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Symmetry and Collective Fluctuations in Evolutionary Games

Eric Smith and Supriya Krishnamurthy

Chapter 6

Limit cycles and noisy clocks

Evolutionary dynamics can exhibit a new form of classical symmetry breaking
possible in non-equilibrium stochastic processes but outside the scope of equili-
brium systems. This is the breaking of unique rest points into limit cycles with a
continuous phase symmetry, in systems that have only discrete symmetries among
the agent types. The classic rock–paper–scissors (RPS) game exhibits this
form of symmetry breaking. Such symmetry breaking is possible because in
non-equilibrium systems, ordered phases are extended-time trajectories and time
translation is a symmetry in addition to the discrete symmetries among agent
types. Like symmetries among agent types, time-translation invariance can be
hidden in ordered background states that result from dynamics, introducing
phenomena associated with continuous symmetry in systems where the type spaces
themselves have no such symmetries. Broken time-translation symmetry results in
residual population dynamics which is a continuously occurring random walk
relative to the uniform phase advance along the limit cycle. This form of group-
level motion contrasts with the rare escape events by populations that break dis-
crete symmetries. This model illustrates the calculation of the fluctuation spectrum
from chapter 4 in cases when it contains a zero eigenvalue reflecting the presence of
the hidden symmetry. The proof that a random walk exists, which is not subject to
mean regression, even if all orders of fluctuation corrections are taken into
account, is the stochastic version of Goldstone’s theorem.

6.1 Simple continuous symmetry breaking and a new role
for time in non-equilibrium processes

The sets of ordered population states formed by classical symmetry breaking may be
either discrete or continuous and distinct population-level dynamics arises in the two
cases. In equilibrium phase transitions, in order for a continuous set of ordered
population states to exist, the set of transformations that take one state into another
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must first have existed as symmetries of the underlying configuration space. In non-
equilibrium systems, however, a new form of continuous symmetry breaking
becomes not only possible but common. A population process having a finite set of
agent types, and only discrete exchange symmetries among them, may still form
limit cycles (or even more complex attractors). Along these the population states
transform under a continuous symmetry even though no such symmetry is a feature
of the agent type space. The source of a continuous symmetry group for population
states is the symmetry of time translation in the underlying dynamics.

To understand how time translation generates transformations among ordered
phases, we must first recognize that in non-equilibrium Markov processes, an
ordered phase corresponds to an entire history rather than to an instantaneous state.
Non-equilibrium systems in which discrete symmetry breaking to rest points
resembles equilibrium symmetry breaking make it easy to miss this change of
concept, since their ordered histories are just extended-time trajectories at fixed
points in type-space. (However, the extended-time character of the history re-asserts
itself if we compute probabilities of fluctuations [1–3].) For limit cycles or other
dynamically non-trivial backgrounds, recognizing the entire history as the ordered state
becomes essential even at the classical level, in order to identify the symmetries relevant
to the phase transition. Under shifts of time, limit cycles are extended-time trajectories
that are transformed as wholes, as the phase along the cycle is advanced or retarded.

We illustrate the way that time-translation symmetry can be spontaneously broken
by dynamics the same as any other symmetry and the distinctive consequences that
result from this kind of symmetry breaking, in the example of the classic game of RPS
played by three agent types1. In the classical replicator equation, the breaking of a
single stable population state to a limit cycle takes the form of a supercritical Hopf
bifurcation. The part of the large-deviations expression that controls this new kind of
symmetry breaking is the second-order fluctuation kernel S (2) in (4.86). The Green’s
function for diffusive relaxation takes on a zero eigenvalue, whose eigenvector is
locally tangent to the limit cycle, reflecting the equivalence of all phases for the cycle
as a consequence of the hidden symmetry.

In the classical replicator analysis, the existence of a limit cycle seems unproble-
matic. In the stochastic analysis, however, where fluctuation effects can feed back to
change average dynamics, we are forced to askwhether these correctionsmight destroy
the equivalence of ordered configurations corresponding to different phases around the
cycle. After all, the agent types have only a discrete, cyclic permutation symmetry and
the cycle itself can be strongly non-linear in the configuration space and in its rate
of advance. It is the recognition that the limit cycle is an extended-time trajectory,
protected by the underlying time-translation symmetry, which allows us to prove that
the fluctuation corrections do not destroy its degeneracy, even though the explicit
calculation of these fluctuations to all orders is beyond the scope of our analysis.

1We do not take up in this monograph another interesting and more subtle question, which is what determines
whether the continuous symmetry of time translation, or only one of the discrete agent-exchange symmetries,
will be broken in a particular evolutionary game. That question falls within the domain of bifurcation theory in
dynamical systems, which is a large area outside the scope of our topic.
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The proof is a stochastic process version of the celebrated result known as Goldstone’s
theorem in statistical mechanics and field theory. In equilibrium systems, Goldstone’s
theorem ensures the existence of massless particles, sound waves, or other so-called
‘gapless’ excitations in the face of stochastic or quantum corrections. In population
processes, it ensures the existence of phase noise around the limit cycle as a form of
population dynamics that is not subject to mean regression and so persists in popu-
lations of arbitrarily large size. The noisy walk around the limit cycle is the multilevel
population dynamics for continuous-symmetry breaking, which replaces the rare state-
switching dynamics in systems with discrete symmetry breaking. We compute the
relation between the diffusivity around the cycle and the rate ofmean regression toward
the cycle, as an application of the non-equilibrium fluctuation-dissipation theorem
developed in equations (4.104)–(4.106) of section 4.4.2.1.

