examination is usually used as a qualitative
and quantitative measure of various biological assays.

1.8.7.2 Media replacement
Regular changing of the medium is required to maintain cell lines in culture;
however, the frequency of changing the medium always varies. For example,
proliferating cells require more nutrients in comparison to non-proliferating cells.
The rate of cellular growth and metabolism decides the interval between the
changing, or addition of fresh, medium. To understand this better, we can consider
HeLa, rapidly growing transformed cells. In order to avoid contamination and to
meet cell nutrient requirements, HeLa cell medium should be replaced twice in a
week, whereas for slow growing cells (non-transformed cells), e.g. IMR-90, the
medium can be replaced once a week. Thus, rapidly growing or proliferating cells
require more frequent changes of medium than slow growing or non-proliferating
cells. Several factors should be considered when changing the medium:
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• Cell density. Cultures with a high density of cells use medium faster than
those with low density, thus medium need to be changed more frequently for
high densites of cells.

• Fluctuations in pH. Changes in pH should be monitored carefully, since a
decrease in pH may be associated with a decline in the growth rate of the
cells. The optimal pH for the growth the cells is 7, and a decline in pH (6.5)
can retard the growth of cells. Further decline in pH (usually to between 6.0–
6.5), may stop the growth of the cells, and if the low pH persists cells will start
losing their viability. Thus the pH should be carefully monitored for each cell
line and controlled with a suitable medium. Medium changing is not required
when the pH declines by 0.1 units/day, as such a decline may not harm cells,
however, declines of 0.4 pH units/day may affect growth, and eventually the
viability of cells, so in this case an immediate medium change is required.

• Type of cell. Feeder cells such as embryonic stem cells and tumorigenic cells
such as transformed cell lines (continuous cell lines) grow fast and thus
require a greater supply of nutrients. Thus rapidly growing cells require more
frequent medium changes than normal cells.

• Phenotypical variations. It is important to examine cell morphology carefully
using specific techniques, as any change in morphology could be a sign of
contamination or deterioration which can ultimately affect the growth of the
cells.

1.9 Subculture
Subculture is defined as the transfer of cells from one culture to start another culture.
During this process proliferating cells are subdivided, which allows the development
of new cell lines. This step is referred to as a passage, and a passage number is the
recorded number of times a cell culture has been subcultured. Numerous adherent
cell cultures will stop proliferating when they reach the confluent stage (i.e. when
they completely cover the surface of the cell culture vessel), and certainly will die if
they are left in the confluent stage for a prolonged period. Thus adherent cell cultures
should be regularly passaged, that is, when cells reach the confluent stage a portion
of the cells need to be passaged or subcultured to a new cell culture vessel. However,
it is not recommended to regularly subculture adherent cells (no more than once
every 48 h) as they must be trypsinized. In contrast, suspension cultures with high
cell density require routine passaging as they use medium rapidly.

The standard growth curve of cells in a culture is shown in figure 1.2.
During the initial lag phase there is less growth as the cells are not adapted to the

environment. Once they start adapting to the environment they proliferate expo-
nentially, which is why this is called the exponential or log phase. This is the time
when all cells actively grow and consume medium. During this time the medium
should be changed, otherwise growth will stop. As discussed above, the confluent
phase is reached when the culture exceeds the capacity of the medium. At this stage
the culture has to be divided into subcultures. There are two types of subcultures:
monolayer and suspension subcultures.
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1.9.1 Monolayer cultures

Monolayer cultures involve anchorage-dependent cells which can be established
from human tissue after enzymatic treatment to disperse them into single cells in
order to form a monolayer or single-cell continuous layer over the bottom of the
vessel. Cellular attachment between cells and with the interface is facilitated by
surface glycoproteins and calcium ions. Several quantitative approaches have been
explored for examining viable cells in monolayer cultures, such as:

• Microscopic screening to examine morphological changes.
• Cytotoxicity studies.
• Incubation with dye followed by colorimetric analysis.

The initial step in subculturing of monolayers is to remove cells from the interface
of the vessel by trypsinization or mechanical means [30]. The final dispersion is then
subdivided and transferred to fresh cultures. The growth of the secondary cultures is
periodically monitored and further subcultured to produce tertiary cultures, etc. As
discussed above, the time interval between subculturings is entirely dependent on the
growth rate and varies with the cell line.