6.1.1 Continuous degeneracy of the order parameter in a game with
a discrete type space

The simplest game with a supercritical Hopf bifurcation is the totally-symmetric
RPS game [4].2

Types are indexed (R,P,S), and the population state is denoted

≡
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥n

n
n
n

. (6.1)
R

P

S

The normal-form payoff matrix assuming random matching is [7]

= ¯ +
−

−
−

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡⎣ ⎤⎦ ⎡

⎣
⎢⎢

⎤

⎦
⎥⎥a a

a b
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a b

[ ]
1
1
1

1 1 1
. (6.2)

This form is uniquely specified, up to the magnitudes of a and b, by antisymmetry of
payoffs and invariance under cyclic permutation of the agent types. As in our other
simple game models, choosing the number of agent typesD = 3 provides the simplest
non-trivial example and lends itself to illustration with two-dimensional figures.
However, all the equations in this chapter extend to larger numbers D of types with
cyclic permutation symmetry in the payoff matrix.

The RPS model, like the coordination game, converges to its mean-field limit in
all respects except for the accumulation of noise along the limit cycle in the broken-
symmetry phase. The bifurcation, within mean-field approximation (MFA), is
derived by introducing a radius variable

¯ ≡ ¯ + ¯ + ¯ −r
n n n

N D
1

. (6.3)2 R
2

P
2

S
2

2

2 Similar conclusions apply, however, to a wide variety of stochastic processes with limit cycles and many of
these have been developed in reaction–diffusion theory [5, 6].
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Since the population vector is constrained by ⩽ ¯ ¯ ¯ ⩽n n n N0 , ,R P S and ¯ + ¯ +n nR P

¯ =n NS , ¯ =r 02 corresponds to the uniform population ¯ = ¯ = ¯ =n n n N DR P S and
only positive values of r̄2 permit dynamics. Evaluating (2.15) for rlog 2 gives

¯ = − −
−

+ − ¯
⎡
⎣⎢

⎤
⎦⎥

r
t

a b N
D

D
a b N

r r
d log

d
( )

1 2
( )

( ) . (6.4)
2

2

The term denoted r( ) is oscillatory in the angular coordinate on the simplex
and does not accumulate over time, as revealed by the simple Floquet analysis in
section 6.3.2 below.

From (6.4), < +a b D N2 /2 gives a unique, stable, static equilibrium at r = 0 (the
uniformly mixed population). When > +a b D N2 /2 , the uniform population
becomes unstable and all solutions to (2.15) converge to a limit cycle, as shown
in figure 6.1. Near the bifurcation, the cycle is approximately circular, with a
mean value given by

¯ ≈ −
−

r
D

D
a b N

1 2
( )

. (6.5)2

Symmetric mutation among the D types, which on its own would drive the popu-
lation toward the uniform distribution, is responsible for the stability of the limit
cycle along an interior trajectory. Without mutation the limit cycle would accu-
mulate to the simplex boundary.

6.2 Gaussian-order response and correlation functions
The robust and dynamically important fluctuation effects in this game may all be
qualitatively understood and quantitatively approximated to leading order in N1/ ,

Figure 6.1. Mean-field flow lines for the RPS game (6.2) with the selection parameter − =a b N( ) 24. The
critical population size for this model is =D2 182 . Dots represent initial mean states n̄, and thin black lines are
solutions to (2.15) from those initial states. The red line is the limit cycle, to which all solutions converge.
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from the Gaussian kernel S (2) for fluctuations, introduced in section 4.4.2. The
behavior of fluctuations in both the symmetric and symmetry-breaking phases is
of interest, along with the quantitative continuation of the spectrum across the
transition between phases. We will also illustrate calculation of the Gaussian
kernel in both coherent-state and action-angle variables, to show the relation
between the two constructions.

We begin with fluctuations about the uniform background, computed in
coherent-state variables. We then explain what it means for the limit-cycle order
parameter in the broken-symmetry phase to be an extended-time trajectory, show
how this leads to differences between non-equilibrium and equilibrium systems
and compute the solution for the cycle in the MFA. About this background of
the deterministic cycle, we then return and compute the fluctuation spectrum
along the radial and tangential directions in action-angle variables, using a
weak non-linearity expansion to simplify the limit-cycle coordinates. We show the
form of the fluctuation-dissipation theorem that relates mean regression in the
radial direction to the rate of accumulation of Brownian noise along the phase of
the cycle.

6.2.1 Fluctuations about uniform backgrounds in coherent-state fields

To demonstrate the effect of the terms in the action from section 4.4.2 which control
fluctuations, we begin with the expansion about the uniform-population back-
ground, where these are constant matrices. We return in section 6.3.1 to the problem
of fluctuation expansion about a time-dependent background.

General algebraic forms for the coherent-state expansion are given in appendix 4.6.1.
We will keep the number of types D explicit, even though in the examples D = 3, to
distinguish it from numerical factors related to the order of derivatives and to indicate
the scaling of magnitudes with D.

The uniform background satisfies ϕ̄ = N D/m for each m. In this background, the
diffusion kernel (4.134) evaluates to

ϕ ϕ
δ∂

∂ ∂
= + − − −†
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a
2

1
. (6.6)
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2

Continuity in the sum of the eigenvalues about more general backgrounds will also
be of interest. From (4.135) and the definition (6.3) of r2 on the population simplex,
we obtain
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where in the last line we have used the expression (6.5) for r2 in the phase with a limit
cycle. We will justify this approximation in (6.19) from the Floquet analysis in
section 6.3.2 below.

Returning to the uniform background, the noise source corresponding to (6.6),
which is the Hessian (4.136), becomes

ϕ ϕ
δ− ∂

∂ ∂
= ¯ + − − − −† †
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b a b a

D D
3

2
2( ) 1

. (6.8)
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2

The matrix in both equations (which has the same form as the mutation matrix up
to a scale factor) is a projector into the transverse simplex ϕ ϕ∑ ¯ + ′ == N( )m

D
m m1 . In

this simplex, we may diagonalize the diffusive Laplacian by writing the configura-
tion fields ϕ in a suitable basis, similarly to the diagonalization performed for the
pitchfork bifurcation in (5.37). Defining

≡ −
−

+
−

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥v

1

2 3

2
1
1

i
2

0
1
1

, (6.9)

and v* to be its complex conjugate, the projection matrix in (6.8) may be written

− = +† *
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The diffusive Laplacian then has eigenvalue

ϕ ϕ
∂

∂ ∂
= + − + +
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2

for v, and the eigenvalue for v* is the complex conjugate.
About a uniform background both the eigenvalues and eigenvectors are time-

independent, so the time-ordered exponential integrals in the Green’s functions
(4.99, 4.100) reduce to simple scalar exponents in − ′t t( ). These are readily inte-
grated in the formula (4.105) for Mt, in which we can take ″ → −∞t because all
noise is damped. The result is simply to divide the noise source (6.8) by the sum of
the eigenvalue in (6.11) and its complex conjugate (one factor from DR and one
from DA), yielding the expression for the correlation function of ϕ′

ϕ ϕ δ′ ′ =
¯ + − − −

− −
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If we expand the instantaneous radial coordinate in the RPS simplex about its mean
value as ≡ ¯ + ′r r r , with r̄ satisfying (6.5), we may estimate the fluctuation magni-
tude for ′r in the symmetric phase where ¯ ≡r 0,

′ =
¯ − − +

− −
( )r

D
N

a
a b

N

a b
D
N

2 3
1

2
. (6.13)2

2

Equation (6.13) provides half of the comparison of the analytic calculation for
fluctuations against numerical simulation, shown in figure 6.4. The comparison in
the broken-symmetry phase will be more complicated because of the limit-cycle
background, to which we return shortly.

6.2.2 Symmetries governing the Hopf bifurcation act on a space of histories

The graph of mean-field solutions to the evolutionary game equation for RPS, shown
in figure 6.1, makes it difficult to see from symmetry alone why the ordered population
state should follow a limit cycle. Why should fluctuations not cause the cycle to get
‘stuck’ in one of the corners so that the ordered states would respect the point-group
symmetry of the type space, breaking to three trigonally symmetric fixed points the
way the coordination game broke to two reflection-symmetric fixed points?3

Figure 6.2 shows the relevant symmetries of the problem by embedding popu-
lation states in a three-dimensional space of both types and time. As developed at
length in [3], the elementary entities to which non-equilibrium stochastic processes
assign probabilities are not single-time configurations, but entire histories extended
over time. For example, a fixed steady state becomes not merely a point in
type-space, but a vertical trajectory in which only the type coordinates are fixed. In
figure 6.2, the history representing the limit cycle is a spiral path that winds around
the symmetric fixed point and which may be periodically identified in time at integer
multiples of the limit-cycle period. The symmetry that transforms different ordered
histories is translation in time (vertical displacement in the graph). If any particular
ordered history is displaced in time by continuous amounts ranging from zero to a
full cycle period, the resulting one-parameter family of spiral histories traces out a
sleeve in the type-space/time prism. This non-trivial action of time translation is in
contrast to what happens to rest points, which are vertical lines that simply trans-
form into themselves under any time displacement. Because the ordered histories

3The corresponding difficulty is called the hierarchy problem in the quantum field theory of elementary particles
and also has counterparts in condensed matter. Its statement is that any property that solutions to classical
equations of motion may have, if it is not required to exist by symmetries of the problem, will generically be lost
when fluctuation corrections are added to the classical solution. The typical property of interest is masslessness of
elementary particles. If particles are not required to have zero mass by some symmetry, not only will they
generically have non-zero masses, the masses should be characteristic of the strongest forces with which the
particles interact and these are often large. The circumventing of the hierarchy problem is the reason all theories
of massless particles are based on either gauge or global symmetries.
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couple types and time, this translation maps to a rotation in the phase of the pro-
jected limit cycle4.