1.9.2 Procedures for cell detachment

There are various means of cellular detachment from the culture vessel interface,
such as physical and chemical methods (figure 1.3).

The utilization of proteases is not recommended when cultures are loosely
adhered, thus mechanical shaking and scraping are more appropriate in such cases.
Due to its advantages, trypsin is often used for cell dissociation, however, other
enzymes such as pronase, dispase and collagenase are used when monolayers cannot
be disaggregated with trypsin. Prior treatment with EDTA is required to remove
Ca+2 so that it will not interfere with the action of enzymatic dissociation, and
eventually uniform dispersion can be achieved [30]. As one-cell-thick monolayers are
the simplest tissues in multicellular organisms, they act as a suitable model for

Figure 1.3. Methods for dissociation of cells.
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development and normal physiology. It has been determined that the extracellular
material (ECM) should be carefully considered when selecting the dissociation
approach, as this helps in determining the effects of the dissociating agent on the
cytoskeleton, adherent junctions and desmosomes. Usually monolayers can with-
stand the different mechanical stresses exerted by the interface itself under in vitro
conditions, and can shield the internal environment from harmful external elements.
Since dissociating elements or external environmental factors can affect ECM
synthesis, optimization of the dissociating element is required before treatment in
order to estimate a suitable dose for dissociation [30].

As mentioned in figure 1.4, subculturing is usually carried out between the middle
log and plateau phases; it is not recommended to start subculturing during the lag
phase.

Understanding of growth patterns is necessary for:
• Designing culture experiments.
• Regular maintenance of a culture.
• Monitoring cell proliferation.
• Evaluating a culture’s response to external factors.

There are certain considerations in subculturing monolayers, as follows.

Figure 1.4. Subculturing.
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Cellular density
Subculturing time is dependent on the cellular density. Cellular density is usually
found to be high at the confluence stage. So, whenever normal or transformed cells
reach the confluence stage it is advisable to perform subculturing as this can
maintain the balance between nutrient supplementation and consumption by the
cells/micro-organisms. In the confluence stage, when all the growth area is utilized
and cells start coming closer to each other, growth may be hampered due to the
negative force (contact inhibition) developed between the cells striving for nutrients
to further meet their energy demands.

Exhaustion of nutrients
Usually, in microbiology a sudden drop in pH represents an increase in cellular
density which again signifies the confluence stage, thus a drop in pH often
necessitates subculturing.

Reason for subculture
Subculturing is also done in those cases when cells are to be used for any specific
purpose other than routine propagation, in order to obtain high yield or stock, or to
change the type of medium. In such cases the cell has to be subcultured frequently.

Scheduled timings for subculture
As we know, regular subculturing is generally performed as per a strict schedule to
obtain significant results. Seeding density should be increased in the case that the cell
will not reach the confluence stage at a suitable time, and seeding density should be
reduced when the cells will reach the confluence stage a little too early. It is now
possible to determine the correct seeding density and subculture interval by studying
standard growth curves. In most cases medium change is performed after 3–4 days
and subculturing after 7 days.

The steps involved in monolayer subculture are shown in figure 1.5. Monolayer
subculturing involves multiple steps:

• Medium removed and monolayer washed.
• Treatment of cell with trypsin.
• Trypsin removed leaving a residual film.
• Incubation (37 °C for 30min).
• Cell rounding up after incubation.
• Resuspension of the cells in the medium.
• Reseeding of cells.
• Confluent stage of monolayer.

For the majority of continuous cell lines, the seeding concentration for subcultur-
ing lies between 1 × 104 to 5 × 104 ml. However, for developing a new culture, the
initial concentration should be high and should then be reduced to meet the culture’s
requirements.
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1.10 Suspension cultures
Most cell lines are grown as monolayer adherent cells, which grow only on the
surfaces of culture vessels, however, certain cells are not adhesive, such as cells
derived from leukemic tissue. Moreover, certain cells do not require support for their
growth. These cells can be mechanically kept in suspension, and such cultures are
referred to as suspension cultures. Transformed cells are usually subcultured using
this method. Suspension culture of animal tissues is similar to the method used to
subculture bacteria or yeast. There are a number of advantages to suspension
cultures over monolayer cultures:

• Bulk production or production in mass can be achieved.
• The cultured cell has access to nutrition from all directions.
• Easy to maintain.
• Frequent replacement of medium is not required.
• The lag period is short.
• The process of propagation is fast.
• Scale-up is convenient.
• Trypsin treatment, or any other enzyme treatment, is not required.