The sleeve containing all possible phases of the limit cycle is transformed into
itself by time translation. This is the expression of the fact that the group of ordered
states as a whole respect the symmetry that is hidden by any one of them. The
winding number of any ordered history around the cylindrical sleeve is a topological
feature that cannot be continuously deformed into the zero-winding behavior of a
set of rest points whose trajectories are mere vertical lines. This topological property
is what protects the limit cycle from being a fine-tuned artifact of the classical
equations of motion, which might be violated by fluctuation effects. Fluctuation
corrections may alter the local speed of advance, smoothly distorting the embedding
of the spiral trajectory in time, but they cannot break it into three vertical lines that
hide only the point-group symmetry of the type space through anything short of
inducing a full topology-changing phase transition.

Figure 6.2. The order parameter in a space of histories, corresponding to a limit cycle, is an extended-time
path. The projection of the limit cycle onto the space of types is shown in red in the base plane of the graph.
Time translation of the spiral trajectory over one cycle period would fill out a non-cylindrical but threefold-
symmetric ‘sleeve’ within the prism shown. This sleeve, which contains the full one-parameter family of
ordered backgrounds, is time-independent, reflecting the symmetry hidden by any single background. For a
limit cycle near the boundary of the RPS simplex, the cycle slows at the vertices, as shown by vertical incli-
nation of the trajectory. However, because any trajectory winds around the sleeve, while fluctuation effects can
change the rate of advance, they cannot collapse the trajectories down to fixed points without changing the
topological feature of this winding number.

4 To appreciate that it is the time translation which is fundamental, note that the time translation acts uniformly
on the spiraling history. If we wish to project this into an equivalent map on the limit cycle in the base
space, the map is not a uniform advance along the line element of the limit cycle, but one that ‘stretches’ or
‘compresses’ different segments to reflect the different rates of advance along the cycle.
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6.3 Stochastic Goldstone’s theorem and noisy clocks
Recall from section 4.4.2.3 that for any stationary path of S, if ϕ† t( ), ϕ t( ) is a
solution to =S 0(1) , then ϕ δ−† t t( ), ϕ δ−t t( ) must also be a solution for any
finite δt. The leading term in an expansion of the stationary-path equations
(4.87, 4.88) in δt yields the stochastic version of a famous result from field theory
known as Goldstone’s theorem [8]. The mathematical statement of Goldstone’s
theorem, in terms of representations of symmetry, is that the generator of the sym-
metry hidden by the background (in this case, time translation, or td/d ), acting on
that background, must produce a fluctuation with zero eigenvalue in S (2).

For RPS the theorem states that the cumulant expansion in the distribution for
fluctuations has zero-eigenvalue modes corresponding to the direction of symmetry
around the limit cycle. We derive only low-order approximations to this cumulant
expansion, to produce quantitative estimates for fluctuations transverse to and
Brownian motion along the cycle, which we compare to simulations in the next
section. It is well understood that low-order approximations to cumulant expansions
are not by themselves reliable, especially for exact cancellations such as zero
eigenvalues. The hidden symmetry of time translation implies, however, that these
zero eigenvalues exist at all orders of approximation and even when the approximate
expansion in N1/ fails to converge, as long as the topological winding number of the
average ordered history persists.

The analogy of the limit cycle in RPS to a continuous circle of degenerate ordered
states that leads to Goldstone’s theorem for equilibrium thermodynamics is limited.
Ordinarily time-translation symmetry is not broken by the solutions of equilibrium
thermodynamics5. Therefore, in order for a continuous symmetry to emerge among
spatial ordered states, the potential would need to have the form shown in figure 6.3.
The type space of RPS has no such rotational symmetry and the kinematic potential

νV( ) constructed according to the prescription of section 4.4.1.2 shows a single zero,
at the unstable rest point for the uniform population. Hence, a grayscale plot for the
RPS game analogous to the potential plot for the coordination game in figure 5.3
would show no distinctive contour or other feature at the position of the cycle.

Since the limit-cycle background is a classical solution to the evolutionary game
equations of motion, it has ϕ̄ =† 0 and ϕ ϕ∂ ∂ ∂ ≡/ 0i j

2 as well. Therefore the form of
(4.115) applicable to the time derivative of the limit cycle is

∑ δ
ϕ ϕ

ϕ
= + ∂

∂ ∂

¯

=
†

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟t t

0
d
d

d

d
. (6.14)

j

D

1

ij

i j

j2

5Ordinarily equilibrium thermodynamics is defined through physical context, as a theory of time-independent
states. However, the mathematics of equilibrium may readily be extended by analytic continuation to the range
of thermodynamically reversible dynamics and systems in this domain may break time-translation symmetry
[9, 10]. The paired state of superconductors may also be said to break time translation in the collective phase of
the pair wave function, though this is not an observable under most conditions [11].
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The equivalent form in action-angle variables in the de-scaled time coordinate τ is

∑ δ
τ η ν

ν
τ

= + ∂  ˆ

∂ ∂
¯

=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟0

d
d

d

d
. (6.15)

j

D

1

ij
i j

j2

When we transform the vector ν to polar coordinates θr( , ) in the type-simplex, the
angular position along the limit cycle will advance as θ τ¯ ≈d /d constant, so (6.15)
implies that ν τ¯d /d is a zero-mode of η ν∂ ˆ ∂ ∂/ i j

2 within the same approximation. A
zero mode of the matrix that governs mean regression is a collective fluctuation
subject to free diffusion.