Figure 1.5. Process of monolayer subculture.
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Similar parameters have been reported for suspension cultures as for mono-
culture, i.e. culture density, fluctuations in pH, schedule timings, the purpose of the
subculture, etc. During this process cells are suspended in a culture flask (figure 1.6)
which contains culture medium. In the stirred flask technique, the medium is
continuously stirred with the help of a magnetic pendulum, in order to offer
homogeneous stirring and to avoid aggregation. This magnetic pendulum is allowed
to rotate at the base of the flask and the suspension of cells should be regularly
monitored for contamination, aggregate formation or any signs of deterioration.

1.10.1 Cell synchronization

Synchronized cells have the same growth rate in all generations, whereas
unsynchronized growth means different growth rates of cells, as shown in figure
1.7. The cell culture has to be synchronized so that the cells will be at the same phase
at the same time, which makes it easier to determine the growth rate. Cell synchrony
is essential to study the development of cells through the cell cycle, which needs to be
monitored at periodic intervals. Several methods have been introduced to achieve
cell synchronization. These approaches are broadly divided into two categories:

Figure 1.6. Stirred flask technique for suspension cultures at a large scale.
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• Cell synchronization by physical means.
• Cell synchronization by chemical means.

Cell synchronization using physical methods is more effective than using chemical
methods, as the latter can cause toxicity to the cells. Deprivation of nutritional
resources (part of the chemical approach) cannot be utilized to synchronize trans-
formed cells. As the cell cycle is composed of different development or growth
phases, these determine the synchrony of the cells, and more synchrony can be
obtained at the first cycle than at the second or third cycles.

1.10.2 Cell synchronization by chemical means

In this approach cells are synchronized by blocking metabolic reactions, which can
be achieved by either adding inhibitor substances to the culture medium or by
depriving the micro-organisms or cells of nutritional sources.

Inhibitors such as thymidine, aminopterine, hydroxyurea, cytosine and arabino-
side, which have variable effects, are utilized to block DNA synthesis during the S
phase of the cell cycle, bringing the cells to the same phase.

Removing essential growth substances, such as serum or isoleucine, from the
culture medium for almost 24 h leads to the accumulation of cells at the G1 phase.
This approach of depriving cells of certain nutritional components exposes the cells
to similar types of stress in response to which the cells will present similar
adaptations, and thus synchrony can be achieved.

1.10.3 Cell synchronization by physical means

Separation of cells by physical means to achieve synchrony can be done using
characteristics such as cell density, affinity against antibodies, light scattering or

Figure 1.7. Simple illustration of synchronized (cells are dividing at the same time) and unsynchronized growth
(cells are not dividing at the same time).
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fluorescent emission by labeled cells. Techniques which can be commonly utilized to
separate cells based on their adaptations and phenotypical variations are centrifugal
elutriation and fluorescence-activated cell separation.

Centrifugal elutriation is a process to enhance the sedimentation rate to improve
the yield of cells. The process is based on cell size and sedimentation velocity. During
this process cells in the medium are ejected into the separating chamber such that
they will be forced to the edges. This occurs in such a way that the centripetal force
will be equivalent to the sedimentation rate of the cells. As the cell present in the
culture must have phenotypical variations, such as size, shape, density, cell surface,
etc, thus cells at different phases of the cell cycle have a tendency to sediment at
different rates and different positions in the chamber. The whole process can be
monitored via a porthole, as the chamber is illuminated by stroboscopic light.

1.11 Algal extracts in animal tissue culture
Algal extracts contain high amounts of potential secondary metabolites which can
be utilized to either elicit or promote growth of cells under in vitro conditions. These
metabolites can be utilized in media to further increase the growth of the cells. Our
recent research on the red algae, Porphyra vietnamensis, found among its diverse
chemical compounds some with significant pharmacological properties [31–50].
Such types of algae can be utilized to elicit the growth of animal cells. Shinohara
et al observed that algal phycocyanins are responsible for the growth of human cells
in culture [50]. In their study, growth-promoting substances derived from blue-green
algae, Synechococcus elongatus var., were separated to produce a biliprotein fraction
that promoted the growth of RPMI 8226 cells; allophycocyanin was found to be
more active than phycocyanin.

1.12 Animal and plant tissue culture
Tissue culture is the art of growing cells outside a living body. As we have already
discussed the historical background and current innovations of the field of
biotechnology in the first two volumes, it is well understood that there are direct
and indirect relationships between the developmental biology of plant and animal
cells [47]. There are certain challenges involved in culturing both plant and animal
cells, such as exhaustion of nutrients in the growth medium, apoptotic/necrotic cell
accumulation, cell cycle arrest (or senescence) due to intercellular communication or
contact inhibition, etc, which should be investigated further [47]. Various
approaches can be utilized to manipulate cell cultures of both plant and animal
cells. Subculturing is a common practice which is adopted to replace old medium
with new, nutrient enriched, medium. Subculture can also be used to prevent the
major problem of senescence. This involves transferring a small number of cells into
a new culture dish. The animal–plant co-culture system has not been explored due to
its greater vulnerability to contamination of the culture. There is, however, scope to
maintain suitable aseptic conditions and encourage a co-culture system to further
study the impacts of their growth on each other [47].
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The success of animal tissue culture products depends on their efficacy, cost
effectiveness and the potential for scale-up. Recent and current advances in tissue
culture science have enhanced the complexity in the design of biomaterials which
have either been proposed or utilized to grow animal cells [51]. This complexity
generally increases the difficulty for manufacturing industries in designing suitable
fabrication techniques. It is worth noting that most of the features that are suitable
for designing biomaterials originate in the structure and function of plants [51].
Several investigations have shown that decellularized plant tissues can be utilized as
a suitable scaffold for the culture of human cells. It has been observed that through
an approach of simple biofunctionalization it is possible to achieve the adhesion of
human cells on various sets of plant tissues. The increased water transport efficiency
and hydrophilicity of plant tissues facilitate increases in cell number over prolonged
periods of culture [51]. In addition, animal cells are able to adapt well to the
microstructure of plant frameworks without breaking any physiological conditions.
This results in perfect cell positioning and formation of a perfect pattern over the
feeding layer of plant cells. This supportive plant tissue based micro-framework can
be utilized as an alternative potential scaffold for mammalian cells [51].

1.13 Biomaterials and animal tissue culture
Recently, there has been a boom in biopolymers of natural and synthetic origin
[51–53]. It is essential to understand the possible interactions between cells and these
materials in order to develop new materials [48, 54]. When isolated cells from
suitable tissues are cultured on a plastic culture dish, this transition of cells from an
in vivo to in vitro environment results in the loss of several functions and cells usually
begin dedifferentiation, for unknown reasons. Identification of the microenviron-
mental signals that are responsible for changes in cellular phenotype and function
will help in understanding cell behavior under in vitro conditions. Most of the
current research that deals with tissue-engineered constructs involves suitable
scaffolds that not only act as anchorage cells, but that also help in studying cell
behavior and developmental stages in more detail [48, 54]. Several scaffolds have
been developed that offer suitable architecture, in particular initial structural
integrity and support or a backbone in the form of a matrix in which the cells
arrange themselves and form a mass of functioning tissue [51–53]. Several techniques
have also been developed, such as three-dimensional matrices for culturing animal
cells, to help in understanding how cells probe their surroundings [51–53]. The
biomaterial matrix is designed in such a way that it will be able to control the cell
position and function inside artificial environments [48, 54]. For most of
the materials developed so far, we lack understanding of the effects of the
biomaterial or surrounding microenvironment on cell development, behavior and
functions.