6.3.1 Frenet coordinates on the limit cycle in the RPS game

A Frenet coordinate system on a limit cycle is one whose principle axes are instan-
taneously tangent and normal to the cycle [5, 6]. These principle axes provide a
convenient separation between mean-regressing noise normal to the cycle and
Brownian motion tangent to it. For RPS near the bifurcation, the limit cycle is
nearly circular and the Frenet coordinates approximate polar coordinates. A Floquet
analysis integrates properties around cycles, to arrive at the long-time repeated
dynamical states or convergence toward them.

Here we compute the leading dependence of the radial coordinate on angle
around the cycle and verify that the transformation from polar to Frenet coordinates
approaches the identity. By showing that the deviations from circularity are har-
monic at leading order, we justify the omission of oscillatory terms in the mean-field
radius estimates in section 6.1.1.

Let the normalized radius r introduced in (6.3) and the angle θ in the simplex
be polar coordinates for ν. For definiteness, choose θ = 0 to correspond to the

Figure 6.3. Spontaneous symmetry breaking in a two-dimensional equilibrium system. The exact degeneracy
of a continuous, one-dimensional loop of solutions (red) requires a rotational symmetry in the underlying
potential. Cross-sections of the potential are otherwise equivalent to the one-dimensional case of figure 5.2.
The exact degeneracy around the loop in the equilibrium potential ensures that arbitrarily small energies can
reach any minimum, independent of the steepness of the mean regression in the radial direction. These most
accessible deformations are known as the Goldstone modes in the ordered state.
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axis =n nR P. Finally, perform a similar transformation on η to coordinates
φh( , ). Thus,

ν
ν

θ
θ

η
η

φ
φ

≡ ≡
⎡
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⎤
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⎡
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⎤
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r
r

h
h
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;
cos
sin

. (6.16)1

2

1

2

The only combinations of these fields that actually appear in S (2) refer η to the
direction of ν, not to the rectilinear frame, so define radial (r) and tangential (t)
components of η as

η
η

φ θ
φ θ

≡
−
−

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

h
h

cos( )
sin( )

. (6.17)r

t

For small r2, we will approximate the noise kernel (4.140) by its value in the
uniform background for simplicity, because it is not a strong function of ν near
the center of the simplex, as was shown in figure 5.4. In polar coordinates, the action
to all orders in ν and to second order in η then takes a simple form corresponding to
the expansion (5.14) used to study stationary points,

∫ τ η η τ η

θ
τ η

η η
η

η
η≈

+ ∂  ˆ

∂

+ ∂  ˆ

∂

+ ∂  ˆ

∂
⎡⎣ ⎤⎦

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
⎡⎣ ⎤⎦ ⎡

⎣⎢
⎤
⎦⎥S N

r

r

d

d
d

d
d

1
2

, (6.18)r t
r

t

r t

2

2

r

t

in which η∂  ˆ ∂/2 2 is computed with respect to the η η( , )r t basis.
The stationary point conditions are most easily decomposed in terms of a set of

scaling parameters which are functions of the payoffs. The reference scale for radius,
R̄, will be the value suggested by (6.5),

¯ ≡ −
−

R
D

D
N a b

1 2
( )

. (6.19)2

The mean rate of advance of the phase θ is

ω = +a b

2 3
. (6.20)

A normalized radius coordinate will be denoted

ρ ≡ ¯
r
R

. (6.21)
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(The notation here is distinguished from ρn used for the original probability density.)
Three further combinations of the game parameters appear in the exact stationary
point equations:

ω

α
ω

≡ ¯ −

≡ ¯ +

≡ −

A R
a b

A R A

a b

2
,

2 ,

tan
1
3 2

.

(6.22)

1
2

2
2 2

1
2

The small expansion parameter will be R̄, in terms of which ∼ ¯A R( )2 , ∼ ¯A R( )1
2 .

Then the stationary point condition for ν in ρ θ( , ) coordinates, from the action
(6.18), becomes

ρ
ω τ ω η

ρ ρ θ α ρ

ρ θ
ω τ ω η

ρ η ρ θ α

= − ¯
∂  ˆ

∂
= + + −

= − ¯
∂  ˆ

∂
= − − +

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

( )
R

A A

R

d
d

1
sin(3 ) 1

d
d

1
1 cos(3 )

(6.23)
r

2 1
2

t
2

The limit-cycle trajectories are not perfect circles, as shown in figure 6.1 and the
angle of inclination to a pure radial vector due to the variation of ρ is

η
η

ρ
ρθ

ρ θ α ρ

η ρ θ α

ξ

ρ
θ

∂  ˆ ∂
∂  ˆ ∂

= ˙
˙ = −

+ + −

− +

≡

≡

( )A Asin(3 ) 1

1 cos(3 )

tan

d log
d

. (6.24)

r

t

2 1
2

2

These polar coordinates lead to a simple small-parameter expansion if we solve
(6.24) for the limit-cycle trajectory, to give

ρ θ θ α¯ ¯ = + ¯ + + ¯( )( ) ( )A
R1

3
cos 3 (6.25)2 2

At leading order = ¯r r around the cycle and the deviation at r̄( )2 is oscillatory with
period three. This term cancels around one cycle, giving the approximate radial
convergence equation (6.4).