Physiologically, cells are always surrounded by a sophisticated and dynamic
microenvironment which includes the extracellular matrix, growth factors and
cytokines, as well as neighboring cells. The extracellular matrix helps in connecting
the cells’ extracellular matrix proteins through specific cell surface receptors such as
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integrins [55–57]. Such receptors are responsible for connecting the intracellular
cytoskeleton to the extracellular matrix [48, 54]. It is important to understand the
interaction between the ligands present in the extracellular matrix and the receptors
of the cell. Such an interaction allows multiple intracellular signaling processes that
can result in the alteration of cellular behaviors, such as growth, migration and
differentiation. Natural extracellular matrices such as collagen offer natural adhe-
sive ligands that encourage cellular connection with integrins. Such biomaterials can
be considered as potential resources for engineering new biomaterials [55–57]. One
of the major shortcomings of such natural extracellular matrices is our failure to
control their physicochemical properties. Several natural biomaterials have been
explored recently. In one of the recent innovations in ligand chemistry, a short
peptide sequence (arginine–glycine–aspartic acid) which is responsible for cellular
adhesion was discovered [55–57]. This peptide can be conjugated with other
biologically inert polymers to study their effect on cultured animal cells [55–57].
These peptides, once conjugated over the matrix of inert biomaterial, can initiate
cellular adhesion which can further allow researchers to develop suitable matrices on
the surface of which these peptides can be conjugated. This approach allows the
development of suitable matrices the adhesion potential and chemistry of which can
be controlled. Additionally, the incorporation of growth factors in the matrix
facilitates their distribution to cells in a controlled fashion. Therefore, cellular
adhesion and growth of the cell can be controlled by changing the chemical nature of
the polymeric network. One of the most common approaches is functionalization.
Growth factors can also be immoblized over polymeric networks to study and
manipulate cells. One of the common examples of such immobilization is used in the
study of insulin and epidermal growth factor [55–57].

Pattern-immobilization is a more reliable approach as in this process cells are
allowed to culture in a matrix with an architecture that produces a three-dimensional
structure mimicking the in vivo environment [55–57]. In such a systematic spatial
arrangement, growth factor proteins or other proteins, such as those carrying the
ligands, are embedded to encourage interaction between cell receptors and ligands.
Such artificial frameworks help in the development of tissue through non-diffusion
mechanisms, in which the movement of proteins is not dependent on the concen-
tration gradient. This type of stimulation by immobilized growth factors mimics the
in vivo environment of membrane-anchored growth factors such as heparin-binding
epidermal growth factor, transforming growth factor and tumor necrosis factor.
Furthermore, cellular growth can also be enhanced by co-immobilization with
adhesion factors and by means of thermosensitive polymers, which allows the
development of cells and, most importantly, allows the recovery of the cell through
reducing the temperature [55–57].

1.14 Nanotechnology and biotechnology
Three dimensional biomaterials with large pore size (greater than 100 μm) carry a
high number of functional units essential for the regeneration of various tissues. Pore
size greater than 100 μm is essential for the cell adhesion and proliferation, whereas
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biomaterials with 325 μm pore size encourage migration of cells through the
scaffolds. Scaffolds with pore size less 85 μm showed lowest intensity of cell
adhesion and migration. So far, most tissue engineering studies have focused on
macro-sized frameworks for cells greater in size than 100 μm (subcellular size) or
cellular arrangements larger than 10 μm (cellular size). Such massive structures are
required to produce real-sized organ systems [49]. However, to design functional
units of tissue, not only are the subcellular and cellular scales required, but also
nanostructures, 1–100 nm in size. This type of structural arrangement is essential to
control cell behavior, in particular cell–cell interactions, cell–molecular interactions
and the cellular environment [49]. The recovery of cell characteristics, in particular
structure and function, can only be achieved by reconstruction of the nanostructures
of the tissue itself. The current prospects of tissue engineering are very dependent on
understanding the interaction of cells with these nanostructures. These tiny
structures with three-dimensional arrangements can directly or indirectly affect
the cell functions [49]. The trend to fabricate ever smaller structures (called
miniaturization), mainly to regenerate the components inside the targeted tissue,
has proven a reliable approach for researchers. Thus far, several nano-materials
have been developed to mimic native tissues. These nanostructures are tissue-
engineered grafts, biomaterial scaffolds that are engineered and then manufactured
at the molecular level [49]. Several techniques are available to optimize materials,
even at the level of atoms, molecules and supermolecules, 1–100 nm in scale. By
means of nanotechnology, various materials or devices can be fabricated or designed
to offer a product with high biocompatibility, and most importantly highly
predictable biological and physical properties [49]. Animal biotechnology is a broad
discipline that includes DNA science, genetic engineering, transgenic science and
stem cell research. DNA research involves DNA isolation and screening methods,
whereas genetic engineering involves the manipulation of the genetic makeup of an
organism to either synthesize a product or alter the character of the organism [58,
59]. Currently, all these fields are being utilized to derive biopharmaceuticals.
Moreover, enzyme research, mainly protein engineering, immobilization and bio-
transformation, has several applications in animal tissue culture science [58, 59].
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