6.3.2 Gaussian-order fluctuations in the Frenet frame

We may now carry out the derivation parallel to that in section 6.2.1, above the
critical point where the stationary solutions for RPS converge on a limit cycle of
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non-zero radius. We continue to work in action-angle variables, drawing on
algebraic forms provided in appendix 4.6.2.6

We begin with the action form for S (2) given in (4.109) with fluctuating fields

η ν′ ′( , ). In the limit-cycle background, the diffusion kernel η ν∂  ˆ ∂ ∂/2 is time-dependent
and does not generally have any zero entries, which makes direct evaluation of
time-ordered exponentials complicated. Yet we know from Goldstone’s theorem
that the time-derivative of the limit cycle must be a zero mode and we know by
symmetry that near the critical point it is approximately a circle. Therefore in the
polar coordinates of the previous section, the zero eigenvalue may be made explicit
and the resulting lower-triangular form for the kernel makes evaluation of 2×2
time-ordered exponentials elementary. This construction is a simple version of the
transformation to a Frenet frame used in [5].

Because the limit cycle is not exactly a circle, we begin with a general invertible
transformation V from the rectilinear basis η ν( , )T to variables η VT and ν−V 1 . We
may always choose V so that

τ η ν
+ ∂  ˆ

∂ ∂
= ΛV

V V
d
d

, (6.26)
2

for some Λ which is lower triangular, by letting the second column of V be the time
derivative of the limit-cycle trajectory. For now, however, assume only that V and Λ
are smooth, i.e., Λ −V V 1 has a continuous first derivative so that in the continuum
limit the retarded response function becomes

ν η θ τ τ′ ′ = − ′ ∫
τ τ τ τ′

− Λ
′
−

τ

τ
′( )( )

N
V V

1
e . (6.27)ud 1u

Under the same basis transformation, the correlation function (4.106) at equal times
becomes

∫

ν ν ν ν

η

′ ′ = ′ ′

− ∂  ˆ

∂

∫ ∫

∫ ∫

τ τ τ τ τ τ τ τ

τ τ

τ
τ

− Λ
′
−

′ ′ ′
− − − Λ †

′
− Λ − − − − Λ †

τ

τ

τ

τ

τ τ

′
†

′
*

† *

( ) ( )
( ) ( )

V V V V

N
V z V V V

e e

1
d e e . (6.28)

u u

u
z

z

z
u

d 1 1 1 d

d 1
2

2
1 1 d

u u

z
u

z u

We now construct V through a series of successive approximations, beginning
with the transformation (6.16) to static polar coordinates, which may be performed
directly within the action.

6We note, as an aside, that the correlation function in action-angle variables differs from that in coherent state
variables only by corrections of order N1/ relative to the leading magnitudes. These arise, as they must, from
expectations ϕϕ˜ ′ 2, which the action-angle correlator includes but the coherent-state correlator does not. The
closed-form relation between the noise sources for these two forms, for general payoff matrices, is provided in
appendix 4.6.3.
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In appendix 6.4 we solve for the matrices V and the fluctuation kernel as an
expansion in small r2 and plug the solutions into the formula (6.28) for the ν ν′ ′
correlation function. The result, still using polar coordinates, is that

θ θ θ θ′
¯ ′ ′ ¯ ′ → ′

¯ ′ ′ ¯ ′

+ ¯ − − + − −

− ′
+ ¯

′

⎡
⎣⎢

⎤
⎦⎥⎡⎣ ⎤⎦ ⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥⎡⎣ ⎤⎦ ⎡

⎣⎢
⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

( )

r
r

r r
r

r
r r

a
a b

N

D
N

a b
D
N

t t

R

0
1

0
1

3
1 2

1

2

. (6.29)

t t

2

Figure 6.4 compares time averages of simulation results for the squared radius 〈 〉r2 to
these expressions. In the symmetric phase, fluctuations dominate the average and
agree closely with the Gaussian-order estimate of (6.13). In the broken-symmetry
phase, 〈 〉r2 is dominated by the limit cycle itself, which we estimate from numerical
simulations of the solutions to the mean-field dynamics (2.15).

Figure 6.4. Comparison of fluctuation results from analytic estimates and simulations. Time-averaged
squared radii r2 (crosses), sampled at all a values, are well defined without regard to the circular
approximation to the Frenet frame. Equation (6.13) for radial variance in the unbroken phase (green solid)
agrees closely. In the broken phase, where most limit cycles are close to the periphery and the Gaussian
fluctuation approximation (6.29) is poor, time averages r2 over an integer number of limit cycles are
computed numerically (red dashed). These underestimate stochastic r2 by omission of variance terms. Here
b = 0.2 and N = 10000.
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Certain features of this model lead to a rapid transition away from the critical
point and into the strongly non-Gaussian regime of fluctuations near the boundary
of the simplex, making quantitative comparison to the radial and tangential
estimates of (6.29) difficult. If we insert (6.5) for the mean r̄2 on the limit cycle into
(6.29) for 〈 ′r( )2 , we obtain the result that for large N,

′ ≈ ¯

¯
( )

( )
r

a

Dr2
(6.30)2

2

near the critical point, asymptotically independently of N. For the parameters in
figure 6.3 and ¯ ∼a 1 (needed so that ¯ ≳a a), r̄ only becomes large enough for

〈 ′ ≪r( ) 12 near the simplex boundary. At interior positions of the limit cycle,
large fluctuations fill most of the simplex. This feature, together with the coordinate
singularity at r = 0, makes numerical assignment of fluctuations to the Frenet frame
ambiguous. The Gaussian approximation for fluctuations is therefore corrected by
boundary terms until the limit cycle enters the strongly non-linear regime near the
boundary. A thorough treatment of the oscillatory diffusion constants of very
similar models in this non-linear regime is given in [5, 6], so we do not duplicate that
analysis here.

6.4 Appendix. Rotating backgrounds, polar coordinates
and accumulating Brownian noise

In this appendix we construct the Frenet transformation V of section 6.3.2 through a
series of successive approximations. The first of these is the conversion (6.16) to
polar coordinates, which may be performed directly in the action, and for which the
notation of a time-dependent V is not yet needed.

The second-order action (4.109) in polar coordinates becomes

∫ τ η η
τ

ρ
ρ

ρ
ρ θ

ρ θ
ρ

θ
θ

ρ
ρ

θ
η η

η

η
η= −

∂ ˙
∂

∂ ˙
∂

∂ ˙
∂

∂ ˙
∂

+ ˙
′

¯ ′ + ∂  ˆ

∂

⎛

⎝

⎜⎜⎜⎜⎜

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎞

⎠

⎟⎟⎟⎟⎟

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥S N r

r
d [ ]

d
d

1
2

[ ] . (6.31)(2)
r t r t

2

2

r

t

Having removed most of the frame dependence of the limit cycle with this trans-
formation, we may now return to the systematic approximation of V and Λ as a
small parameter expansion. Equation (6.26) becomes

τ

ρ
ρ

ρ
ρ θ

ρ θ
ρ

θ
θ

ρ
ρ

−

∂ ˙
∂

∂ ˙
∂

∂ ˙
∂

∂ ˙
∂

+ ˙
= Λ

⎛

⎝

⎜⎜⎜⎜⎜

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎞

⎠

⎟⎟⎟⎟⎟
V V

d
d

. (6.32)
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If we take the time-derivative of the trajectory ρ θ¯ ¯( ), to be the second column of V,
and choose the first column simply to be orthogonal, then

ω
ρθ ρ
ρ ρθ

ω
ρ ρθ

ξ ξ
ξ ξ

= −
˙ ˙

− ˙ ˙

= ˙ + ˙
−

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( )

V
1

1 cos sin
sin cos

, (6.33)2 2

with ξ defined in (6.24). Solving (6.32) then gives

Λ = Λ
Λ

⎡
⎣⎢

⎤
⎦⎥

0
0

, (6.34)
(11)

(21)

in which

ω ρ θ α ξ ρ ξ

ω ρ θ α ξ ρ ξ

−Λ = ¯ ¯ + − ¯ − ¯

−Λ = ¯ ¯ + − ¯ − ¯

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

( )
( )

A A

A A

4 sin 3 2 2 cos(2 )

4 cos 3 2 2 sin(2 ) .
(6.35)

(11)
2 1

2

(21)
2 1

2

Time-ordered exponentials of 2×2 lower-triangular matrices reduce to elementary
scalar integrals, as

∫=
− Λ

∫
∫

∫
τ

τ− Λ
− Λ

− ′Λτ

τ τ
τ

τ ′

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥( ) u

e
e 0

d e 1
. (6.36)u

u

u
u u

d

d

1

2
(21) d

u

u

u
1

2 1

2 (11)

1
(11)

V and Λ may be constructed in this way for any stationary solution. Using the
solution (6.25) for ρ θ¯ ¯( ), the leading order in V is then

= + ¯⎡
⎣⎢

⎤
⎦⎥ ( )V R1

1
. (6.37)

Thus the polar coordinates turn out to be adequate by themselves. The time-ordered
exponential (6.36) similarly simplifies to

= + ¯∫ ω τ τ− Λ − −
τ

τ ⎡
⎣⎢

⎤
⎦⎥( ) ( )Re e 0

0 1
. (6.38)u Ad 2 ( 1 2)

u
1

2 1

Now it remains only to compute the noise kernel. Evaluation of (4.140) about a
uniform background gives

η η ϕ ϕ
δ

δ

− ∂  ˆ

∂ ∂
= −

∂ ∂
+ + − −

= ¯ + − + + − −

† †

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

N N
b a

D D

D
a

b a
N

a b

D D

1 2 1

3
2

2 1
. (6.39)

i j i j

ij

ij

2

2 2

2
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The leading constant correction in small R̄2 can readily be included, leaving out
oscillatory terms as they were left out of V in (6.37),

η η η η
δ

ϕ ϕ
δ

δ

− ∂  ˆ

∂ ∂
= − ∂  ˆ

∂ ∂
+ − ¯ −

= −
∂ ∂

+ + − −

= ¯ + − + − − −

¯ ≠ ¯ =

ϕ

† †

=

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

a b
D

R
D

N N
b a

D D

D
a

b a
N

b a

D D

( )
2

1

1 1

2

1

3
2

1 3( )

2

1
, (6.40)

R R0 0
i j i j

ij

i j N D

ij

ij

2 2
2

2 2

2

i

2 2

but this result differs from (6.39) only by terms of order N1/ near the critical point.
Now using D = 3 for the particular RPS example, the noise kernel (6.40) reduces to
the simple expression

η η
δ− ∂  ˆ

∂ ∂
= ¯ − − + −

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟a

a b
N D3
1 1

. (6.41)
i j

ij

2

Incorporating the source (6.41) and the time-ordered exponentials (6.38) in the
expression (6.28) for the correlation function, and performing the elementary inte-
grals over τ τ− ′, gives

θ
θ

θ
θ

ω
τ τ

′
¯ ′

′ ¯ ′ = ′
¯ ′

′ ¯ ′

+ ¯ − − +

−

− ′
+ ¯

τ

ω τ τ

τ

ω τ τ

ω τ τ

− − ′

′

− − ′

− − ′

⎡
⎣⎢

⎤
⎦⎥⎡⎣ ⎤⎦ ⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥⎡⎣ ⎤⎦ ⎡

⎣⎢
⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
( )

r
r

r r r
r

r r

a
a b

N
A N

N

R

e
1

e
1

3
1

1 e
4 . (6.42)

( ) ( )

( )

A A

A

2 2

4

1

1 1

1

Restoring the combination of aggregated constants to their expression in terms of
the parameters of the problem,

ω = − −
⎛
⎝⎜

⎞
⎠⎟A N

N
D

a b
D
N

4
2 2

, (6.43)1

2

and using large τ τ− ′( ) to ignore exponentials in the non-zero damping radial
eigenvalue, we obtain (6.29).

Bibliography
[1] Bertini L, De Sole A, Gabrielli D, Jona-Lasinio G and Landim C 2002 Macroscopic fluc-

tuation theory for stationary non equilibrium states J. Stat. Phys. 107 635–75
[2] Bertini L, De Sole A, Gabrielli D, Jona-Lasinio G and Landim C 2009 Towards a

nonequilibrium thermodynamics: a self-contained macroscopic description of driven
diffusive systems J. Stat. Phys. 135 857–72

Symmetry and Collective Fluctuations in Evolutionary Games

6-17

http://dx.doi.org/10.1023/A:1014525911391
http://dx.doi.org/10.1007/s10955-008-9670-4


[3] Smith E 2011 Large-deviation principles, stochastic effective actions, path entropies, and the
structure and meaning of thermodynamic descriptions Rep. Prog. Phys. 74 046601

[4] Hofbauer J and Sigmund K 1998 Evolutionary Games and Population Dynamics (New York:
Cambridge University Press)

[5] Boland R P, Galla T and McKane A J 2008 How limit cycles and quasi-cycles are related in
systems with intrinsic noise J. Phys. A: Math. Theor. 41 435003

[6] Boland R P, Galla T and McKane A J 2009 Limit cycles, complex Floquet multipliers, and
intrinsic noise Phys. Rev. E 79 051131

[7] NowakMA 2006 Evolutionary Dynamics: Exploring the Equations of Life (New York: Belknap)
[8] Coleman S 1985 Aspects of Symmetry (New York: Cambridge)
[9] Smith E 1998 Carnot’s theorem as Noether’s theorem for thermoacoustic engines Phys. Rev.

E 58 2818–32
[10] Smith E 1999 Statistical mechanics of self-driven Carnot cycles Phys. Rev. E 60 3633–5, PMID:

11970197
[11] Tinkham M 2004 Introduction to Superconductivity 2nd edn (New York: Dover)

Symmetry and Collective Fluctuations in Evolutionary Games

6-18

http://dx.doi.org/10.1088/0034-4885/74/4/046601
http://dx.doi.org/10.1088/1742-5468/2008/09/P09001
http://dx.doi.org/10.1103/PhysRevE.79.051131
http://dx.doi.org/10.1103/PhysRevE.58.2818
http://dx.doi.org/10.1103/PhysRevE.60.3633
pmid:11970197

	Chapter 6 Limit cycles and noisy clocks
	6.1 Simple continuous symmetry breaking and a new role for time in non-equilibrium processes
	6.1.1 Continuous degeneracy of the order parameter in a game with a discrete type space

	6.2 Gaussian-order response and correlation functions
	6.2.1 Fluctuations about uniform backgrounds in coherent-state fields
	6.2.2 Symmetries governing the Hopf bifurcation act on a space of histories

	6.3 Stochastic Goldstone’s theorem and noisy clocks
	6.3.1 Frenet coordinates on the limit cycle in the RPS game
	6.3.2 Gaussian-order fluctuations in the Frenet frame

	6.4 Appendix. Rotating backgrounds, polar coordinates and accumulating Brownian noise
	 Bibliography


